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Abstract. This is the second in a series of papers on conformal tilings. The overriding
themes of this paper are local isomorphisms, hierarchical structures, and the type problem
in the context of conformally regular tilings, a class of tilings introduced first by the
authors in 1997 with an example of a conformally regular pentagonal tiling of the plane
[2]. We prove that when a conformal tiling has a combinatorial hierarchy for which the
subdivision operator is expansive and conformal, then the tiling is parabolic and tiles
the complex plane C. This is used to examine type across local isomorphism classes of
tilings and to show that any conformal tiling of bounded degree that is locally isomorphic
to a tiling obtained as an expansion complex of a shrinking and dihedrally symmetric
subdivision operator with one polygonal type is parabolic.

Introduction

We continue the development of conformal tilings begun in earnest in [4]. This work draws
its inspiration from two sources, the first from Cannon, Floyd, and Parry’s articulation
of finite subdivision rules in a series of papers over the last two decades, and the second
from the study of aperiodic hierarchical tilings begun in the seventies, and developed into
a mature discipline over the last decade and a half. In the first paper of the series [4],
the authors laid out a general development of conformal tilings, tilings by conformally
regular curvilinear polygons with a reflective structure. There we uncovered the beautiful
combinatorial and conformal substructures that encode the dual and quad tilings associated
to a conformal tiling, and we examined conditions that guarantee that a combinatorial
subdivision of a tiling yields a conformal subdivision of the tiling. All of this builds upon
the earlier work of the authors in [2] and [3]. The results needed in the present work from
the presentation of [4] are reviewed, repackaged, and expanded in the first section of this
paper, so that this paper is self-contained.

Recently connections between conformal tilings and traditional aperiodic tilings have emerged,
first through the doctoral dissertation of Maria Ramirez-Solano [9]. This classical disci-
pline of aperiodic hierarchical tilings exerts its influence immediately. In that discipline, a
tiling T determines a tiling space, the continuous hull of the tiling, in which every tiling
locally isomorphic to T has natural residence and on which lives a canonical dynamical
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system. The canonical transversal is a Cantor set slice of the hull that serves as the local
isomorphism class of pointed tilings. A subsequent paper will detail a parallel theory in
the setting of conformal tilings, but for now we borrow from the canonical transversal and
in a standard way describe a metric space of planar polygonal complexes and, for a given
complex K, a local isomorphism class of rooted complexes, denoted as LI(K). This is de-
veloped in the second section to an extent beyond our immediate use, but serves to place
conformal tilings in a fairly general setting where one can illuminate some properties of K
that will mirror those in the traditional setting of aperiodic tilings. In particular, we will
see the importance of finite local complexity and repetitiveness, two important features of
aperiodic tilings, in establishing pertinent facts about conformal tilings. Though the broad
ideas of this section promise to be old hat to the traditional tiling experts, the particulars
will be new, most certainly to those in discrete conformal geometry, and for completeness
are developed in some detail.

The overriding theme of the remainder of the paper centers on the type problem in the
setting of conformal tilings. The classical type problem is that of determining whether
a concretely given, non-compact, simply connected Riemann surface is conformally equiv-
alent to the complex plane C or the unit disk D. In the former case, the surface is said to
have parabolic type, and in the latter, hyperbolic type. The terminology is descriptive
as the plane C with its usual metric serves as a standard model of parabolic, or Euclidean,
geometry, while the disk D with its Poincaré metric serves as a standard model of hyper-
bolic, or Lobachevski, geometry. In the present context, the type problem immediately
arises when a planar polygonal complex is endowed with a piecewise flat metric in which
each polygon is realized as a convex Euclidean polygon. Such a metric determines a nat-
ural maximal complex atlas, presenting one with a concretely given, non-compact, simply
connected Riemann surface. Is this surface parabolic or hyperbolic? This construction
produces a locally finite tiling by curvilinear polygons filling the complex plane C when
the type is parabolic, and filling the disk D when the type is hyperbolic.

To focus the lens a bit, we start with a combinatorial object K, a decomposition of the
plane into combinatorial polygons, and our interest is in conformal structures on K in which
each polygon is realized as a “regular” polygon. It turns out that among the uncountably
many ways to endow K with a conformal structure so that each polygon is realized as a
conformally regular polygon, precisely one of these—the one derived from the β-equilateral
structure of the first paper [4]—yields a tiling T = TK that contains within its detailed
structure a reflective tiling T † in the pattern of the dual complex K†, as well as a reflective
tiling T � in the pattern of an associated 4-gon complex K�. The β-equilateral structure
was introduced originally by the authors in [2] in building their pentagonal tiling, used
further in [3] in the setting of their study of dessins d’enfants, and modified by Cannon,
Floyd, and Parry in [5, 6] in their study of expansion complexes of finite subdivision
rules. Our attention is focused on the conformal type of the Riemann surface that carries
this conformal structure determined by a given planar polygonal complex, and the chief
tool developed is inspired by examples of traditional aperiodic tilings and the hierarchical
structures one perceives in examining them closely.
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There seems to be no formal definition of the term hierarchical tiling, and we certainly
refrain from suggesting one that would fit all occasions of its use in the traditional tiling
community, or even in this new world of conformal tilings. Nonetheless in the third sec-
tion of this paper, we give a precise definition of what it means for a planar polygonal
complex K to exhibit a combinatorial hierarchy. We quickly restrict our attention to
hierarchies whose subdivisions are rotationally symmetric and we formalize this by the
use of a rotationally symmetric combinatorial subdivision operator τ . We then describe
what it means for a conformal tiling to exhibit a conformal hierarchy, and we ask when
does the existence of a combinatorial hierarchy for K imply the existence of a confor-
mal hierarchy for the conformal tiling TK . We find that this implication prevails when
the simple subdivision operator τ is not only rotationally symmetric, but in addition is
dihedrally symmetric, which guarantees that the reflective structure of TK is compatible
with the reflective structure of TτK . After defining and examining an important class of
hierarchies known as expansive hierarchies, we prove that a conformal tiling of bounded
degree that exhibits an expansive conformal hierarchy must be parabolic and, therefore,
find its existence in the complex plane C rather than in the Poincaré disk D. In addition, a
corollary implies that type is constantly parabolic across the local isomorphism class LI(K)
when the hierarchy is strongly expansive, a strengthening of the expansive property. In
this section, we also give a simple property—the shrinking property—on a subdivision
operator that guarantees that the hierarchy is strongly expansive. We close this section
with an examination of conformal hierarchies that have a supersymmetry, a loxodromic
Möbius transformation that generates the conformal hierarchy.

The authors introduced the notion of expansion complex for the pentagonal subdivision
rule in their construction of the pentagonal tiling of [2]. The pentagonal subdivision rule
along with many other finite subdivision rules had been introduced by Cannon in his study
of what is now termed the Cannon Conjecture, that every negatively curved group with
2-sphere Gromov boundary is, essentially, a cocompact Kleinian group. Cannon, Floyd,
and Parry in two papers [5, 6] formalized the notion of expansion complex, further refined
and developed the idea of finite subdivision rule, and worked out many specific examples,
including one of importance to us that is examined in a later paper in this series. In
the fourth and final section of this paper, we define expansion complexes in the setting
of planar n-gon complexes and a rotationally symmetric subdivision of an n-gon into n-
gons. This is inspired by traditional aperiodic tilings as well as the work of Cannon, Floyd,
and Parry on one-tile rotationally invariant finite subdivision rules. We should point out,
though, that our definition appears in a broader context than that of Cannon, Floyd,
and Parry, which exploits their extensive machinery of finite subdivision rules in all their
subtlety, machinery to a large extent that we avoid. Our interest in expansion complexes
is that they provide a stable of ready-made examples of conformal tilings that exhibit
three important properties, namely, combinatorial finite local complexity, combinatorial
repetitiveness, and combinatorial hierarchy, that traditional aperiodic tilings exhibit in a
stronger sense—not combinatorial but in a rigid Euclidean sense. If the subdivision τ that
generates the expansion complex is shrinking and, in addition, is dihedrally symmetric, then
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it is conformal and the combinatorial hierarchy of the complex K translates to an expansive
conformal hierarchy of the tiling TK . In particular, applications of the main theorems of the
third section imply that any conformal tiling locally isomorphic to a tiling obtained from
the expansion complex K of a dihedrally symmetric and shrinking subdivision operator
with a single polygonal type is parabolic, so type is constantly parabolic across the local
isomorphism class of K. This answers positively a question of Maria Ramirez-Solano as to
whether any conformal tiling combinatorially locally isomorphic to the conformally regular
pentagonal tiling of [2] is parabolic.

The final topic—supersymmetric expansion complexes—is explored in some detail to
close the fourth section, as well as the paper. These are those expansion complexes that
exhibit a combinatorial version of the conformal supersymmetry introduced at the end of
the third section. These include the expansion complexes defined and studied by Cannon,
Floyd, and Parry that give rise to conformal expansion maps, but also include generaliza-
tions of theirs. The exploration proceeds through the lens of an action τ̂ induced by the
subdivision operator τ that is defined on the local isomorphism class (K) of the expansion
complex K. Our study attempts to understand how common are the supersymmetric ex-
pansion complexes among all the expansion complexes for τ and pays off by discovering
how to identify and construct all possible supersymmetric ones, which turn out to be quite
rare—a countable family among the uncountable set (K)—whenever K is plural.

Acknowledgement. This paper arose from thinking about the type problem in the
context of locally isomorphic tilings, a concept new to the authors when introduced by
Maria Ramirez-Solano on a visit to Dane Mayhook and the two authors at the University
of Tennessee in May of 2012. It was pleasing to learn that the pentagonal tiling that we had
introduced in 1997 had garnered the interest of a small group in the tiling community and
that Maria’s doctoral thesis would dissect the pentagonal tiling into finer slices than the
architects of the example ever imagined possible. The initial impetus for this work arose
from the invitation by Maria, and by her co-organizer Jean Savinien, to the workshop,
Non standard hierarchical tilings, held at the Center for Symmetry and Deformation at
the University of Copenhagen from 20–22 September, 2012. This may be counted as the
beginning of what is expected to be a very fruitful conversation between the traditional
discipline of aperiodic hierarchical tilings and that of discrete conformal geometry and
nonstandard conformal tilings. The authors extend their thanks to Maria and Jean, from
whom they have learned a great deal about traditional aperiodic tilings, and to Natalie
Frank, Chaim Goodman-Strauss, and Lorenzo Sadun, traditional aperiodic tiling experts
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1. Conformal Tilings

We review in this section only the basic material from the paper [4] that is needed to discuss
the conformal type problem for conformal tilings. A fuller explanation may be found in
that paper where, in particular, the subtleties of conformal tilings are examined and a
defense for choosing the β-equilateral structure as the conformal structure most deserving
of study and development is launched, we think successfully. The ingredients of the theory
that we choose to review are planar polygonal complexes, the β-equilateral structure on
these complexes, the corresponding conformally regular and reflective polygonal tilings of
either the plane C or the disk D, associated 4-gon complexes and their quad tilings, and
combinatorial and conformal subdivision rules. In particular, we review just enough so
that the following theorem, proved at the end of this section and used in the proof of the
corollaries of the main theorem of Section 3, is understandable to the reader.

Theorem 1.1. If τ is a dihedrally symmetric simple subdivision operator and K is a planar
polygonal complex, then τK, the subdivision of K wherein each face of K is subdivided by
τ , is a conformal subdivision of K, so that the conformal tiling TτK may be realized as a
dihedrally symmetric, conformal subdivision of the conformal tiling TK .

A brief caution is in order for those who are familiar with paper [4]. There we abused
notation and used the same symbol to denote a tiling with several associated structures: the
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combinatorial complex underlying the tiling, the piecewise Euclidean metric space derived
from this combinatorial tiling, the resulting Riemann surface, and, finally, the conformal
tiling itself. In this paper we find that we need to take more care in delineating these
structures and, accordingly, we refine the notation of paper [4] and use differing notation
for the various structures: K for the combinatorial complex, |Kβ|eq for the metric space,
SK for the Riemann surface, and TK for the tiling. We may consider a maximal tiling T
of [4] as a 4-tuple T = (K, |Kβ|eq,SK , TK).1

To describe a conformal tiling, we begin with the combinatorial object that underlies
the tiling. Informally, a planar polygonal complex is a decomposition of the plane into
curvilinear polygons that meet along vertices and edges of their boundaries. More precisely,
a planar polygonal complex is an oriented 2-dimensional regular CW-decomposition K of
the plane whose attaching maps are homeomorphisms. The 0-skeleton K(0) is a countable
discrete collection of vertices, each edge of the 1-skeleton spans two distinct vertices, and
each face is the image of an attaching map that is a homeomorphism of the 2-cell boundary
onto a finite union of edges forming a cycle of length greater than or equal to two. The
complex is locally finite, meaning, of course, at most finitely many edges emanate from any
given vertex. While in the first paper [4] these complexes are defined in greater generality
than here—for example, the complexes may be defined on more general surfaces and may
allow loops, dangling edges, and non-embedded polygons—in this paper we restrict our
attention to planar complexes where the polygons are embedded. If the boundary of a face
f has n edges, we say that f is a combinatorial n-gon and we define the polygonal
type of f to be n. The complex K decomposes the plane into combinatorial polygons of
possibly varying polygonal types. Each edge lies in exactly two faces and two faces meet
along a union of common boundary edges and vertices, not necessarily contiguous to one
another. We find it convenient to think of the cells of K—the edges e and the faces f—as
closed cells, and when we mean the corresponding open cell we will use the notation e◦

and f◦. The barycentric subdivision of K, denoted as Kβ, is defined by introducing
a new vertex to each open face and one to each open edge, and then adding new edges
connecting the added face barycenter to both the original boundary vertices of that face
as well as to the added edge barycenters. This subdivides each edge into two edges and
each face f of K of polygonal type n into 2n triangles with a common vertex in the open
face f◦. If c is the vertex added to the open face f◦, a typical triangle of Kβ has vertices
a, b, and c, where b is an edge barycenter of an edge e of f and a is a vertex of e. This
complex Kβ is a simplicial decomposition of the plane into combinatorial triangles. The
polygonal complex K has degree at most d, where d is a positive integer, if each face of
K has polygonal type at most d and at most d edges meet at any vertex of K, and K has
bounded degree if it has degree at most d for some value of d. The degree of the planar
polygonal complex K of bounded degree is the smallest integer d for which K has degree

1The conformal tilings of [4] are even more general in that they also carry with them a conformal
tiling map that allows for a much greater variety of concrete realizations of conformal tilings with fixed
combinatorics. Essentially in this paper, we restrict our attention only to the maximal tilings of [4] as it is
this setting that encompasses the question of conformal type.



CONFORMAL TILINGS II 7

at most d. Note that the degree d is greater than or equal to 4 for any planar polygonal
complex of bounded degree. For a fixed positive integer n ≥ 3, the complex K is a planar
n-gon complex if each face of K is a combinatorial n-gon. We are interested particularly
in planar n-gon complexes of bounded degree, but this restriction is not enforced strictly
until Section 4.

We now endow K with the β-equilateral metric where first K has been barycentrically
subdivided to yield the triangular complex Kβ, and then each edge has been given a unit
length and each triangular face of Kβ has been identified as a unit equilateral triangle.
Observe that two faces meeting along an edge e isometrically reflect across e to one an-
other. The resulting metic space |Kβ|eq is piecewise flat with cone type singularities at the

vertices of Kβ. There is a canonical maximal complex atlas A, called the β-equilateral
conformal structure, where the cone type singularities are resolved by local power map-
pings that define vertex charts, and edge charts are defined by mapping two contiguous
faces isometrically to the union of two equilateral triangles in the plane meeting along
a common unit edge. The resulting surface SK = (|Kβ|eq,A) is a non-compact, simply
connected Riemann surface and the classical Uniformization Theorem implies that it is
conformally equivalent to one of the plane C or the disk D. We refer the reader to the first
paper [4] for details of this procedure. The conformal isomorphism of SK to either C or D
is unique up to Möbius equivalence. The set TK that consists of the images of the polyg-
onal faces of the original complex K under such an isomorphism provides a conformal
tiling of the appropriate plane—Euclidean or hyperbolic—by curvilinear polygons that
are conformally regular and meet in the pattern of the complex K. We of course do not
distinguish between tilings that are conformally equivalent, and so we consider that this
procedure identifies a unique tiling TK associated to the planar polygonal complex K. The
tiling TK is locally finite in its geometry, either C or D, and when the degree of a vertex
is d, each tile meeting that vertex has angle 2π/d at that vertex. When SK is parabolic
and TK tiles the complex plane, the tiling is unique up to orientation-preserving Euclidean
similarities, or complex affine transformations, and when SK is hyperbolic and TK tiles the
Poincaré disk, the tiling is unique up to orientation-preserving hyperbolic isometries. The
type problem now is manifest. Given K, is SK parabolic or hyperbolic? Does TK tile the
complex plane C or the Poincaré disk D? In general, this is very difficult to resolve.

Each tile t of TK of polygonal type n is homeomorphic to a regular Euclidean n-gon by a
homeomorphism that preserves vertices and is conformal on the interior of t. It is in this
sense that t is a conformally regular n-gon. This follows from the fact that the dihedral
group of order 2n acts on t as a group of conformal isomorphisms that preserves and is
transitive on vertices, which is a direct consequence of the equilateral metric on |Kβ|eq.
Again, the reader is refered to [4] for details. Now there are uncountably many pairwise
non-isomorphic ways to realize K as a planar tiling by conformally regular polygons in
the pattern of K—what is special about TK? The answer is in the reflective structure
that TK uniquely possesses among all conformally regular tiings in the pattern of K, and
in the rich and beautiful substructures that uniquely appear in the tiling TK as a result.
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By reflective structure we mean that the isometric reflection of two contiguous faces of Kβ

about their common edge in the metric space |Kβ|eq descends to a conformal reflection2

in the tiling TK . From this we see that each edge e of TK is an analytic arc incident
to two tiles, say s and t, and serves as the fixed point set of a conformal reflection that
exchanges the conformal centers of s and t and is defined on and exchanges at least the
triangular faces of s and t that meet along e that are the images of the equilateral faces of
|Kβ|eq under the uniformization mapping. Two important consequences of this reflective

property follow. First, each triangular subtile tβ of a tile t of TK , where tβ is the image
of one of the equilateral faces of |Kβ|eq under the uniformization mapping, encodes all the
combinatorial and conformal data of the tiling TK . By this we mean that, starting with
tβ and nothing else, we may recover the whole of the tiling TK , and so the whole of the
combinatorial structure of K as well as the conformal type of TK , by iterated conformal
reflection through the edges of tβ and its reflected iterates. Second, the tiling TK determines
an associated quad tiling T �K as follows. Each edge e of K determines a tile se of T �K
that is defined as the union of the images of the four equilateral faces of |Kβ|eq that meet at
the barycenter of e under the uniformization mapping. This tiling actually is conformally
equivalent to the tiling TK� with the β-equilateral structure, where K�, the associated
4-gon complex, is the planar 4-gon complex encoding the combinatorics of the tiling T �K .
In particular, each tile se is a conformal square that conformally reflects to any neighboring
tile with which it shares an edge, and so T �K is a reflective tiling by conformally regular
4-gons. The important point is that this quad tiling determines two orthogonal conformal

tilings simultaneously, the tiling TK as well as the dual tiling T †K in the following way.

Each tile s of T �K has two conformal diagonals e and e† that form the fixed point sets
of conformal reflections and meet orthogonally at the conformal center of the conformal
square s. The diagonals e cut out the tiling TK while the diagonals e† cut out the dual tiling

T †K . The dual tiling T †K is conformally equivalent to the tiling TK† with the β-equilateral

structure, where K† is the planar polygonal complex dual to K. Moreover, the barycentric

tiling T βK whose triangular tiles are obtained from the conformal square tiles of T �K by
cutting each along its conformal diagonals into four triangles, is conformally equivalent to
the tiling TKβ . It is only in the tiling determined by the β-equilateral structure that all

four tilings TK , T †K = TK† , T
�
K = TK� , and T βK = TKβ live simultaneously as reflective and

conformally regular tilings. This beautiful structure is explored with greater precision and
in more detail in [4].

So far we have examined the migration from the combinatorial to the geometric and have
noted the importance of reflectivity. Turning the discussion around a bit, we now start
with the geometric—a locally finite tiling T by conformally regular polygons—and ask for
an appropriate definition that the tiling be reflective. The dihedral group D2n of order 2n
acts as a group of conformal isomorphisms on each tile t of polygonal type n. The action

2This more properly is called an anti-conformal reflection since the term conformal indicates not only
the preservation of angular measure, but also the preservation of orientation; nonetheless, we will drop the
modifier anti- in the sequel and let the term reflection carry the weight of the modifier.
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preserves and is transitive on vertices and the fixed point, interior to t, is the conformal
center of t. The elements of D2n that preserve orientation act as a conformal rotation
group of order n and the ones that reverse orientation act as conformal reflections whose
fixed point sets—the axes of the action—are analytic arcs spanning across two vertices or
two edges of t if n is even, and across vertex-edge pairs if n is odd. The intersections of
the axes with the edges are the conformal centers of the edges determined by the
tile t. By slicing each tile along subarcs of its axes from the conformal center of the tile
to the vertices of the tile and the conformal centers of the edges, one obtains a tiling T β.
Two conditions must be met to call the tiling T reflective. First, whenever two tiles s
and t of T meet along an edge e, the conformal centers of the edge e determined by s and
t must agree. Second, each edge of T is the fixed point set of a conformal reflection that
exchanges the triangular tiles of T β that meet along e. When T is reflective, the tiling T β is

combinatorially a tiling in the pattern of the barycentric subdivision Kβ
T , where KT is the

planar polygonal complex in the pattern of T . Also, the associated quad tiling T � whose
tiles are the unions of the four tiles of T β that meet at the conformal centers of the edges of
T is a reflective tiling by conformally regular 4-gons, or conformal squares, and each 4-gon
tile conformally reflects across any of its edges to its 4-gon tile neighbor contiguous along
that edge. Moreover, the conformal diagonals of the conformally square tiles of T � that are
not edges of T are precisely the edges of the reflective tiling T † dual to T . So the reflective
property of the tiling T guarantees the existence of four conformally regular and reflective
tilings, T , T †, T �, and T β that exists simultaneously. Indeed, the reflectivity of any of the
four tilings guarantees the existence and reflectivity of the remaining three.3

The next theorem is the primary uniqueness result for conformal tilings and summarizes the
importance of the reflective property. It implies that the dual requirements of conformal
regularity of the tiles and of a reflective structure on the tiling uniquely define the tiling
up to conformal automorphism, and when starting with a planar polygonal complex K,
uniquely identifies TK among the uncountably many tilings by conformally regular polygons
in the pattern of K.

Theorem 1.2. If S and T are combinatorially equivalent tilings by conformally regular
polygons both of which are reflective, then S and T are of the same type and are conformally
equivalent by a conformal isomorphism induced from a combinatorial isomorphism of KS

and KT . In particular, T is conformally equivalent to the tiling TK determined by the
β-equilateral structure on the Riemann surface SK , where K = KT .

The proof is a consequence of the Schwarz Reflection Principle applied to each pair of
contiguous tiles in Sβ and T β and appears in the first paper [4].

Because of the rich structure that arises from conformally regular and reflective tilings as
well as the uniqueness of the theorem, we henceforth will mean by the term conformal

3There are beautiful graphics illustrating these coexisting conformal tilings in the first paper of the series
[4] where the tilings are differentiated by colored edges and generated by iterated conformal reflections
through the sides of edge-colored triangles. The authors highly recommend them to the reader.
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tiling a tiling by conformally regular polygons that has a reflective structure that fills the
Euclidean plane or the Poincaré disk, meaning that the union of the tiles is the whole of
C or D.4 In particular, any conformal tiling TK induced from a planar polygonal complex
K will have the β-equilateral conformal structure. A conformal tiling T always will have
hidden in its reflective structure the dual tiling T †, the associated quad tiling T �, and the
barycentric tiling T β, all conformally regular and reflective and any of which may be made
manifest and exploited for our use.

The final review topic we need for understanding the statement and proof of Theorem 1.1
is that of subdivision of planar polygonal complexes and tilings. There are two points
of view on subdivisions of conformal tilings by conformally regular polygons. The one is
combinatorial in which the subdivision takes place at the level of the planar polygonal
complex K, the other is geometric in which the subdivision takes place at the level of the
conformal tiling T . The combinatorial subdivision always leads to a new conformal tiling
by conformally regular polygons, but one that may not mesh so well with the original tiling.
The geometric subdivision always preserves the combinatorics of the original tiling in that
the original can be recovered by aggregation of tiles, and its reflective structure meshes
well with the reflective structure of the original tiling. The former is useful for producing
new tilings while the latter is useful for exploring a fixed tiling, and in particular the type
problem for the local isomorphism class of a tiling. The former is simple and transparent,
the latter is more subtle upon reflection than it appears at first sight. The former is
called a combinatorial subdivision while the latter is a conformal subdivision. These
were introduced and studied rather carefully in [4], and here we will offer an expanded
review with the aim of proving Theorem 1.1, which states that a dihedrally symmetric
combinatorial subdivision of a planar polygonal complex induces a conformal subdivision
of its associated conformal tiling.

A combinatorial subdivision, or just a subdivision for short, of the planar polygonal
complex K is a planar polygonal complex L for which each open cell (vertex, edge, or face)
of L is contained in an open cell of K. In particular, each closed face of K is the union of
finitely many closed faces of L, and each closed edge of K is a union of finitely many closed
edges of L. Moreover, each open cell of L is contained in a unique open cell of K, and
each closed face of L is contained in a unique closed face of K. When L is a subdivision
of K, we call K an aggregate of L. A subdivision is totally nontrivial if every face of
K actually gets subdivided, meaning that each face of K is a union of at least two faces of
L. When L subdivides K we will write L ≤ K.

Subdivisions often are obtained by applying a subdivision rule that partitions the faces
of K and then describes a precise algorithm for subdividing the faces in each partition set.
The finite subdivision rules introduced by Canon, Floyd and Parry using model complexes
and subdivision maps are sophisticated examples of these. Our needs are a bit more pedes-
trian as we primarily are concerned with rotationally symmetric subdivision rules that may

4These are the maximal tilings of paper [4].
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be encoded by a collection of oriented regular CW-decompositions of combinatorial poly-
gons of differing polygonal types. To be precise, for each n ≥ 2, let τn be a rotationally
symmetric, oriented regular CW-decomposition of the standard n-gon ∆n. We assume
that the collection τ = {τn} is edge-compatible, meaning that there is an integer N
such that each seed τn subdivides each edge of ∆n into N sub-edges. This ensures that
we may subdivide K by subdividing each face of polygonal type n by the pattern of τn.5

This subdivision of K is denoted by τK and the subdivision rule τ is called a (rotation-
ally invariant) subdivision operator. Whereas a particular subdivision rule generally is
defined only for a restricted class of planar polygonal complexes, a subdivision operator
may be applied to any and every planar polygonal complex. When τ is a subdivision rule
for K and F is a subcomplex of K, τF has the obvious meaning as the subdivision of F
induced by τ , and is a subcomplex of τK.

The reader is referred to the first paper [4] for examples of subdivision rules; however, we do
want to review some specific subdivision rules, starting with illustrations of seeds of some
specific ones—the star, barycentric, hex, delta, quad, pentagonal, and twisted pentagonal,
along with others. These may be combined in various ways to describe subdivision rules
and operators; for example, one may declare that all the 4-gon faces are subdivided by the
pentagonal rule, and all other faces by the quad rule, and since each subdivides an edge
into two edges, this describes an edge compatible subdivision operator. We have a special
interest in rotationally symmetric rules in which just one type of subdivision algorithm is
used on each face—all quad subdivisions on all faces regardless of polygonal type, or all
pentagonal, etc. A subdivision rule of this type in which there is one type of subdivision
wherein each face gets subdivided by the same algorithm is said to be simple. The seed
examples of Fig.’s 1 and 2, when each face of K no matter what the polygonal type is
subdivided by the same rotationally invariant algorithm, give examples of combinatorial
subdivisions by simple, edge compatible subdivision operators—so we have for example the
star, barycentric, hex, delta, quad, pentagonal, and twisted pentagonal simple subdivision
operators that may be applied to an arbitrary planar polygonal complex. To be a bit
more precise, a subdivision rule τ defined on K is simple if the rule partitions the faces
of K by polygonal type and all the seeds of the rule are rotationally symmetric and agree
on triangles forming fundamental domains of the appropriate rotation groups acting on
the seeds. The seeds of such rules may be encoded in a triangular diagram that shows
the subdivision of the triangular fundamental region of the action of the rotation group
on any face, as in the middle columns of the figures. There, the lower, horizontal side
of the triangle represents an edge of any face to which the rule is applied and the apex
of the triangle represents the fixed point of the rotation action on any polygon. Vertices
of the subdivision appear in yellow and edges appear as solid segments. By identifying
the two non-horizontal sides, this information may be encoded by subdividing a 1-gon,

5If the seed subdivisions are rotationally symmetric, then there is a unique way to subdivide each face
of K, up to isomorphism. This uses the fact that K as well as the seed subdivisions are oriented, and
the application of the subdivision is assumed to preserve orientation. Edge-compatibility ensures that the
subdivisions of contiguous faces may be matched up along their shared edges.
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star subdivision

pentagonal
subdivision

twisted pentagonal
subdivision

teepee subdivision

diamond edge, or
lace subdivision

Figure 1. Seeds of simple rotationally symmetric subdivision rules, with
all but the twisted pentagonal dihedrally symmetric. Each rule applies to
any n-gon for any n ≥ 2. We have encoded each rule using a 1-gon (left-hand
column) and a triangle (central column), and have illustrated its application
to a 5-gon.

a cell complex with a single vertex, a single edge, and a single face, as in the left-hand
columns of the figures. The right hand columns show how the seed applies to subdivide a
5-gon in Fig. 1 and a 4-gon in Fig. 2, but of course the seed can be used to subdivide any
n-gon.

We now move on to conformal subdivisions of conformal tilings. Let T be a conformal
tiling, a tiling of either the plane C or the disk D by conformally regular polygons that
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hexagonal
subdivision

quad subdivision

delta subdivision

barycentric
subdivision

snowball
subdivision

Figure 2. Seeds of simple dihedrally symmetric subdivision rules. Each
rule applies to any n-gon for any n ≥ 2. We have encoded each rule using a 1-
gon (left-hand column) and a triangle (central column), and have illustrated
its application to a 4-gon.

is conformally reflective. A polygonal subdivision of T is a tiling S for which each tile
of S is a combinatorial polygon—a closed Jordan domain with finitely many distinguished
boundary points—contained in a tile of T . Moreover, each open edge of S is contained
in either an open edge or an open tile of T . When e is an edge of T contiguous to the
tiles t and t′, the polygonal subdivision S when restricted to t and t′ induces a common
subdivision of e and, of course, any two tiles of S meet along a set of full edges and ver-
tices. In particular, the planar polygonal complex KS determined by S is a combinatorial
subdivision of KT . Our interest is in polygonal subdivisions whose properties mirror those
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of T . In particular, the polygonal subdivision S is a conformal subdivision of T if S
shares with T the properties of conformal regularity of its tiles as well as conformal reflec-
tivity of the tiling. Alternately said, S is a conformal subdivision of T if S is a conformal
tiling that polygonally subdivides T . Though a conformal subdivision S of T determines a
combinatorial subdivision KS of KT , in general, this does not go in the reverse direction.
When it does, i.e., when a combinatorial subdivision L of K will produce a reflective tiling
TL that conformally subdivides TK , we say that L is a conformal subdivision of K.
When the subdivision L is obtained by the application of a combinatorial subdivision rule
τ , we say that τ is a conformal subdivision rule for K. The content of Theorem 1.1
is that every dihedrally symmetric, simple subdivision operator is a conformal subdivision
rule for any planar polygonal complex K, which we now prove.

Proof of Theorem 1.1. Apply the subdivision rule to the standard n-gon ∆n to obtain the

complex τn = τ∆n. If the tile t of TK has polygonal type n, let ht : |τβn |eq → t be any

homeomorphism from the equilateral surface |τβn |eq onto the conformally regular n-gon tile
t of TK that is conformal on the interior and takes vertices to vertices. These conformal
isomorphisms ht, for all tiles t of TK , exist since the dihedral symmetry of τ translates

to isometric, and therefore conformal, dihedral symmetry of the equilateral surface |τβn |eq,
making this n-gon into a conformally regular one. Now the isomorphism ht carries the
subdivision τn of ∆n onto a subdivision τt of t that decomposes t into conformally regular
polygons and, moreover, endows t with a reflective structure in which the images of any of

the triangular faces of |τβn |eq under ht conformally reflects to any other. Since τ is simple,
has dihedral symmetry, and the tiling TK is reflective, two facts emerge: first, the tiling τt
is independent of the choice of ht, and second, (*) the intersection pattern of the tiles of

the subdivision τt with a triangular tile of T βK contained in the tile t that meets the tile t′

of TK along the edge e conformally reflects to the intersection pattern of the tiles of the

subdivision τt′ with the triangular tile of T βK contained in the tile t′ that meets t along
e. In particular, the edge subdivisions induced by ht and ht′ match up along the common
edge of any two contiguous tiles t and t′. The subdivisions τt for all the tiles t of TK
induce a polygonal subdivision τTK of TK in the pattern of the subdivided complex τK
that is reflective across any edge of τTK whose open edge is interior to a tile of TK . But
the dihedral symmetry of τ and observation (*) imply that the subdivision tiling τTK is
reflective across any edge of τTK that is contained in an edge of TK , and so the polygonal
subdivision τTK of TK by conformally regular polygons is, in fact, reflective. This verifies
that τTK is a conformal subdivision of TK . Since the combinatorially equivalent tilings
τTK and TτK are both conformally regular and reflective, Theorem 1.2 implies that they
are conformally equivalent tilings. It follows that τ is a conformal subdivision rule for K
and that the conformal tiling TτK may be realized as a conformal subdivision of TK . �

Since we focus on the type problem in this paper our interest is in infinite planar polygonal
complexes; however, the discussion of this first section applies also to finite complexes. In
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fact, in the first paper of this series [4] we do not restrict our attention to planar polyg-
onal complexes, but allow for polygonal decompositions of essentially arbitrary surfaces.
Theorem 1.1 is beautifully illustrated by applying the snowball subdivision of Fig. 2 to
the 2-sphere decomposed initially as a combinatorial cube, six 4-gons glued together along
their edges where three meet at each vertex. Four stages are illustrated in the striking
Fig. 3 with the original cube in bold black, followed by blue, green, red, and black suc-
cessive snowball subdivisions. These are (approximations to the) conformal square tilings
that are reflective and the subdivisions are conformal subdivisions and can be continued
ad infinitum. There is a discussion of the topics of this first section of the present paper
in [4] with many examples and no restriction to infinite complexes. The tangent planes to
this Sierpiński snowball example may be realized as conformal tilings of C associated
to expansion complexes derived from the snowball subdivision rule, all of which are locally
isomorphic to one another though there are uncountably many up to global combinatorial
isomorphism.

To close this section, let TL denote the collection of tiles in TK that correspond to the faces
of L, where L is a connected subcomplex of K in which every cell of L is contained in a
closed face. TL is called a patch of the tiling TK , and L is called a combinatorial patch of
K. Patches generally will be finite, but for the moment we will not enforce this restriction.
Two patches, TL of the tiling T and T ′L′ of the tiling T ′, are conformally equivalent if there
is a conformal isomorphism of |TL| = ∪{t : t ∈ TL} onto |T ′L′ | that takes tiles to tiles.
Obviously conformally equivalent patches have combinatorially equivalent subcomplexes L
and L′. We say that this conformal equivalence of TL and T ′L′ realizes the combinatorial
equivalence of L and L′, and the next theorem provides a converse.

Theorem 1.3. If L and L′ are combinatorial patches of K and K ′, respectively, that
are combinatorially equivalent, then TL and T ′L′ are conformally equivalent patches, where
T = TK and T ′ = TK′.

Proof. The construction of the equilateral metrics implies that when L and L′ are isomor-
phic subcomplexes, the metricized versions, |Lβ|eq and |L′β|eq, are isometric by an isometry

that takes the equilateral faces of |Lβ|eq onto the equilateral faces of |L′β|eq that correspond

under a combinatorial isomorphism of Lβ to L′β. This translates to a conformal isomor-
phism of the interiors of the corresponding subsets of SK and SK′ that preserves faces, and
finally to a conformal equivalence of the patches TL and T ′L′ . �

From now on we enforce the finiteness restriction on patches, so that the combinatorial
patch L is a finite subcomplex of K and TL is a finite set of tiles.
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Figure 3. Snowball subdivisions of a cube. This figure represents four
successive conformal subdivisions of a cube by the dihedrally symmetric
snowball subdivision rule. The blue subdivides the bold black-edged cube,
the green then subdivides the blue, the red the green, and the black the
red. This represents a conformally correct picture of the first four stages of
the Sierpiński snowball complex and may be continued ad infinitum.

2. Parameterizing Structure: the Space of Complexes and the Local
Isomorphism Class

In the traditional world of aperiodic Euclidean tilings, an appropriate tiling determines
a tiling space, the so-called continuous hull of the tiling, an action of the translation
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group on the hull, and a canonical transversal of the action that encodes pointed tilings
that are locally isomorphic to the original tiling. Much of the effort in traditional tiling
theory is exerted in understanding the topological structure of the hull and the dynamical
system determined by the action. The conformal tilings of this paper generally fail to have
the local Euclidean properties needed to produce this much structure, but do have some
combinatorial features that allow one to recover some aspects of the traditional setting.6

Our goals in this section are modest—to define the space of rooted polygonal complexes to
serve as a universe for conformal tilings and to identify therein the topological properties of
the local isomorphism classes. The combinatorial analogues of the properties of traditional
hierarchical aperiodic tilings force desirable topological properties on these local isomor-
phism classes. Traditional tiling experts will see mirrored here several of the structures
that appear in their traditional constructions, but only those that emerge from the com-
binatorics of tilings. Those that emerge from the Euclidean geometry of traditional tilings
are, without the benefit of additional geometric structure, absent in this combinatorial and
conformal setting.

2.1. The space of rooted planar polygonal complexes. We begin by describing a
metric space parameterizing rooted, oriented planar polygonal complexes that is modeled
after similar metrics used with graphs and traditional tilings. The incarnation herein of this
space in which the combinatorics of our tilings are compared and contrasted takes a form
tailored for our uses that stresses the combinatorial structure of our tilings rather than the
geometric structure. The definition we choose is a little more complicated than the perhaps
more natural one modeled after the big ball metric of traditional tilings. The big ball
metric in the setting of traditional tilings is complete, but a straightforward generalization
of this to the combinatorial setting that is based on combinatorial neighborhoods of the
root face is not complete. The completion of this metric involves including in the space
of complexes those planar complexes that fail to be simply connected, so that they fill
arbitrary planar domains rather than filling the whole plane. We modify the big ball
metric to obtain a complete metric on the space of rooted, oriented planar polygonal
complexes by replacing combinatorial neighborhoods of the root face by combinatorial
filled neighborhoods, which are defined presently. The use of these combinatorial filled
neighborhoods ensures that any limit point of planar polygonal complexes determines a
simply connected combinatorial complex, guaranteeing that the limit complex is a planar
polygonal complex per our definition.

The elements of the space of rooted planar polygonal complexes RC are the rooted,
orientation-preserving isomorphism classes of pairs (K, f), where K is an oriented planar
polygonal complex and f is a fixed root face of K. In this setting, a rooted isomorphism

6Maria Ramirez-Solano’s doctoral thesis [9] generalizes some of the tools of the traditional theory and
succeeds in defining a continuous hull, an appropriate action, and a canonical transversal for certain con-
formal tilings. The present authors in a later paper of this series will introduce further geometric structure
on conformal tilings that will allow for a theory of conformal tiling more or less parallel to the theory of
aperiodic tilings.
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of (K, f) to (L, g) is an orientation-preserving cellular isomorphism of K to L that takes
f to g; i.e., an orientation-preserving homeomorphism α of the plane that is cellular with
respect to the CW-decompositions K and L and such that α(f) = g. Generally we will
drop the adjective orientation-preserving, but we ask the reader to keep in mind that all our
complexes are oriented and isomorphism means orientation-preserving isomorphism. Note
that the root faces f and g must be of the same polygonal type if (K, f) is rooted isomorphic
to (L, g). We will employ the notational use of sans serif letters to denote elements of RC,
so we may write (K, f) ∈ k ∈ RC. There is in this setting a map ∗ : RC→ C to the set of
isomorphism classes of planar polygonal complexes C that forgets the root face and that
is countable-to-one. Thus, for example, k∗ = K whenever (K, f) ∈ k. Notice that we do
not distinguish between isomorphic planar polygonal complexes, writing K = L whenever
K ∼= L.

A tool that will prove useful subsequently is the combinatorial distance between two
faces f and g of a planar polygonal complex K. This distance, denoted as dK(f, g), is
defined as follows. We say that dK(f, g) ≤ n, for an integer n ≥ 0, if there exists a chain
of faces of length n from f to g, i.e., a finite sequence f = f0, . . . , fn = g such that
fi−1 and fi share at least one edge for i = 1, . . . , n; further, dK(f, g) = n if dK(f, g) ≤ n
and dK(f, g) 6≤ n − 1. The function dK is a metric on the collection of faces of K and
merely measures efficiently how many steps it takes to get from f to g by stepping along
contiguous faces of K. Alternately, this metric may be described as the edge metric of the
dual 1-skeleton of K, as in the first paper [4] of the series.

We now describe, for the non-negative integer n, the filled n-neighborhood of the face f
of the planar polygonal complex K. There are various equivalent ways to do this, and per-
haps it is easiest to describe this filled neighborhood of radius n as the smallest simply
connected subcomplex BK(f, n) of K that contains the combinatorial n-neighborhood
CK(f, n) of f ; the faces of the combinatorial n-neighborhood CK(f, n) in turn are precisely
all those faces g of K with dK(f, g) ≤ n. A slightly differing description of filled neighbor-
hoods is that BK(f, n) is the smallest combinatorial disk of K that contains CK(f, n) or,
equivalently, BK(f, n) is the subcomplex of K whose underlying space is the complement
of the unbounded complementary domain of CK(f, n). The point is that a combinatorial
n-neighborhood of f may fail to be simply connected. As such its open complementary
domain is a disjoint union of finitely many open disks in the plane and a single unbounded
open component. BK(f, n) is obtained as the smallest subcomplex that contains CK(f, n)
as well as the faces of K that meet the open disk components of the complementary domain
of this combinatorial n-neighborhood. The combinatorial boundary of BK(f, n) is a simple
closed edge path that separates f from infinity and is called the outer sphere of radius n
centered on f . Note that each face g of K incident to an edge of the boundary of CK(f, n)
satisfies n ≤ dK(f, g) ≤ n + 1. Each BK(f, n) is a combinatorial disk whose boundary is
its corresponding outer sphere, and K is the union of the nested sequence

BK(f, 1) ⊂ BK(f, 2) ⊂ · · · ⊂ BK(f, n) ⊂ BK(f, n+ 1) ⊂ · · ·
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of combinatorial disks. Moreover, each BK(f, n) is contained in the interior of the disk
BK(f,N) for some N > n. Another characterization of filled neighborhoods is useful: a
face g of K fails to be in BK(f, n) if and only if there is an infinite chain g = g1, g2, . . .
of pairwise distinct faces in K for which, for all i, gi and gi+1 share an edge, and no gi
is contained in the combinatorial n-neighborhood of f . Colloquially, g is not a face of
BK(f, n) if and only if there is a unbounded path of faces starting at g that misses the
combinatorial n-neighborhood of f . Define BK(f,∞) to be the whole complex K.

Given two rooted complexes k = (K, f) and l = (L, g), let

ρ(k, l) = ρ((K, f), (L, g)) = e−n

where, either n is the largest integer, or the symbol ∞, for which the rooted complexes
(BK(f, n), f) and (BL(g, n), g) are rooted isomorphic, or n = −1, this whenever f and
g have differing polygonal types. This defines a metric on RC that satisfies the property
that, whenever j, k, l ∈ RC, then either

ρ(j, l) ≤ ρ(j, k) = ρ(k, l)

holds, or one of the permutations of this relation holds when the arguments are permuted.
This is equivalent to the condition that

ρ(j, l) ≤ max {ρ(j, k), ρ(k, l)} ,

which is the defining triangle inequality for an ultrametric, a topic of significant application
in p-adic analysis. See, for example, Section 2.1 of [10] for basic properties of ultramet-
rics.

Theorem 2.1. The metric ρ on the space of rooted planar polygonal complexes RC is
bounded and complete, and the metric space (RC, ρ) is totally disconnected.

Proof. Obviously ρ is bounded since n ≥ −1 in the definition of ρ so that, in fact,
diamρRC = e. Let ki, i = 1, 2, 3, . . . , be a ρ-Cauchy sequence in RC. By passing to a
subsequence if necessary, we may assume that for each i, ρ(ki, ki+1) ≤ e−i. Choose rep-
resentatives (Ki, fi) ∈ ki, and observe that our definition of the metric ρ implies that for
each i, the filled neighborhood BKi(fi, i) is rooted isomorphic to the filled neighborhood
BKi+1(fi+1, i). Let hi : BKi(fi, i) → BKi+1(fi+1, i) be a rooted isomorphism and enlarge
the codomain of hi to BKi+1(fi+1, i+ 1) to obtain the directed sequence

BK1(f1, 1)
h1−−−−→ BK2(f2, 2)

h2−−−−→ BK3(f3, 3)
h3−−−−→ · · · ,

where each hi is an isomorphic embedding with hi(fi) = fi+1. The direct limit complex
lim
−→

BKi(fi, i) is simply connected since each BKi(fi, i) is a combinatorial disk, and this
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implies, since in addition the image of BKi(fi, i) under hN−1 ◦ · · · ◦ hi is contained in the
interior of a disk BKN (fN , N) for some N > i, that the direct limit complex is a planar
polygonal complex. Let K denote the planar polygonal complex lim

−→
BKi(fi, i) and f the

face of K corresponding to f1. Finally, let k denote the rooted isomorphism class of the
rooted planar polygonal complex (K, f). It is easy to show that ki → k as i→∞, and so
ρ is complete. We mention that under the convention that we do not distinguish between
rooted isomorphic complexes, this direct sequence is a sequence of set containments and
the direct limit is just the union.

Every ultrametric space is totally disconnected, but we can see this in the present context as
follows. For any point k ∈ RC and positive integer n, the metric ball Bρ(k, e

−n/2) of radius
e−n/2 is both open and closed, since the metric takes on only the values in the countable
set {0} ∪ {e−k : k = −1, 0, 1, . . . }. This implies that (RC, ρ) is totally disconnected. �

For each integer n ≥ 3, let RCn be the subspace of RC of rooted isomorphism classes of
planar polygonal complexes of degree bounded by n,7 and RCω = ∪∞n=3RC

n the space of
bounded degree, rooted planar polygonal complexes. The subsets Cn and Cω of C are
defined in the obvious manners as the images of the respective spaces RCn and RCω under
the map ∗.

Theorem 2.2. For each n ≥ 3, the subset RCn is a closed, nowhere dense subspace of RC.

Proof. Let ki → k where ki ∈ RCn and k ∈ RC. To verify that RCn is closed in RC, it
suffices to show that k ∈ RCn. But this is quite easy since the convergence of the sequence
ki to k implies that an arbitrarily large finite filled neighborhood of the root face of k∗ is
isomorphic to a filled neighborhood of the root of k∗i for large enough i, and this guarantees
that the degree of k∗ is at most n so that k ∈ RCn. It follows that RCn is closed in RC.

RCn is nowhere dense in RC since every element k of RCn is the limit of a sequence ki,
each term with at least one vertex of degree greater than or equal to n+ 1, as the reader
may construct rather easily. �

Corollary 2.3. The space RCω of bounded degree, rooted planar polygonal complexes is
a dense Fσ subspace of RC, and the space RC − RCω of unbounded degree rooted planar
polygonal complexes is a dense Gδ subspace of RC.

The next property we advance is introduced to delineate special compact subsets of RCn.
We say that a planar polygonal complex K satisfies a θ-isoperimetric inequality if every
combinatorial disk D of K satisfies the θ-isoperimetric inequality, meaning that

size(D) < θ(size(∂D)).

7Note that RC3 = ∅ since there are no planar 3-gon complexes of degree ≤ 3. We include this case for
the convenience of certain statements later.
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Here, θ : N→ R is a positive function, size(D) is the number of faces of the combinatorial
disk D, and size(∂D) is the number of edges in the simple closed edge path ∂D forming the

combinatorial boundary of D. For each integer n ≥ 3 and positive function θ, let RCn,θ be
the set that consists of those k ∈ RCn for which the complex k∗ satisfies a θ-isoperimetric
inequality.

Theorem 2.4. For each n ≥ 3 and positive function θ, the subset RCn,θ is a compact,
nowhere dense subspace of RC.

Proof. We assume that RCn,θ is non-empty as otherwise there is nothing to prove. Since
RCn,θ ⊂ RCn and RCn is nowhere dense in RC, so too is RCn,θ. That RCn,θ is closed in RC
is proved the same way that RCn is shown to be closed. The point is that, if ki → k where
ki ∈ RCn,θ and k ∈ RC, then every combinatorial disk D in k∗ appears isomorphically as a
disk in some k∗i , and this guarantees that the θ-isoperimetric inequality holds for D since
it holds for the isomorphic copy of D in k∗i .

To verify compactness, we show that RCn,θ is totally bounded in RC, which for closed
subsets of complete metric spaces is equivalent to compactness. Recall that a metric space
is totally bounded if, for each ε > 0, there exists a finite ε-dense subset of the space. Let
ε > 0 and choose a positive integer m so that e−m < ε. Let (H1, f1), . . . , (HJ , fJ) be a list
of all the finite, connected planar polygonal CW complexes of degree at most n that appear
as the filled m-neighborhood of a face in some planar polygonal complex in RCn,θ, up to
isomorphism. This list is finite precisely because, for all complexes in RCn,θ, the degree
is bounded by n and the θ-isoperimetric inequality holds; indeed, the bounded degree
condition guarantees that there are only finitely many isomorphism classes of combinatorial
m-neighborhoods of the form CK(f,m) as K ranges over RCn,θ and f ranges over K, and
for each such class, the θ-isoperimetric inequality guarantees that there are only finitely
many ways to fill the holes of any combinatorial m-neighborhood to obtain a filled m-
neighborhood. The upshot is that these two conditions together place a bound M > 0 on
the number of faces in any such filled neighborhood, and there are then only finitely many
ways to arrange a set of at most M combinatorial polygons of polygonal type bounded
by n to form a filled neighborhood. For each i = 1, . . . , J , let Ki be a planar polygonal
complex that contains an isomorphic copy of Hi as the filled m-neighborhood BKi(fi,m).

Letting ki = (Ki, fi), the set {k1, . . . , kJ} is a finite ε-dense subset of RCn,θ. �

The feature used in this proof guaranteed by the combination of the two requirements
of degree bounded by n and satisfying a θ-isoperimetric inequality is very important in
the sequel. This feature is reminiscent of the condition of finite local complexity in the
traditional setting of aperiodic tilings. The most straightforward translation of finite local
complexity to the combinatorial setting would be the rather pedestrian condition of having
bounded degree. This guarantees that there are only finitely many combinatorial types
of polygonal complexes of a given combinatorial diameter, but because these complexes
need not be simply connected, and in particular combinatorial neighborhoods of the form
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CK(f,m) need not be simply connected, these complexes can have “holes” whose fillings
may be arbitrarily complex. The addition of the isoperimetric condition remedies this.
This isoperimetric condition is not needed as an explicit requirement in the traditional
setting because the Euclidean geometric structure of the traditional tilings automatically
imposes this condition. In our first paper [4], we defined a conformal tiling to have finite
local complexity exactly in case it has finite degree. There we did not need the benifits
that an isoperimetric inequality entails and so did not include that as part of the definition;
here, though, we need the full effect that finite local complexity entails in the traditional
theory, and in particular the compactness results it engenders. Therefore, we modify the
notion of combinatorial finite local complexity introduced in [4] to include an isoperimetric
condition. We say, then, that the planar polygonal complex K has combinatorial finite
local complexity, abbreviated as FLC, if K has degree bounded by some natural number
n and satisfies a θ-isoperimetric inequality for some positive function θ. To be rather
clear on its intended use, we will separate out as a corollary that important feature of the
preceding proof as applied to a single complex K.

Corollary 2.5. Suppose the planar polygonal complex K has FLC. Then, up to isomor-
phism, there are only finitely many filled m-neighborhoods in K of a given radius m.

2.2. Subspaces of planar n-gon complexes. There are several subspaces of planar n-
gon complexes that are useful. First, for a fixed n ≥ 3, let RCn be the subspace of RC that
consists of all those k ∈ RC for which k∗ is a planar n-gon complex, and let Cn be its image
in C under ∗. Thus, Cn is the set of (isomorphism classes of) planar n-gon complexes. For
fixed m ≥ 3, let RCn,m be the subspace of RCn with the property that each vertex of k∗ is
incident to at most m faces of k∗, and let RCn,ω = ∪∞m=3RCn,m, with Cn,m and Cn,ω their

respective images under ∗. Notice that RCn,m ⊂ RCmax{n,m} since any element of RCn,m
has degree at most max{n,m}. Finally, let RCθn,m be the subset of RCn,m that consists
of those elements that satisfy the θ-isoperimetric inequality. The following theorems are
immediate upon reflection.

Theorem 2.6. For m,n ≥ 3, the spaces RCn and RCn,m are closed subspaces of RC and,
as such, are complete in the metric ρ.

Theorem 2.7. For m,n ≥ 3 and positive function θ, the space RCθn,m is compact.

2.2.1. The preeminence of 4-gon tilings and the mapping C → C4. We uncover here in
what sense the quad tiling TK� associated to the planar polygonal complex K stands as
primus inter pares among the four tilings TK , TK† , TK� , and TKβ = TK†β . Define the
quad mapping

� : C→ C4

from the set of isomorphism classes of planar polygonal complexes C to the set of isomor-
phism classes of planar 4-gon complexes C4 by �(K) = K�. The mapping � is generally
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2-to-1 with K� = K†� for every K ∈ C. It fails to be 2-to-1 only when K is self-dual with
K isomorphic with K†.

Theorem 2.8. The mapping � is surjective.

Proof. Let L be a planar 4-gon complex. All we need do is show that the vertex set L(0)

is 2-colorable. Indeed, if c : L(0) → Z2 = {±1} is a coloring map with c(e−) 6= c(e+)
whenever the vertices e± are adjacent, then define planar polygonal complexes K and K†

that are dual to one another as follows. The vertex set of K is K(0) = c−1(+1) and of K†

is K†(0) = c−1(−1), and the edge set of K is the set of diagonals of the 4-gon faces of L

that span two vertices of K(0) and the edge set of K† is the set of the other diagonals of
the 4-gon faces of L that span two vertices of K†(0). Each vertex of c−1(−1) of degree n is

surrounded by a cycle of n diagonal edges from K(1) that determines a face of K of type n,
and similarly for K†. The reader may check that K and K† are planar polygonal complexes
that are dual to one another and that K� = L = K†�, confirming the surjectivity of �.

It remains to demonstrate the 2-colorability of the vertex set L(0). This follows easily from
the fact that each simple closed edge cycle in L has an even number of vertices, which may
be proved as follows. Let C be a simple closed edge cycle in L and let J be the bounded
subcomplex of L bordered by C that decomposes a closed disk into 4-gons that meet along
boundary subcomplexes. Double J along its boundary to get 2J , a 4-gon regular CW-
decomposition of the 2-sphere. Let F be the number of 4-gon faces of J , E∂ the number of
boundary edges of J , and Eint the number of edges of J that are not boundary edges. Note
that the number of 4-gon faces of 2J is 2F and the number of edges of 2J is E∂ + 2Eint.
We count the number of angles of 2J in two differing ways. First, each face has 4 angles,
so there are 4 · 2F = 8F angles in the complex 2J . Second, each angle may be paired with
an oriented edge for which that angle sits at the initial vertex of that edge and lies in the
left-hand 4-gon that the edge bounds. This describes a one-to-one correspondence between
angles and oriented edges, and since each edge has two orientations, there are 2(E∂+2Eint)
angles. Setting 8F = 2(E∂ + 2Eint) gives E∂ = 4F − 2Eint, so there are an even number of
edges in the boundary curve C of J , and therefore an even number of vertices in C. �

The interest in this result is precisely that it says that the study of general planar polygonal
complexes may take place in the setting of planar 4-gon complexes, and since the β-
equilateral conformal structures on the planar polygonal complex K, its dual K†, and its
associated 4-gon complexK� are compatible in the sense already articulated, this extends to
the study of the conformally regular β-equilateral structures on the elements of C and their
associated tilings. In particular, general conformally regular tilings in the β-equilateral
structure are all obtained from reflective conformal square tilings of the plane C and the
disk D by 2-coloring the vertices of the conformal square tilings and cutting out the dual
pair T and T † using the conformal diagonals of the conformal squares. In particular,
the type problem may be restricted to the realm of planar 4-gon tilings, provided the
β-equilateral structure is the conformal structure of choice.
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2.3. Local isomorphism classes of complexes. In studying conformal tilings, we are
not so much interested in a single tiling TK associated to the planar polygonal complex K
as much as the family of all tilings TL that arise from planar polygonal complexes L that
are locally isomorphic to the fixed complex K. This notion of local isomorphism arises
naturally in the discipline of traditional aperiodic tiling, helping to clarify the details of
the hull of a fixed tiling, already mentioned, on which the translation group acts to build
the tiling dynamics. Its appearance there has a strong Euclidean-geometric flavor, but here
takes on combinatorial overtones rather than the geometric.

For planar polygonal complexes K and L, we say that K locally embeds in L, written
as K � L, if every finite connected subcomplex of K isomorphically embeds in L, and K
is locally isomorphic with L, written as K ∼ L, if K � L and L � K. Notice that
we may just as well use combinatorial patches in place of finite connected subcomplexes
in this definition, and sometimes we do so. The relation � is reflexive and transitive,
and hence a pre-order on C, and defines a partial order on the set of local isomorphism
classes of elements of C. We let (K) denote the local isomorphism class of the planar
polygonal complex K so that (K) = {L ∈ C : K ∼ L}. If (K) is a singleton, we say
that K is singular; otherwise, K is plural. We will see that either K is singular and
(K) is a singleton, or K is plural and (K) is uncountably infinite. Let LI(K) denote
the pre-image of (K) under the map ∗ defined on RC, so that LI(K) is the set of rooted
polygonal complexes l ∈ RC with l∗ ∼ K.8 Our interest in this section is in uncovering
the structure and properties of the local isomorphism class (K) and of the rooted local
isomorphism class LI(K). The next result is a working lemma that will be used to aid
in this endeavor.

Lemma 2.9. Let K and L be planar polygonal complexes and L1 ⊂ L2 ⊂ · · · a sequence
of finite, connected subcomplexes of L that exhausts L, meaning that L = ∪∞n=1Ln. For
each positive integer n, let hn : Ln → K be an isomorphic embedding of complexes. If there
are faces g = g0 of L1 and f = f0 of K such that hn(g) = f for all n ≥ 1, then K is
isomorphic to L.

Proof. Since hn(g0) = f0 for all n ≥ 1, infinitely many of these mappings agree on the
vertex set of the face f0. Let (h0,n)n be a subsequence of the sequence (hn)n such that all
the mappings of this subsequence agree on the vertex set of f0. Now list all the faces of
L, say g0, g1, g2, . . . , and note that since the sequence of complexes Ln exhausts L, each
gk is a face of all but finitely many of the Ln. Since the face g1 is a fixed combinatorial
distance from the face g0 in L, and since all the embeddings h0,n agree on g0, there are
infinitely many of the embeddings from the sequence h0,n whose domains contain the face
g1 and that agree on that face and on its vertices. Let (h1,n)n be a subsequence of (h0,n)n
for which h1,n(g1) = f1, a fixed face of K, for all n ≥ 1, and that agree on the vertices
of g1. Inductively construct a sequence of sequences ((hk,n)∞n=1)∞k=0 such that (hk,n)n is a

8The set LI(K) is the combinatorial analogue of the canonical transversal Ξ = ΞT for the action of the
translation group on the continuous hull in the traditional theory of aperiodic tilings.
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subsequence of (hk−1,n)n for all k ≥ 1, hk,n(gk) = fk, a fixed face of K, for all n ≥ 1, and
that all agree on the vertices of gk. Note that for each fixed integer k ≥ 0, hn,n(gk) = fk
for all n ≥ k and the limit mapping h = limhn,n|L(0) : L(0) → K(0) exists, since for each
vertex w of L, the sequence hn,n(w) stabilizes. It follows that h extends to a cellular
mapping from L to K, still called h, such that h(gk) = fk for all k ≥ 0. It is easy
to see that h is an isomorphic embedding of CW complexes since all the mappings hn
are isomorphic embeddings. Being a CW-embedding, h is an open mapping, and is then
surjective because it is cellular and both L and K are locally finite decompositions of the
plane into combinatorial polygons. Therefore h is an isomorphism. �

The first application of the working lemma is to confirm that planar polygonal complexes
that are highly symmetric globally are uninteresting in terms of local isomorphism.

Theorem 2.10. If Aut(K) acts cocompactly on the planar polygonal complex K and L �
K, then L ∼= K. It follows that (K) is a singleton and therefore K is singular.

Proof. Let F be a finite subcomplex of K that serves as a fundamental region for the action
of Aut(K) on K and write L = ∪∞n=1Ln, where L1 ⊂ L2 ⊂ · · · is an increasing sequence
of finite, connected subcomplexes of L that exhausts L. Let g be a face of L1 and let
(Ln, g) ∼= (Kn, fn), where Kn is a subcomplex of K isomorphic to Ln. Since Aut(K) acts
with fundamental region F , we may assume that for each n, fn is a face of F . Since F is
finite, infinitely many of the faces fn must be the same face f , and by removing appropriate
Ln from the list, we may assume without loss of generality that fn = f for all n. Apply
the working Lemma 2.9. �

A finite CW complex H is represented in K if H is isomorphic to a subcomplex of K, is
finitely represented in K if it is represented, but only by finitely many subcomplexes of
K, and is infinitely represented in K if there are infinitely many isomorphic copies of
H in K. In this latter case, there are infinitely many pairwise disjoint subcomplexes of K
all isomorphic with H. Finally, H is quasi-dense in K if there exists a positive integer
n such that every vertex of K is in an edge-path of length less than or equal to n that
meets a subcomplex of K that is isomorphic to H. Note that when H is quasi-dense in
K, then H is infinitely represented in K, but the converse fails. Quasi-denseness implies
not only that there are infinitely many copies of H in K, but that the copies of H are
uniformly distributed in K. Note that every finite connected9 subcomplex of K is quasi-
dense in K when K is globally highly symmetric, i.e., when Aut(K) acts cocompactly on K.
When this condition prevails for K, that every finite connected subcomplex of K is quasi-
dense in K, whether or not Aut(K) acts cocompactly, we say that K is combinatorially
repetitive.

9We need not restrict to connected complexes, but that is how the authors always imagine them, and
since there is no loss in generality in assuming that these finite complexes are connected, we do so.
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Theorem 2.11. If there is a finite connected complex H that is finitely represented in K,
then K is singular. Alternately, if K is plural, then every finite connected subcomplex of
K is infinitely represented in K.

Proof. The proof is another application of the working lemma and is similar to that of
Theorem 2.10. Assume that L is a planar polygonal complex such that L ∼ K, and
let L1 be a finite, connected subcomplex of L that contains at least one face as well as a
subcomplex that is isomorphic to H, which exists since K � L. Let F be a finite, connected
subcomplex of K that contains all the subcomplexes of K that are isomorphic to L1, which
exists since H, and therefore L1, is finitely represented in K. Write L = ∪∞n=1Ln, where
L1 ⊂ L2 ⊂ · · · is an increasing sequence of finite, connected subcomplexes of L that
exhausts L. Let g be a face of L1 and let (Ln, g) ∼= (Kn, fn), where Kn is a subcomplex of
K isomorphic to Ln. By our choices of F and L0, for each n, fn is a face of F . Since F is
finite, infinitely many of the faces fn must be the same face f , and by removing appropriate
Ln from the list, we may assume without loss of generality that fn = f for all n. Apply
the working Lemma 2.9. �

Symmetries of a complex K usually are thought of in terms of the automorphism group
Aut(K) with a homeomorphism of the plane that preserves the combinatorics of K provid-
ing a global symmetry, a self-isomorphism of K to itself. The notion of local isomorphism
provides a refined notion of symmetry that the eye picks out of the familiar aperiodic tilings
of Penrose and others. These tilings have no nontrivial global symmetries, yet the eye sees
local symmetries abounding, where copies of large finite patches of the tiling appear in
many places. These numerous local symmetries appear as isomorphisms between finite
patches of tilings in differing regions of the tiling that do not extend to global symmetries.
In the combinatorial setting of this paper, Theorems 2.10 and 2.11 position singular com-
plexes at the two ends of the spectrum of symmetry for planar polygonal complexes, and
plural ones somewhere in the middle. Specifically, Theorem 2.10 says that complexes that
are highly symmetric globally are singular, and Theorem 2.11 says that ones that are rather
asymmetric locally are singular; further, the plural complexes cannot be highly symmetric
globally, but must be so locally in that they share with the globally highly symmetric com-
plexes the fact that all finite connected subcomplexes, if not quasi-dense as in the globally
highly symmetric case, are at least infinitely represented. The strictly stronger symmetry
condition of combinatorial repetitiveness, that every finite connected subcomplex of K be
quasi-dense in K, turns out to be important in identifying when the space LI(K) is com-
pact. We close this section of the paper with a detailed examination of the topology of
the rooted local isomorphism class LI(K) and an examination of combinatorially repetitive
complexes.

Lemma 2.12. The set LI(K) is a dense Gδ subspace of the complete metric space LI(K),
the closure of LI(K) in RC, and as such is a completely metrizable Baire space.
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Proof. Obviously LI(K) is dense in the closure LI(K). Using the notation H ↪→ K to mean
that the CW complex H isomorphically embeds in the CW complex K, fix a face f of K
and for each positive integer n let

Un =
{
l ∈ LI(K) : BK(f, n) ↪→ l∗

}
.

To verify the theorem, we observe that each Un is open in LI(K) and that LI(K) = ∩∞n=1Un.

Un is open in LI(K): Let l = (L, g) ∈ Un and choose N ≥ n such that BK(f, n) ↪→
BL(g,N), which is possible since BK(f, n) embeds isomorphically in L. Then the set

Bρ(l, e
−N ) ∩ LI(K) is an open neighborhood of l in LI(K) that is contained in Un, and Un

is open in LI(K).

LI(K) = ∩∞n=1Un : The “⊂” containment follows from the observation that LI(K) ⊂ Un
for each n. For the containment “⊃”, suppose that l = (L, g) ∈ LI(K) is an element of
Un for all n. Then BK(f, n) ↪→ l∗ = L for all n, implying that every finite connected
subcomplex of K embeds isomorphically in L, so that K � L. For any positive integer n,
choose e = (E, h) ∈ LI(K) such that ρ(e, l) < e−n, which is possible since l is in the closure
of LI(K). Then BL(g, n) ∼= BE(h, n) ↪→ K, the existence of the embedding following from
E ∼ K. Since n is arbitrary, this implies that every finite connected subcomplex of L
embeds isomorphically in K, so that L � K. We conclude that L ∼ K, hence l ∈ LI(K).

LI(K) is completely metrizable since it is a Gδ subspace of a complete metric space (by
Mazurkiewicz’s Theorem), and is a Baire space since it is a dense subspace of a complete
metric space (or, by the Baire Category Theorem, because it is completely metrizable). �

The following “invariance of domain” observation will be used several times in the se-
quel.

Lemma 2.13. Let K and L be planar polygonal complexes, f a face of K and g a face
of L. Let H be a subcomplex of K containing f that is isomorphic to either (i) the filled
n-neighborhood BL(g, n) or (ii) the combinatorial n-neighborhood CL(g, n), by an isomor-
phism taking g to f . Then H = BK(f, n) in case (i) and H = CK(f, n) in case (ii).

Proof. We verify case (i). Let h : BL(g, n) → H be a combinatorial isomorphism with
h(g) = f and let f ′ be any face of the combinatorial n-neighborhood CK(f, n). Let
f = f0, . . . , fn = f ′ be a chain of faces of K of length n from f to f ′ and let k be
the largest index such that f1, . . . , fk ⊂ H. If k < n, then an edge common to both fk
and fk+1 must be on the boundary of the disk H and applying the inverse isomorphism
h−1 would provide a chain of faces from g to the face g′′ = h−1(f ′′) of BL(g, n) that meets
the outer sphere boundary of BL(g, n) and has length less than n. This contradicts the
observation of page 18 that any face of a combinatorial n-neighborhood that meets the
boundary of the neighborhood must have combinatorial distance from the center at least
as large as n. It follows that k = n, and from this we get CK(f, n) ⊂ H. Since BK(f, n)
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is the smallest simply connected subcomplex of K that contains the combinatorial n-
neighborhood CK(f, n), we have BK(f, n) ⊂ H.

It is easy to see that the image of the combinatorial n-neighborhood CL(g, n) under h
satisfies h(CL(g, n)) ⊂ CK(f, n) ⊂ BK(f, n). As BK(f, n) ⊂ H, we have CL(g, n) ⊂
h−1(BK(f, n)) and therefore h−1(BK(f, n)) is a combinatorial disk containing the combina-
torial n-neighborhood CL(g, n). AsBL(g, n) is the smallest simply connected subcomplex of
L containing CL(g, n), we conclude that BL(g, n) ⊂ h−1(BK(f, n)), or H ⊂ BK(f, n). �

Theorem 2.14. If K is plural, then the space LI(K) has no isolated points. It follows that
LI(K) is a completely metrizable, uncountably infinite perfect Baire space.

Proof. Let l = (L, g) ∈ LI(K). Since K is plural, there exists a planar polygonal complex
J that is locally isomorphic to, but not isomorphic to L. Let n be a positive integer.
Since L ∼ J , there is an isomorphic embedding h : BL(g, n) ↪→ J with, say, h(g) = f .
By the preceding lemma, the image of the n-neighborhood BL(g, n) under h is precisely
the n-neighborhood BJ(f, n), and this implies that 0 6= ρ(j, l) ≤ e−n, where j = (J, f). It
follows that l is not an isolated point of LI(K).

Lemma 2.12 guarantees that the metric space LI(K) is a completely metrizable Baire space
and the argument of this proof thus far guarantees that it is perfect. This implies that
LI(K) cannot be countable. �

The next corollary confirms the interesting dichotomy that the local isomorphism class (K)
is either a singleton or uncountably infinite.

Corollary 2.15. For the planar polygonal complex K, the local isomorphism class (K)
has either one element or uncountably many elements.

Proof. The fact that (K) is uncountably infinite when K is plural is an immediate conse-
quence of the fact that (K) is the image of the uncountable set LI(K) under the countable-
to-one function ∗. �

The set LI(K) generally fails to be closed in RC. The next theorem demonstrates that its
closure captures precisely those complexes that precede K under the pre-order �.

Theorem 2.16. For an arbitrary planar polygonal complex K, the closure of LI(K) in RC
is

LI(K) = {l ∈ RC : l∗ � K}.

Proof. (⊂): Let (L, g) = l ∈ LI(K) and H a combinatorial patch in L. Choose n so that
H ⊂ BL(g, n) and let (J, f) = j ∈ LI(K) such that ρ(j, l) < e−n. Then the neighborhoods
BL(g, n) and BJ(f, n) are isomorphic and therefore H ↪→ J . Since J ∼ K, we conclude that
H ↪→ K, and therefore l∗ = L � K. (⊃): Suppose that (L, g) = l ∈ RC with L = l∗ � K.
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Then for any n, there is an isomorphic embedding hn : BL(g, n) ↪→ K. By Lemma 2.13, the
image hn(BL(g, n)) = BK(hn(g), n). Hence ρ(l, kn) ≤ e−n, where kn = (K,hn(g)) ∈ LI(K),

and therefore l ∈ LI(K). �

We now want to ask when the perfect, totally disconnected metric space LI(K) is compact,
and therefore a Cantor set, whenever K is plural. First note that if K has FLC, say with
degree bounded by the positive integer d and satisfying the θ-isoperimetric inequality for
the positive function θ, then LI(K) is a subspace of the compact set RCd,θ (Theorem 2.4),

and the question becomes when is the space LI(K) closed in RCd,θ. The condition that

guarantees that LI(K) is closed in RCd,θ is that K be combinatorially repetitive. Recall
that when K is combinatorially repetitive, for each finite connected subcomplex H of K,
there exists an integer n > 0 such that every face of K is n-close to an isomorphic copy of
H, where n-close is measured in the combinatorial distance between faces. This is a sort
of regularity condition that says every finite connected subcomplex appears in every large
enough neighborhood of any face, where the size of the neighborhood depends only on the
subcomplex. We will see later that any complex K that arises as the expansion complex
of certain subdivision operators is combinatorially repetitive and satisfies FLC.

Theorem 2.17. If K is combinatorially repetitive, then LI(K) is a closed subspace of
RC, and therefore complete in the metric ρ, and every complex in (K) is combinatorially
repetitive. If in addition K is plural and has FLC then LI(K) is a Cantor set.

Proof. By Theorem 2.16, to verify that LI(K) is closed all we need show is that l ∈ LI(K)
whenever (L, g) = l ∈ RC satisfies L � K. Let L � K and let H be a combinatorial
patch in K. Since K is combinatorially repetitive, there exists an integer n such that an
isomorphic copy of H appears in the combinatorial n-neighborhood of every face of K.
Since L � K, there is an isomorphic embedding h : BL(g, n) ↪→ K. By Lemma 2.13,
h(BL(g, n)) = BK(h(g), n) and our choice of n guarantees that H ↪→ BK(h(g), n). It
follows that H ↪→ BL(g, n) ⊂ L and therefore K � L. Therefore K ∼ L and (L, g) = l ∈
LI(K).

That L is combinatorially repetitive whenever K ∼ L is left as an exercise. If K is of
bounded degree d, satisfies the θ-perimetric inequality, and is combinatorially repetitive,
then LI(K) is a closed subspace of the compact set RCd,θ. If in addition K is plural,
Theorem 2.14 implies that LI(K) has no isolated points and, therefore, is a Cantor set. �

The next result is a consequence of the two preceding theorems.

Corollary 2.18. If LI(K) is a closed subspace of RC, then L � K if and only if L ∼ K.
In particular, if K is combinatorially repetitive, then L � K if and only if L ∼ K.
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3. Hierarchy, Subdivision Operators, and Type

Traditional aperiodic substitution tilings exhibit a hierarchical structure in which aggre-
gates of tiles coalesce to form patches of tiles that are homothetic images of patches of the
original tiling, and this occurs at coarser and coarser scales. The conformal tilings that
arise as expansion complexes that are studied in Section 4 fail to posses the sort of hierar-
chical structures found in the traditional substitution tilings based on homotheties, but the
combinatorics underlying these conformal tilings do possess a hierarchical structure based
on combinatorial isomorphisms. Though there seems to be no precise definition of the
term hierarchical structure in the traditional setting, we do provide a precise definition for
what we mean for a planar polygonal complex to possess a combinatorial hierarchical
structure. This we do using a combinatorial subdivision operator and its inverse, a com-
binatorial aggregation operator. After introducing this combinatorial hierarchy, the next
task is to understand the geometric effect, if any, of an existent combinatorial hierarchy
for a complex K on its corresponding tiling TK . We define what it means for a conformal,
reflective tiling T to possess a conformal hierarchical structure and we give conditions
on the subdivision operator τ of the combinatorial hierarchy of K that guarantee that the
tiling TK possesses a conformal hierarchy induced by τ . We then examine the type problem
in the context of hierarchical conformal tilings, proving several results implying that type
is parabolic either for the planar polygonal complex K, or across the whole of the local
isomorphism class (K). Along the way, we are compelled to identify important properties
of hierarchies and subdivision rules—(strongly) expansive hierarchies and shrinking
subdivision rules—that aide in proving a complex to be parabolic and in using the para-
bolic type of a complex K to infer the parabolic type of one locally isomorphic with K.
We end this section with an examination of a possible symmetry of a planar polygonal
complex with a subdivision of that complex, called a supersymmetry, that may be used
to generate a conformal hierarchy for the complex.

3.1. Combinatorial hierarchy. The idea behind combinatorial hierarchy is that the faces
of a planar polygonal complex K may be aggregated to produce another planar polygonal
complex that locally looks like K, that the faces of this may then be aggregated to produce
yet another that locally looks likeK, ad infinitum. In this way, the local structure evident in
K appears at coarser and coarser scales as one blurs the edges of faces to aggregate several
faces into one. Our primary interest will be in plural planar polygonal complexes that are
combinatorially repetitive and of bounded degree, and in hierarchical structures generated
by subdivision operators with a certain amount of regularity that will be described as
we develop this section. At first, though, we will not enforce restrictions on the planar
polygonal complex K nor on the subdivision operator τ . It is only as we turn our attention
to the local isomorphism class (K) that we begin to enforce restrictions on K and τ that are
designed to manifest the hierarchy across the whole of the local isomorphism class.

Recall that a combinatorial subdivision of the planar polygonal complex K is a planar
polygonal complex L for which each open cell (vertex, edge, or face) of L is contained in
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an open cell of K. In particular, each closed face of K is the union of finitely many closed
faces of L, and each closed edge of K is a union of finitely many closed edges of L. Recall
that the subdivision L is totally nontrivial if it is nontrivial on every face of K, meaning
that each closed face of K is the union of at least two closed faces of L. In this case, we say
that K is obtained from L by aggregation, and we call K a combinatorial aggregate
of L. We say that the planar polygonal complex K exhibits a combinatorial hierarchy
if there is a bi-infinite sequence {Kn : n ∈ Z}, called a combinatorial hierarchy for
K, of planar polygonal complexes indexed by the integers such that the following three
conditions hold:

(1) K0 = K;

(2) Kn+1 is a totally nontrivial combinatorial subdivision of Kn, for all n ∈ Z;

(3) Kn ∼ Kn+1, for all n ∈ Z.

Our primary concern will be combinatorial hierarchies that are defined in terms of subdi-
vision operators. Recall that the subdivision operator τ = {τn} is a subdivision rule that
partitions the faces of any planar polygonal complex K by polygonal type, then subdivides
the faces of type n by the pattern of the CW-decomposition τn of the standard n-gon
∆n. The rule is edge compatible and, because each seed τn is oriented and rotationally
symmetric, can be applied to a k-gon face of K in a unique way up to isomorphism. It
is immediate that, whenever K ∼= L, we have τK ∼= τL by an isomorphism induced from
an isomorphism of K to L. This of course implies that τ induces a function τ̂ : C→ C in
the obvious way, by sending the isomorphism class of K to the isomorphism class of τK.
The simple subdivision rules of Fig.’s 1 and 2 define simple subdivision operators that
may be applied to an arbitrary planar polygonal complex. An example of a non-simple
subdivision operator is one that applies hexagonal subdivision to each 3-gon face of K
while applying quad subdivision to all other faces of K. Our notation is a bit lacking since
we have chosen to use the complex K to name its isomorphism class in C. This is where
the hat symbolˆ is useful: τK means a specific combinatorial subdivision of K while τ̂K
means the isomorphism class of τK in C. So, for instance, if Z is the integer lattice 4-
gon complex, the planar 4-gon complex whose 1-skeleton is Z2, the integer lattice graph
whose vertices form the integer lattice Z2 and whose edges span vertices a unit distance
apart, then the quad subdivision operator ν produces the combinatorial subdivision νZ
that, though not equal to Z since it subdivides each 4-gon into four 4-gons, nonetheless is
isomorphic with Z. While νZ 6= Z as planar polygonal complexes, in our notation we have
ν̂Z = Z in C so that Z is a fixed point of the mapping ν̂. This notation should cause no
difficulty in the sequel.

The subdivision operator τ is said to manifest a combinatorial hierarchy for the planar
polygonal complex K if, in the definition, K exhibits a combinatorial hierarchy for which
τKn = Kn+1, for each n ∈ Z. It is convenient in this case to call the inverse operator τ−1

that yields Kn−1 when applied to Kn an aggregation operator for K, which, unlike τ ,
is, a priori, defined only on the sequence {Kn}. Notice that by reindexing, the operator
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τ manifests a combinatorial hierarchy of every Kn. For a specific example, the subdivi-
sion operator ν manifests a combinatorial hierarchy for the complex Z of the preceding
paragraph. In this case Z is singular and item (3) of the definition necessarily reduces to
Zn ∼= Zn+1. The regular pentagonal complex P that produces the regular pentagonal tiling
of [2] exhibits a combinatorial hierarchy manifested by the simple pentagonal operator, and
though item (3) again reduces to Pn ∼= Pn+1, P is not singular, but rather plural. We will
see that this implies that every complex K that is locally isomorphic with P also exhibits
a combinatorial hierarchy manifested by the pentagonal subdivision operator, but for the
typical hierarchy, Kn 6∼= Kn+1. It might seem that it would be rather difficult to find
examples of complexes that exhibit combinatorial hierarchies beyond the rather pedestrian
ones like Z and P , but we will see in Section 4 that every expansion complex of certain
appropriate subdivision rules exhibits a combinatorial hierarchy.

In addressing the type problem for tilings that exhibit a hierarchical structure, it will be
important to aggregate the tiling T iteratively using the hierarchy so that a given compact
subset is engulfed by a set of aggregated tiles with a common vertex. For this to occur,
the combinatorial hierarchy exhibited by the underlying complex KT needs to have the
combinatorial analogue of this engulfing property. To explicate this in the setting of the
planar polygonal complex K, we need to develop a bit of notation and introduce some
ancillary concepts. The first goal is to define what we mean for the combinatorial hierarchy
{Kn} for K = K0 to be expansive, and for a core of the complex Kn to engulf a finite
subcomplex of K. First, a core of any planar polygonal complex K is a combinatorial
patch that comes in one of three flavors—its faces consists either of a single face of K,
a face core, two faces that meet along a common edge, an edge core, or all the faces
that meet at a vertex, a vertex core. In the general case of a combinatorial hierarchy, let
σm be the rule that subdivides the complex Km to obtain the complex Km+1, and given
integers m ≤ n, let σnm be the rule for Km that applies σm, . . . , σn−1 successively to obtain
the complex Kn.10 The collection σ = {σm} is called the subdivision sequence for the
hierarchy {Km}. Let F be a finite subcomplex of K = K0 and let n ≤ 0 be an integer.
We say that the subcomplex E of Kn engulfs the complex F if F is a subcomplex of σ0

nE,
itself a subcomplex of K0 = K, and that the combinatorial hierarchy of K is expansive
if, for every finite subcomplex F of K, there exists a integer n ≤ 0 such that F is engulfed
by a core of Kn. This formalizes the idea that a finite subcomplex of K may be thought
of as a subset of a core of one of the complexes Kn, for n ≤ 0, that is obtained from K by
aggregating faces. Notice that if a core of Kn engulfs a finite complex F , then, for every
integer m ≤ n, a core of Km also engulfs F . When a subdivision operator τ manifests
the combinatorial hierarchy for K, then σm = τ for all m ∈ Z, and σnm = τn−m for all
m ≤ n ∈ Z.11 The combinatorial hierarchies for Z and P described in the preceding

10The rule σmm is the identity and σm+1
m = σm.

11It might seem that hierarchies may arise only from subdivision operators so that always there exists a
subdivision operator τ such that σm = τ for all m. This is not so, at least when there is no bound on the
degree of the complex K. Hierarchies determined by a subdivision sequence that cannot be manifested by
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paragraph are both expansive. It might be helpful to see an example of a non-expansive
combinatorial hierarchy.

Example 3.1. A non-expansive combinatorial hierarchy. The combinatorial com-
plex we describe in this example underlies the Penrose hyperbolic tiling familiar to the tra-
ditional tiling community and the discrete hyperbolic plane familiar to the geometric group
theory and conformal geometry communities. There are various ways to describe the planar
polygonal complex H of this example, including using a finite subdivision rule, or using a
hyperbolic isometry to build a metric model of the complex in the upper-half-plane model
of hyperbolic geometry, or using a standard presentation of a Baumslag-Solitar group to see
copies of the 1-skeleton of H in the Cayley graph. We give a rather pedestrian description.
The vertices of H lie along the horizontal lines in the complex plane C with integer imag-
inary parts. At level m ∈ Z, the vertices are {vm,k = 2mk +mi : k ∈ Z} and the edges are
the horizontal segments incident to vm,k and vm,k+1, for all k ∈ Z. The remaining edges are
vertical segments incident to the vertices vm,k and vm−1,2k for all m, k ∈ Z. The faces of H
are pentagonal with cyclically ordered vertices vm,k, vm−1,2k, vm−1,2k+1, vm−1,2k+2, vm,k+1

for the face fm,k, for m, k ∈ Z. See Fig. 4. For any integer n, the nth complex in the
combinatorial hierarchy {Hn} is just a copy of H translated vertically n units; explicitly,
Hn = H + ni. The subdivision rule σ0 subdivides each face fm,k by bisecting each of
the three horizontal edges of fm,k by adding a midpoint vertex, then adding a single ver-
tical edge incident to the midpoint of the edge 〈vm,k, vm,k+1〉 and the vertex vm−1,2k+1.
This subdivides each of the pentagonal faces of H into two pentagonal faces and, easily,
σ0H = H + i. The hierarchy {Hn} is not expansive. Indeed, aggregation (and subdi-
vision) takes place horizontally, so that iterated aggregation produces faces that remain
sandwiched between two horizontal lines at two consecutive levels m and m+ 1. It follows
that no amount of aggregation can produce a core that contains any subcomplex that spans
across three or more horizontal levels. It turns out that the Riemann surfaces SZ and SP
are parabolic while SH is hyperbolic. Indeed, it is easy to see that SZ is parabolic, and that
SP is parabolic was proved in [2] by showing the existence of a loxodromic automorphism
of the surface. This is no accident as we will see later that expansive hierarchies with
certain assumptions on subdivision operators, assumptions satisfied by the quad subdivi-
sion operator of Z and the pentagonal subdivision operator of P , always lead to parabolic
tilings, not only for those determined by the complexes of the hierarchy, but also for any
determined by a planar polygonal complex locally isomorphic to one of these. As for SH ,
one may identify in the 1-skeleton of the complex H an infinite binary tree, which implies
by various standard results that the surface is hyperbolic.

√

Recall that the combinatorial distance between two faces f and g of a planar polygonal
complex K is defined by dK(f, g) ≤ n, for an integer n ≥ 0, if there exists a chain of faces
f = f0, . . . , fn = g such that fi−1 and fi share an edge for i = 1, . . . , n; further, dK(f, g) = n

any subdivision operator exist for the �-maximal planar polygonal complexes constructed in the Adden-
dum to this section. We, however, will be concerned with hierarchies that are manifested by subdivision
operators.
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m = 0

m = 1

m = 2

m = −1

m = −2

m = −3

Figure 4. The planar pentagonal complex H.

if dK(f, g) ≤ n and dK(f, g) 6≤ n− 1. For the purposes of analyzing expansive hierarchies,
it is easier to work with a slightly modified notion of combinatorial distance where we
measure how close two faces are by stepping from face to face, not only across edges, but
across vertices also. Consequently, if there is a simple chain of faces f = f0, . . . , fn = g
such that fi−1 and fi meet12 for i = 1, . . . , n, we write δK(f, g) ≤ n; further, δK(f, g) = n
if δK(f, g) ≤ n and δK(f, g) 6≤ n − 1. If F is a finite subcomplex of K, the δK-diameter
of F is the largest value of δK(f, g) as f and g range over all the faces of K that meet F .
Notice that if L is a subdivision of K and f ′ is a face of L contained in the face f of K
and g′ is a face of L contained in the face g of K, then δL(f ′, g′) ≥ δK(f, g), and we write
δL ≥ δK . Symbolically, L ≤ K implies δL ≥ δK . In this sense we may say that the sequence
of metrics δKn for the combinatorial hierarchy {Kn} increases distances as n → ∞ and
decreases distances as n→ −∞. This observation has some important implications, as we
will see later. Notice that this increase and decrease of distance among faces in a hierarchy
is not necessarily strict, as Example 3.1 illustrates.

With the help of the distance function δK , stronger versions of expansive hierarchy may
be defined. Let φ : N → R be a non-decreasing function. We say that the combinatorial
hierarchy {Kn} is φ-expansive if there is a positive constant M such that, for any integer
m > M , any finite subcomplex F of K of δK-diameter at most φ(m) is engulfed by a core

12The difference between the two notions of distance is, of course, that fi−1 and fi may meet only at a
set of vertices in the definition for δK , while for dK they must share at least one edge. Obviously, δK ≤ dK .
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of K−m. This of course says that a finite subcomplex F of K is engulfed in a core after
a number of aggregations that is dependent only on the diameter of F : m aggregations
are sufficient to engulf into some core any finite subcomplex of δK-diameter at most φ(m).
Here are a couple of important examples. If there exists positive constants M and r such
that, for any positive integer m > M , any finite subcomplex F of K of δK-diameter at
most rm is engulfed by a core of K−m, then the hierarchy is linearly expansive. This of
course says that a finite subcomplex F of K is engulfed after a number of aggregations that
is linear with respect to the diameter of F . Most pertinent to our subsequent development
is the case where φ is an increasing exponential function of the variable m, say of the form
φ(m) = tm for some t > 1. Being φ-expansive for this function φ says that, for each large
enough positive integer m, m aggregations are sufficient to engulf all finite subcomplexes
of δK-diameter at most tm. We say in this case that the hierarchy is exponentially
expansive. In case {Kn} is φ-expansive for some non-decreasing function φ, we say that
it is strongly expansive.

We now present a criterion, simple to check, that guarantees that a combinatorial hierarchy
manifested by a subdivision operator is strongly expansive. Let τ be a subdivision operator.
Recall that τ is determined by a collection {τn} of oriented regular CW complexes where
τn is a nontrivial, rotationally symmetric CW-decomposition of an oriented n-gon ∆n that
decomposes each edge into N sub-edges, for a value of N independent of n. If v is a vertex
of ∆n, the set ∠v = {v} ∪ d◦ ∪ e◦ ∪ ∆◦n, where d and e are the edges of ∆n that are
incident with the vertex v, is called the open angle of ∆n at v. We say that τ is strictly
shrinking if, for every n, every closed face of τn is contained in an open angle of ∆n. In
particular, no closed face of the subdivision τn can contain two vertices of ∆n, nor meet
more than two edges of ∆n nontrivially, and if a face does meet two edges, those edges
must be adjacent. Similarly, if f is a face of the planar polygonal complex K with vertex
v incident to edges d and e of the face f , then the set ∠fv = {v} ∪ d◦ ∪ e◦ ∪ f◦ is the open
angle of f at v and, if τ is strictly shrinking, then every closed face of τf is contained in an
open angle of f . For each positive integer k, let τk be the subdivision operator obtained by
iterating τ k times. We say that τ is shrinking if τk is strictly shrinking for some integer
k ≥ 1. Notice that if τ is (strictly) shrinking, then τk is (strictly) shrinking for all positive
integers k. Among simple subdivision operators, the star and delta rules are not shrinking,
while the remaining ones showcased in Fig.’s 1 and 2 are strictly shrinking. The hex rule
is not strictly shrinking, but is shrinking since its second iterate is strictly shrinking. See
Fig. 5.

Lemma 3.1. Let τ be a shrinking subdivision operator with τk strictly shrinking for the
positive integer k. Then δτkK ≥ 2δK − 1 for any planar polygonal complex K.

Proof. First we show that if τ is strictly shrinking and f ′ and g′ are faces of τK with
δτK(f ′, g′) = 2, then δK(f, g) ≤ 1, where f and g are the faces of K containing the
respective faces f ′ and g′. Let f ′ = f ′0, f

′
1, f
′
2 = g′ be a simple chain of faces of τK with

f ′i−1 ∩ f ′i 6= ∅ for i = 1, 2. For each i = 0, 1, 2, let fi be the face of K that contains f ′i and
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τ

Figure 5. Hexagonal subdivision is shrinking, but not strictly shrinking.
The 4-gon ∆4 on the left has been hex subdivided and the “diamond” face
in the center is not contained in any open angle. After a second hexagonal
subdivision, on the right, each face is contained in an open angle.

observe that, ∅ 6= f ′i−1 ∩ f ′i ⊂ fi−1 ∩ fi, for i = 1, 2. It follows that f = f0, f1, f2 = g is a
simple chain of consecutively intersecting faces of K from f to g. Let u be a vertex of τK
common to both f ′0 and f ′1 and w a vertex common to both f ′1 and f ′2. Since δτK(f ′, g′) > 1,
f ′0 ∩ f ′2 = ∅, so u 6= w. Since τ is strongly shrinking, the face f ′1 is contained in an open
angle of f1, say the open angle ∠f1v = {v} ∪ d◦ ∪ e◦ ∪ f◦1 at the vertex v incident with
edges d and e of f1. If the vertex u is in the open face f◦1 , then f ′0 and f ′1 are contained
in f1 and we conclude that f0 = f1. It follows that f = f0, f2 = g is a simple chain of
consecutively intersecting faces of K from f to g of length 2, and therefore δK(f, g) ≤ 1.
A similar argument shows that δK(f, g) ≤ 1 if w is in the open face f◦1 . Assuming that
neither u nor w is in the open face f◦1 , we have {u,w} ⊂ {v} ∪ d◦ ∪ e◦ and, since u 6= w,
there are two further cases to consider: either u = v and w ∈ e◦, or u,w ∈ d◦ ∪ e◦. In the
first case, f0 and f1 have a common vertex u = v and f1 and f2 have a common edge e
that contains the vertex v, and so f0 and f2 have a common vertex v. It follows that f1

may be removed from the chain f = f0, f1, f2 = g to get δK(f, g) ≤ 1. Similarly, in the
second case, f0 and f1 have a common edge d or e and f1 and f2 have a common edge d
or e, and as d and e have the common vertex v, again f0 and f2 have a common vertex
v and δK(f, g) ≤ 1. In each case we conclude that f = f0, f2 = g is a simple chain of
consecutively intersecting faces of K from f to g of length 2, so that δK(f, g) ≤ 1.

Continuing under the assuption that τ is strictly shrinking, note that the lemma is true
in case δτK(f ′, g′) = 0 or 1, so we assume that δτK(f ′, g′) = n ≥ 2. The argument of
the preceding paragraph may be applied to any of three consecutive faces fi−1, fi, fi+1

in a simple chain f = f0, . . . , fn = g. In particular, it may be applied bn/2c times at
i = 1, 3, . . . , 2bn/2c − 1, the odd integers in the list 1, . . . , n − 1, to obtain a simple chain
of consecutively intersecting faces of K from f to g of length 1 + (n/2) when n is even and
1 + (n + 1)/2 when n is odd. This implies that δτK ≥ 2δK − 1, the minus one needed in
case n is odd.

Now let τ be shrinking. Then there exists a positive integer k such that τk is strictly
shrinking and for any such k, the arguments of the preceding paragraphs imply that δτkK ≥
2δK − 1. �



CONFORMAL TILINGS II 37

Corollary 3.2. Let τ be a subdivision operator that manifests the combinatorial hierarchy
{Kn} for the planar polygonal complex K. If τ is shrinking, then there exists a positive
integer k such that δKn+k ≥ 2δKn − 1, for all integers n.

Proof. Apply the lemma to Kn for any integer n to conclude that δKn+k ≥ 2δKn−1, where

τk is strictly shrinking. �

Theorem 3.3. Let τ be a subdivision operator that manifests a combinatorial hierarchy for
the planar polygonal complex K. If τ is shrinking, then the hierarchy {Kn} is exponentially
expansive.

Proof. Let k be the positive integer promised by the preceding corollary. Define φ : N→ R
by

φ(m) = 2m/2k = tm,

an increasing exponential function in the variable m with base t = 21/2k > 1. Our claim is
that {Kn} is φ-expansive, which would confirm that {Kn} is exponentially expansive. Let
F be a finite subcomplex of K of δK-diameter at most tm, for some positive integer m,
and let f be any face of K that meets F . We verify that F is engulfed by a core of K−m
as long as m > 4k.

First note that the condition that δKn+k ≥ 2δKn − 1 for all integers n implies that, for all

positive integers r, δK ≥ 2rδK−kr − 2r + 1. Choose r so that 2r−1 < tm ≤ 2r and observe
that this implies that 2k(r − 1) < m ≤ 2kr. Since δK ≥ 2rδK−kr − 2r + 1, if g is a face of
K that meets F with δK(f, g) > 1, and a and b are faces of K−kr that respectively contain
f and g, then

tm ≥ δK(f, g) ≥ 2rδK−kr(a, b)− 2r + 1.

This implies, since tm ≤ 2r, that when δK(f, g) > 1, then δK−kr(a, b) ≤ 2 − 1/2r < 2, or
δK−kr(a, b) ≤ 1. This says that after kr aggregations, the subcomplex F is engulfed by the
combinatorial patch PK−kr(a, 1) of radius 1, the patch whose faces c satisfy δK−kr(a, c) ≤ 1.
Our claim is that after k more aggregations, the patch PK−kr(a, 1), and therefore the
subcomplex F , is engulfed by a core of K−k(r+1). Since 2k(r − 1) < m, it follows that

(†) k(r + 1) ≤ 2k(r − 1) < m as long as r ≥ 3.

Let m > 4k. Then tm = 2m/2k > 22, which implies that 2r−1 ≥ 22, so r ≥ 3 and hence
Inequality (†) holds. Since F is engulfed by a core of K−k(r+1) and m > k(r + 1), F
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also is engulfed by a core of K−m. This implies that the hierarchy {Kn} is exponentially
expansive, and the proof is complete modulo the claim.

As for the claim, we need only show that when τ is strictly shrinking, the combinatorial
patch PτK(a, 1) of any face a of τK is contained in a core of K. Let b be the face of K
that contains the face a of the subdivision τK. Since τ is strictly shrinking, a is contained
in an open angle ∠bv = {v} ∪ d◦ ∪ e◦ ∪ b◦ determined by the vertex v of b that is incident
with the edges d and e of b. Immediately then, the vertices of a lie in this open angle
and this implies that any face of τK that meets a is contained in the vertex core c(v)
of K determined by v, and so the core c(v) engulfs PτK(a, 1). This completes the proof;
however, we comment that PτK(a, 1) is engulfed by the face core determined by b if a ⊂ b◦
and that PτK(a, 1) is engulfed by the edge core determined by d if a does not meet the
edge e. �

3.2. Local isomorphism and combinatorial hierarchy. It turns out that combinato-
rial hierarchy alone is not enough to guarantee the types of structures that one is trying
to capture by the way the term hierarchical tiling is used in the traditional tiling com-
munity. Two other attributes appear in traditional hierarchical tilings, to wit, the tilings
are repetitive and satisfy FLC. In this section, we enforce the combinatorial versions of
repetitiveness as well as FLC on our combinatorial complexes. This allows us to prove
that the existence of a combinatorial hierarchy is really a property not so much of a single
complex K, but of its whole local isomorphism class (K).

Theorem 3.4. Let K be a combinatorially repetitive, planar polygonal complex that has
FLC. If the subdivision operator τ manifests a combinatorial hierarchy for K, then that
same operator τ manifests a combinatorial hierarchy for any planar polygonal complex L
that is locally isomorphic to K.

Proof. Note that any planar polygonal complex locally isomorphic to K is combinatorially
repetitive, has faces of the same polygonal type as the faces of K, has FLC, and, moreover,
has degree bounded by d, where K has bounded degree d. Let τ = {τk} be a subdivision
operator that manifests the combinatorial hierarchy of K with τKn = Kn+1 for each n,
where {Kn} is a combinatorial hierarchy for K. Since the degree of each complex Kn is
bounded by d, only τk for k ≤ d is used in subdividing, and we let λ be an upper bound
on the number of faces into which τ subdivides any face of K. This means, for each n ∈ Z,
that every closed face of Kn is a union of at most λ closed faces of τKn = Kn+1.

Let K ∼ L and define L0 = L and, for each positive integer n, Ln = τnL so that Ln =
τLn−1 when n ≥ 1. Our first task is to define the complex L−1 so that τL−1 = L0 = L. The
data used to construct L−1 are the three complexes L0, K0 and K−1. Write L0 = ∪∞`=1B`,
where B` = BL0(f, λ(`+ 1)) is the filled λ(`+ 1)-neighborhood of the face f of L0. Using
that K0 ∼ L0 and Lemma 2.13, there are isomorphic embeddings h` : B` ↪→ K0 where the
image of h` is BK0(f`, λ(`+1)), the filled λ(`+1)-neighborhood of f` = h`(f) in K0. There
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is a unique face g` of K−1 such that f` is a face of the subdivision τg`. The definition of λ
may be used to verify the first containment in the observation that

τCK−1(g`, `) ⊂ CK0(f`, λ(`+ 1)) ⊂ BK0(f`, λ(`+ 1)).

Since BK−1(g`, `) is obtained by merely “filling in the holes” of CK−1(g`, `), it follows
from the containments above and the fact that BK0(f`, λ(`+ 1)) is simply connected, that
τBK−1(g`, `) is a subcomplex of BK0(f`, λ(`+ 1)).

We now claim that we may extract a subsequence (gji)i of the sequence of faces (g`)` with
the following properties:

(i) the finite complex Di = BK−1(gji , i) admits an isomorphic embedding ei into the
complex Di+1 with ei(gji) = gji+1 ;

(ii) the direct limit L−1 = lim
−→

(Di, ei) is a planar polygonal complex that is locally

isomorphic to L0;

(iii) τL−1
∼= L0.

For item (i), we define the subsequence gji inductively as follows. Since K−1 has FLC,
Corollary 2.5 implies that there is a smallest subscript j1 such that D1 = BK−1(gj1 , 1) is
isomorphic to BK−1(g`, 1) for infinitely many subscripts ` > j1. By Corollary 2.5 again,
there is among these infinitely many subscripts a smallest subscript j2 > j1 such that D2 =
BK−1(gj2 , 2) is isomorphic to BK−1(g`, 2) for infinitely many subscripts ` > j2. Having
chosen gj1 , . . . , gjn in this way so that Dn = BK−1(gjn , n) is isomorphic to BK−1(g`, n)
for infinitely many ` > jn, we again apply Corollary 2.5 to choose among these infinitely
many subscripts the smallest subscript jn+1 > jn such that Dn+1 = BK−1(gjn+1 , n + 1) is
isomorphic to BK−1(g`, n + 1) for infinitely many subscripts ` > n + 1. This inductively
defines the sequence gji for i = 1, 2 . . . , and for each i, the choice of ji+1 implies that there
is an isomorphic embedding

ei : Di = BK−1(gji , i)
∼= BK−1(gji+1 , i) ⊂ BK−1(gji+1 , i+ 1) = Di+1

with, necessarily ei(gji) = gji+1 . This confirms item (i).

Since the complexes Di are filled i-neighborhoods and hence combinatorial disks with Di

contained in the interior of Di+1, the direct limit complex L−1 is a CW-decomposition of
the whole plane, and hence a planar polygonal complex. By construction, L−1 � K−1 and
as K−1 ∼ K0 ∼ L0, we have L−1 � L0. We have yet to use the hypothesis of combinatorial
repetitiveness, but now it is invoked to prove that L0 � L−1, implying that L−1 ∼ L0

and confirming item (ii). Let F be a connected subcomplex of L0. Since L0 ∼ K−1, there
exists an isomorphic copy F ′ of F in K−1. Since K−1 is combinatorially repetitive, there
exists an integer s > 0 such that every combinatorial s-neighborhood of any face in K−1

contains an embedded copy of F ′, and therefore of F . Then Ds = BK−1(gjs , s) contains
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an embedded copy of F , and therefore so does L−1. We conclude that L0 � L−1, and this
finishes the verification of item (ii).

For item (iii), we will use the fact derived above that for any positive integer `, τBK−1(g`, `)
is a subcomplex of BK0(f`, λ(` + 1)). Write L−1 = ∪∞i=1D

′
i, where D′i is the canonical

isomorphic copy of Di in L−1, and let g = (gji) be the face of the direct limit L−1 that
corresponds to the faces gji of the factors. Then τL−1 = ∪∞i=1τD

′
i so that τD′1 ⊂ τD′2 ⊂

τD′3 ⊂ · · · is a sequence of finite subcomplexes of τL−1 that exhausts τL−1, as in the
hypothesis of the working Lemma 2.9. For each positive integer i, the mappings

τD′i
∼= τDi = τBK−1(gji , i) ⊂ τBK−1(gji , ji) ⊂ BK0(fji , λ(ji + 1))

h−1
ji

∼= // Bji ⊂ L0

define an isomorphic embedding τD′i ↪→ L0. Notice that the image of one of the faces f ′i
of the subdivided face τg ⊂ τD′i under this embedding is equal to the face f of L0. Since
there are only finitely many faces in the subdivided face τg, by passing to a subsequence if
necessary, we may assume without loss of generality that all the faces f ′i are the same face
f ′ of τL−1. An application of the working Lemma 2.9 now implies that τL−1

∼= L0, and
item (iii) is proved.

Having confirmed items (i)–(iii), we now may use the isomorphism τL−1
∼= L0 to replace

L−1 by an isomorphic copy that aggregates the faces of L0 according to the pattern of
L−1 and assume, without loss of generality, that τL−1 = L0. Repeat the argument using
the data L−1, K−1, and K−2 in place of L0, K0, and L−1 to construct a planar polygonal
complex L−2 such that τL−2 = L−1 with L−2 ∼ L−1. Iterating ad infinitum, this produces
a sequence {Ln}n<0 such that τLn = Ln+1 and Ln ∼ Ln+1 for n ≤ −1. Already we
have defined Ln for n ≥ 0 so that τLn = Ln+1 and it follows from its definition that
Ln ∼ Kn ∼ Kn+1 ∼ Ln+1, since K ∼ L implies that τK ∼ τL.

All the ingredients now are in place as we have produced a bi-infinite sequence {Ln}, for
n ∈ Z, such that (1) L0 = L, (2) τLn = Ln+1, and (3) Ln ∼ Ln+1, and this implies that
subdivision operator τ manifests a combinatorial hierarchy for L. �

3.2.1. A brief warning. In the proof we have neither proved nor claimed that the backward
sequence {Ln}n<0 is uniquely determined by L = L0. There indeed may be differing ways
in which aggregation of the faces of a complex L can produce a complex locally isomorphic
to L whose τ -subdivision is equal to L. The integer lattice 4-gon complex Z has differing
aggregates, though in this case all the aggregates are isomorphic with Z.13 Despite these
cautions, the theorem does show that, whenever K is combinatorially repetitive and has
FLC, a combinatorial hierarchy manifested by a subdivision operator τ is a property of the

13See page 56.
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whole local isomorphism class (K) rather than of just the complexes Kn that manifest a
combinatorial hierarchy for that single planar polygonal complex K0 = K.

3.3. Conformal hierarchy. Just as there is an appropriate and useful conformal version
for tilings of combinatorial subdivision rules, there is an appropriate and useful conformal
version for tilings of combinatorial hierarchy. In fact, the conformal version of subdivision
was defined with the conformal version of hierarchy in mind. A conformal tiling that
exhibits an expansive conformal hierarchy in the next section will be seen to be, necessarily,
of parabolic type.

Recall that the polygonal subdivision S of the conformal tiling T is a conformal subdivision
if the tiling S shares with T the properties of conformal regularity of its tiles as well
as conformal reflectivity of the tiling. The subdivision S is totally nontrivial if it is
nontrivial on every face of T . When S is a totally nontrivial conformal subdivision of T ,
we call T a conformal aggregate of S. We say that the conformal tiling T exhibits a
conformal hierarchy if there is a bi-infinite sequence {Tn : n ∈ Z}, called a conformal
hierarchy for T , of conformal tilings indexed by the integers such that the following three
conditions hold:

(1) T0 = T ;

(2) Tn+1 is a totally nontrivial conformal subdivision of Tn, for all n ∈ Z;

(3) KTn ∼ KTn+1 , for all n ∈ Z.

Let τ be a subdivision operator that manifests a combinatorial hierarchy for the planar
polygonal complex K. Then K0 = K, and τKn = Kn+1 and Kn ∼ Kn+1 for all n ∈
Z. For each n ∈ Z, let Tn = TKn be a conformal tiling associated to the complex Kn.
Items (1) and (3) automatically are satisfied for the bi-infinite sequence {Tn}, and if the
tilings Tn can be chosen so that item (2) also is satisfied, we say that τ is a conformal
subdivision operator for the sequence {Tn} that manifests a conformal hierarchy
for T . Explicitly, the subdivision operator τ is a conformal subdivision operator for the
sequence if Tn+1 = TτKn is a conformal subdivision of Tn = TKn , for each n ∈ Z. We write
that Tn+1 = τTn so that Tn = τnT . For example, Theorem 1.1 implies that whenever τ is a
dihedrally symmetric simple subdivision rule that manifests a combinatorial hierarchy for
K, then τ will be a conformal subdivision operator for a corresponding bi-infinite sequence
of conformal tilings. Since this will be so useful to us, we formally separated it out as a
theorem.

Theorem 3.5. Let τ be a dihedrally symmetric simple subdivision operator that manifests
a combinatorial hierarchy for the planar polygonal complex K. Then τ is a conformal
subdivision operator for a corresponding conformal hierarchy {Tn}, where KTn

∼= Kn for
all n ∈ Z.

When {Tn} is a conformal hierarchy for the conformal tiling T of the plane E ∈ {C,D},
the sequence {Kn = KTn} is a combinatorial hierarchy for the planar polygonal complex
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K = KT . If the hierarchy {Kn} is (strongly) expansive, then we say that the conformal
hierarchy {Tn} is (strongly) expansive. If c is a core of the complex KT , then |c|, the
union of the tiles of T that correspond to the faces of c, is a core of the tiling T . That a
core |c| of T engulfs a compact set D just means that D ⊂ |c|.

Lemma 3.6. If the conformal hierarchy {Tn} is expansive for the tiling T of the plane
E ∈ {C,D}, then every compact subset D of E is engulfed by a core of one of the tilings
Tn, for some value of n ≤ 0.

Proof. Since T is a locally finite tiling of E and D is compact, only finitely many tiles of T
meet D and there is a finite subcomplex F of KT such that |TF | ⊃ D. Since the hierarchy
is expansive, there is an integer n ≤ 0 such that F is engulfed by a core of KTn . This means
that there is a core c of KTn such that the subcomplex σ0

nc of KT contains the complex
F . Since F is a subcomplex of σ0

nc, |TF | is a subset of |Tσ0
nc
|. By item (2) in the definition

of conformal hierarchy, T = T0 is a conformal subdivision of Tn
14 and, in particular, is a

polygonal subdivision. From this it follows that |c| = |Tσ0
nc
|. Thus, D ⊂ |TF | ⊂ |Tσ0

nc
| = |c|,

and D is engulfed by |c|. �

3.4. The conformal type of hierarchical tilings. We now are in a position to examine
the type problem for conformally hierarchical tilings. Our primary focus in this section is
the proof that a conformal tiling that exhibits an expansive conformal hierarchy is parabolic
when the degree is bounded. An important corollary is that when a combinatorial hierarchy
of a complex K is manifested by a dihedrally symmetric and shrinking simple subdivision
operator τ with bounded degree, the tiling TK is parabolic and tiles the complex plane C.
In fact, type is constantly parabolic across the whole local isomorphism class (K). After
verifying this result, we observe that when a power of a dihedrally symmetric, conformal
subdivision operator for a bi-infinite sequence of tilings yields a tiling isomorphic to the
base tiling T0 = T , then the tiling T admits a supersymmetry. This also implies that T
is parabolic and the supersymmetry is realized as the action of a nontrivial, orientation-
preserving similarity transformation of the complex plane that contracts.

3.4.1. Expansive conformal hierarchy and parabolic type. We begin with a theorem that
gives conditions that guarantee that a hierarchical conformal tiling is parabolic. Of course
when we say that a conformal tiling T has bounded degree, we mean that the corre-
sponding planar polygonal complex KT has bounded degree.

Theorem 3.7. Let T be a conformal tiling that exhibits an expansive conformal hierarchy.
If T has bounded degree, then T is parabolic and tiles the complex plane C.

The tool we use to confirm that T is parabolic is one of the classical criteria for determining
that a non-compact, simply connected Riemann surface is parabolic. Before the proof of

14Here we are using the fact that conformal subdivision of tilings is a transitive relation.
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the theorem, we review this criterion, referring the reader to the classic references Lehto
and Virtanen [8] and Ahlfors [1], as well as the modern treatment given in Fletcher and
Markovic [7].

A ring domain is a doubly connected domain in the Riemann sphere P, i.e., a domain of
P whose complement consists of two connected components. A classical theorem of Koebe
implies that a ring domain is conformally equivalent to a circle domain, a domain for
which each complementary component is either a closed circular disk or a point. It follows
that any ring domain is conformally equivalent to an annulus, a domain of the form

A(r,R) = {z ∈ C : 0 ≤ r < |z| < R ≤ ∞}.

The modulus of the annulus A = A(r,R) is defined as Mod(A) = log(R/r), with the
obvious interpretations that Mod(A) = ∞ if r = 0 or R = ∞. Two annuli A and B with
finite moduli are conformally equivalent if and only if Mod(A) = Mod(B). The annuli
with infinite moduli determine two conformal equivalence classes according to whether one
or both of the complementary domains are points. We define the modulus of the ring
domain C to be Mod(A), denoted of course as Mod(C), where A is any annulus conformally
equivalent to C. This is well-defined by the preceding discussion.

With these facts under our belt, we can give a tool for determining the type of a non-
compact, simply connected Riemann surface S. Let D be a closed disk in S. By the
Uniformization Theorem, the set S − D is conformally equivalent to a ring domain C in
C. Obviously, S is parabolic if and only if Mod(C) = ∞ and is hyperbolic if and only if
Mod(C) <∞. One of the useful results of quasiconformal mapping theory is the following
characterization of parabolic surfaces.

Theorem 3.8 (Criterion for Parabolicity). A non-compact, simply connected Riemann
surface S is parabolic if and only if there is a constant µ > 0 such that, for every compact
subset D of S, there is a ring domain C separating D from ∞ that has conformal modulus
Mod(C) ≥ µ.

This is proved by applying the superadditivity of the modulus, which avers that if C1, C2, . . .
is a sequence of pairwise disjoint ring domains that are subdomains of the ring domain C,
and every Cn separates the boundary components of C from one another, then

∞∑
n=1

Mod(Cn) ≤ Mod(C).

This implies also that the constant µ in the Criterion for Parabolicity may be taken to
be unity. Armed with this Criterion for Parbolicity, we are equipped to prove the theo-
rem
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Proof of Theorem 3.7. Suppose the bounded degree conformal tiling T tiles the plane E ∈
{C,D}. Let {Tn} be an expansive conformal hierarchy for T .

We focus our attention first on the tiling T = T0. Let c be a core of the planar polygonal
complex K = KT , and let B(c) be the full subcomplex of K whose faces are all the faces
of K that meet c and meet the unbounded complementary domain of c, but are not faces
of c. Note that B(c) is connected since it may be described alternately as the subcomplex
whose faces are precisely the faces of the unbounded complementary domain of c that meet
the connected boundary of that complementary domain. The complex B(c) is called the
combinatorial collar of c, and the patch TB(c) of the tiling T that consists of the set of
tiles of T corresponding to the faces of B(c) determines an open domain U(c), the interior
of |TB(c)| in E, that separates the core |c| from infinity. Since B(c) is a finite subcomplex
of K, the domain U(c) is finitely connected and by the Koebe Uniformization Theorem,
is conformally equivalent to a circle domain V (c), the complement of a finite number of
closed round disks in the plane. Let κ : U(c)→ V (c) be a conformal isomorphism. By ap-
plying an appropriate Möbius transformation, we may assume two things: first, that V (c)
is the complement of a finite number of closed round disks in the unit disk D with the unit
circle boundary of D corresponding to the boundary component of U(c) that meets the un-
bounded complementary domain of U(c); second, that one of the complementary domains
of V (c) is a disk centered at the origin whose boundary corresponds to the boundary of the
complementary domain of U(c) that contains the core |c|. Let A(c) be the largest annulus
centered at the origin that is contained in V (c), and let R(c) = κ−1(A(c)) be its image
under the inverse isomorphism κ−1. Then R(c) ⊂ U(c) is a ring domain that separates the
core |c| from infinity and is called the standard collar of the core |c|. Our claim is that
there are only finitely many different conformal isomorphism types of standard collars R(c)
as c ranges over all the cores of K. This follows from the fact that T has bounded degree
and from Theorem 1.3. Indeed, since T , and therefore K, has bounded degree, there exists
only finitely many combinatorial types of cores of K, and for each one of these combina-
torial types of cores, only finitely many combinatorial types of collars. Hence, there exists
finitely many combinatorial collars B1 = B(c1), . . . , BN = B(cN ) such that the combina-
torial collar B(c) of any core c of K is combinatorially equivalent to one from the list. By
Theorem 1.3, the domain U(c) of every core |c| of T is conformally equivalent to one of the
domains U(c1), . . . , U(cN ). But this implies that the standard collar R(c) is conformally
equivalent to one of the standard collars from the list R1 = R(c1), . . . , RN = R(cN ).

If K ′ is any planar polygonal complex locally isomorphic to K, then the combinatorial
collar B(c′) of any core c′ of K ′ isomorphically embeds in K as a combinatorial collar
of a core of K, and this implies that B(c′) is combinatorially equivalent to one from the
list B1, . . . , BN . Since the β-equilateral conformal structure is used for both TK and TK′ ,
the domains U(c) and U(c′) are conformally equivalent, and this implies that the standard
collar R(c′) is conformally equivalent to one of the standard collars from the list R1, . . . , RN .
Since each of the complexes KTn from the conformal hierarchy for T is locally isomorphic
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to K = KT , it follows that the standard collar R(c) of every core |c| of any tiling Tn, n ∈ Z,
is conformally equivalent to a ring domain from the list R1, . . . , RN .

We are now in a position to verify that the Criterion for Parabolicity Theorem 3.8 is
satisfied for E, implying that E = C and that the tiling T is parabolic. Let µ be the
smallest modulus of a ring domain from the list R1, . . . , RN . Of course µ > 0. Let D
be a compact subset of E. By Lemma 3.6, there exists an integer n ≤ 0 such that D is
engulfed by a core |c| of the tiling Tn. It follows that the ring domain R(c) separates D
from infinity. By the observation of the preceding paragraph, Mod(R(c)) ≥ µ, and this
verifies the Criterion for Parabolicity and completes the proof. �

3.4.2. Parabolic type across local isomorphism classes. We now look at two results that
guarantee that conformal type is constantly parabolic across local isomorphism classes of
planar polygonal complexes. The first result says that, while Theorem 3.7 guarantees only
that the conformal tiling T is parabolic and says nothing about the type of its locally
isomorphic cousins, constancy of type across the whole local isomorphism class may be
achieved by strengthening the expansive hypothesis to that of strongly expansive.

Corollary 3.9. Let T be a conformal tiling of bounded degree that exhibits a strongly
expansive conformal hierarchy manifested by a conformal subdivision operator τ . Then any
conformal tiling S whose complex KS is locally isomorphic to the complex KT is parabolic
and tiles the complex plane C. In particular, conformal type is constantly parabolic across
the local isomorphism class (KT ).

Proof. Theorem 3.7 implies that T is parabolic and tiles the complex plane C. Let E be
either C or D with S a conformal tiling of E, where KS is locally isomorphic to the complex
KT , but not isomorphic toKT . We will verify the Criterion for Parabolicity Theorem 3.8 for
the surface E. For this we will use the facts exposed in the proof of Theorem 3.7 concerning
the existence of a finite number of standard collars in T up to conformal isomorphism.

Let D be a compact subset of E and let F be a finite, connected full subcomplex of KS

whose corresponding patch of tiles SF covers D, so that D ⊂ |SF |. Since KS ∼ KT

while KS is not isomorphic to KT , KT is plural and Theorem 2.11 implies that the finite
complex F is infinitely represented in KT . Let f be a face of F and (F1, f1), (F2, f2), . . .
be a pairwise unequal listing of all the pairs where Fi is a finite subcomplex of KT and
fi is a face of Fi such that (Fi, fi) and (F, f) are isomorphic as pairs. Since F is finite
and connected, there exists a positive integer m such that both the δKS -diameter of F and
the δKT -diameter of Fi, for all positive integers i, are less than m. Let {Tn} be a strongly
expansive conformal hierarchy for T = T0 and, for each integer n, let Kn = KTn so that
{Kn} is a strongly expansive combinatorial hierarchy for KT = K0. Since the hierarchy
is strongly expansive, there exists a positive integer p such that p aggregations engulf any
finite subcomplex of KT of δKT -diameter at most m in some core of the aggregate. In
particular, each of the subcomplexes Fi of KT is engulfed by a core ci of K−p. Let B(ci) be
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the combinatorial collar of ci in K−p as constructed in the proof of Theorem 3.7 and recall
from that proof that, since K−p ∼ KT , each complex B(ci) is combinatorially equivalent to
a complex from a finite list, B1, . . . , BN , of combinatorial collars of cores of KT . Moreover,
from this, as the proof of Theorem 3.7 avers, each standard collar R(ci) is conformally
equivalent to a standard collar from a finite list, R1, . . . , RN , of collars determined by the
combinatorial collars B1, . . . , BN .

Since ci engulfs Fi, fi is a face of τpci. Choose a positive integer M so large that τp(ci ∪
B(ci)) is a subcomplex of the combinatorial M -neighborhood CKT (fi,M), and F is a
subcomplex of CKS (f,M). Such an M exists since T has bounded degree, there are only
finitely many combinatorial types of cores in the list c1, c2, . . . and of collars in the list
B(c1), B(c2), . . . , and there is an upper bound on the number of faces in the subdivision
τpg of any face g of K−p. Consider the combinatorial M -neighborhood CKS (f,M) in the
complex KS . Since KS ∼ KT , there is a subcomplex H of KT that is isomorphic to
CKS (f,M) via an isomorphism λ : CKS (f,M)→ H. By Lemma 2.13, H = CKT (λ(f),M).
Since F is a subcomplex of CKS (f,M), there exists a positive integer i such that (Fi, fi) =
(λ(F ), λ(f)), a subcomplex of H. It follows that

Fi ⊂ τpci ⊂ τp(ci ∪B(ci)) ⊂ CKT (fi,M) = CKT (λ(f),M) = H.

The first containment is just the statement that the core ci of K−p engulfs Fi, the second is
trivial, and the third is by choice of M . By applying the inverse isomorphism λ−1, there is
a subcomplex J of CKS (f,M) isomorphic to τpB(ci) that contains F in one of its bounded
complementary domains of KS , implying that J separates F from infinity. By Theorem 1.3,
the patch SJ of tiles in the tiling S is conformally equivalent to the patch TτpB(ci) in the
tiling T , and so the open domain U(J), the interior of |SJ | in E, is conformally equivalent
to the open domain U(τpB(ci)), the interior of |TτpB(ci)| in C. Since the hierarchy {Tn}
is conformal, τpT−p = T is a conformal subdivision of the tiling T−p, and therefore is a
polygonal subdivision. It follows that the open domain U(ci), the interior of |(T−p)B(ci)|
in C, is precisely equal to the open domain U(τpB(ci)). This implies that the standard
collar R(ci) is contained in the open domain U(τpB(ci)) and separates |TFi | from infinity.
From this, we conclude that R = λ−1(R(ci)) is a ring domain in E that is conformally
equivalent to R(ci) and separates D ⊂ |TF | from infinity. But R(ci), and therefore R, is
conformally equivalent to one of the standard collars from the list R1, . . . , RN , and therefore
has modulus at least µ, the smallest of the positive moduli of the ring domains R1, . . . , RN .
We have determined a positive constant µ such that, starting with an arbitrary compact
subset of E, there is a ring domain R of modulus ≥ µ that separates D from infinity, and
the Criterion for Parabolicity Theorem 3.8 applies to conclude that E = C, so that S is
parabolic. �

The proof makes clear the importance of strong expansivity in that it guarantees that there
is a single complex, K−p, in the hierarchy whose cores engulf all the subcomplexes Fi. This
ensures that an isomorphic copy of a large enough combinatorial neighborhood of some Fi
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in KT will contain the τp-subdivision of a combinatorial collar of a core of K−p, and this
can be transferred back to KS to separate F from infinity. Without this strengthening of
the expansive property, though arbitrarily large combinatorial neighborhoods of F embed
isomorphically in KT , it may take so many aggregates to reach a core that engulfs that
copy of F in a given isomorphic image of a large neighborhood that the combinatorial
collar determined by that core fails to live inside that image of a large neighborhood. The
standard collar then would not pull back to the tiling S to separate D from infinity.

The next corollary gives combinatorial conditions that guarantee constancy of type across
local isomorphism classes.

Corollary 3.10. If τ is a shrinking, dihedrally symmetric simple subdivision operator that
manifests a combinatorial hierarchy for the planar polygonal complex K of bounded degree,
then that combinatorial hierarchy is strongly expansive and the conformal tiling TK exhibits
a conformal hierarchy manifested by τ , has parabolic type, and tiles the complex plane C.
Also, conformal type is constantly parabolic across the local isomorphism class (K).

Proof. Theorem 3.5 implies that the conformal tiling T0 = TK has a conformal hierarchy
{Tn} for which KTn

∼= Kn for all n ∈ Z, where {Kn} is a combinatorial hierarchy for K
manifested by τ . Theorem 3.3 implies that the hierarchy {Kn}, and hence the conformal
hierarchy {Tn}, is strongly expansive. Theorem 3.7 implies that TK is parabolic and, finally,
Corollary 3.9 implies that type is constantly parabolic across the local isomorphism class
(K), finishing the proof. �

In an addendum to this section and in contrast to the two preceding corollaries, we construct
simple examples of locally isomorphic planar polygonal complexes of differing conformal
type. In Section 4, we will discuss examples of single tile type complexes that fit in a fairly
general theoretical framework in which this latter corollary applies to confirm that the ones
with dihedral symmetry are parabolic. For now we are content to offer a glimpse of a rather
pleasant looking example of a planar polygonal complex with three polygonal types—3-,
4-, and 5-gons—whose hierarchy is manifested by the diamond edge subdivision operator
pictured in Fig. 1. As the diamond edge subdivision operator is shrinking, dihedrally
symmetric, and simple, Corollary 3.10 applies to conclude that it and its locally isomorphic
cousins are parabolic. Fig. 6 gives the first four stages in the construction of one of the
uncountably many conformal tilings associated to this simple subdivision operator and
hints at the infinite complex as well as the conformal hierarchy of the tiling, which is
illustrated in Fig. 7.

3.4.3. Conformal hierarchy and supersymmetry. In the pentagonal tiling of [2], a loxo-
dromic Möbius transformation that generates a conformal hierarchy for the tiling is clearly
discernible. In fact it was the existence of such a transformation that allowed the authors to
claim that the pentagonal tiling is parabolic. This transformation actually is constructed
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Figure 6. An expansion complex generated by the diamond edge subdivi-
sion operator: the first four stages of construction. This is an approximation
to a patch of a conformally reflective tiling T by conformally regular 3-, 4-,
and 5-gons. This sort of diamond lace tiling is parabolic and exhibits a
conformal hierarchy manifested by the diamond edge subdivision operator.
Four aggregate stages of the conformal hierarchy are color coded in the next
figure.

first as a combinatorial symmetry of the pentagonal complex using a subdivision of the com-
plex, which then is realized geometrically by a conformal automorphism. In the Cannon,
Floyd, and Parry development of expansion complexes in [5, 6], these sorts of transfor-
mations are crucial in their verification that certain finite subdivision rules have desirable
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Figure 7. The small black-sided polygons approximate a patch in a dia-
mond lace conformal tiling T = T0, the red-sided ones approximate the first
aggregate tiling T−1, the green-sided ones approximate the second aggregate
tiling T−2, and the blue-sided ones approximate the third aggregate tiling
T−3 of the conformal hierarchy. The large blue-sided square that borders
the whole figure approximates a 4-gon in the fourth aggregate tiling T−4.

conformal properties. We now examine conditions that guarantee their existence. The
Möbius transformation µ promised by the next lemma is called a supersymmetry15 and
has the form z 7→ az+b, where a 6= 0 and b are complex constants. That µ fixes∞ and has

15The qualifier super is used since this is not a symmetry—a self-isomorphism—of the tiling; rather, µ
is a conformal isomorphism of the tiling onto a subdivision of the tiling and generates a countable family
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an attracting fixed point in C implies that 0 < |a| < 1. Thus µ is an orientation-preserving
similarity of the complex plane that contracts, and is loxodromic16 whenever a is not a
positive real number, i.e., whenever µ both contracts and rotates nontrivially.

Lemma 3.11. Let τ be a shrinking subdivision operator for which τT is a conformal
subdivision of the bounded degree conformal tiling T , with τT combinatorially isomorphic
to T . Then T tiles the complex plane C and there exists a Möbius transformation µ that fixes
∞ and a single attracting fixed point of C, and that realizes the combinatorial isomorphism
KT

∼= τKT ; moreover, µ generates a conformal hierarchy for T manifested by τ . In
particular, we have µ(T ) ≡ {µ(t) : t ∈ T} = τT and, moreover, type is constantly parabolic
across the local isomorphism class (KT ).

Proof. Since T and τT are combinatorially equivalent tilings by conformally regular poly-
gons both of which are reflective, Theorem 1.2 applies and guarantees a conformal isomor-
phism µ of the tilings T and τT that realizes the combinatorial isomorphism KT

∼= τKT . In
particular µ : |T | → |τT | is a conformal isomorphism such that µ(T ) ≡ {µ(t) : t ∈ T} = τT ,
and either |T | = |τT | = C or |T | = |τT | = D.

For each integer n, let Tn be the tiling defined by

Tn = µn(T ) ≡ {µn(t) : t ∈ T}

and note that since µ is a conformal automorphism, each tiling Tn is conformal, a reflective
tiling by conformally regular polygons. Since µ(T ) conformally subdivides T , a moment’s
consideration should convince the reader that, for each integer n, the tiling Tn+1 polygonally
subdivides the tiling Tn. Since these are all conformal tilings, it follows that, for each
integer n, Tn+1 conformally subdivides Tn and, in fact, Tn+1 = τTn since µ(T ) = τT .
Since τ is shrinking, it is a totally nontrivial subdivision operator. All this shows that
τ is a conformal subdivision operator for the sequence {Tn} that manifests a conformal
hierarchy for T = T0. Since τ is shrinking, Theorem 3.3 implies that the hierarchy {Tn}
is strongly expansive. Theorem 3.7 and Corollary 3.9 imply that T is parabolic and that
type is constantly parabolic across (KT ).

Now that T is seen to be parabolic, µ is recognized as a conformal automorphism of
the complex plane C. By the classification of conformal automorphisms of the plane, we
conclude that µ is a Möbius transformation of the form µ(z) = az + b for some complex
constants a 6= 0 and b. Since τT is a nontrivial subdivision, µ is not the identity. We now
argue in turn that µ is not a translation (a 6= 1) and not a rotation (further, |a| 6= 1),

of pairwise isomorphic tilings by both forward and backward iteration that defines a conformal hierarchy,
as the proof of the theorem shows. The supersymmetry is a symmetry of the hierarchy.

16The terminology comes from the classification of Möbius transformations on the Riemann sphere. It
is derived from the navigational term loxodrome (or rhumb line), a line crossing all meridians of longitude
at the same angle, which describes precisely the orbits of points under the flow associated to such Möbius
transformations that fix ∞ and a point of C.
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but rather is contractive (0 < |a| < 1). If µ is a translation, then µ(z) = z + b for some
non-zero complex constant b. Let d be a positive integer that is strictly larger than the
number of faces that meet at any vertex of the complex KT and, given an arbitrary tile t of
T = T0, let D be the union of the tiles µj(t) = t+ jb for j = 1, . . . , d. Since the conformal
hierarchy {Tn} is expansive, there is, for some negative integer n, a core |c| of the tiling Tn
that contains D. Let p be a point interior to the tile t. Since the core |c| is the union of
fewer than d tiles, there is a tile s of Tn that contains at least two of the points from the list
p+ b, . . . , p+ db. Let k the smallest integer in the list 1, . . . , d for which p+ kb ∈ s, and let
` be the largest positive integer for which p+ `b ∈ s. Note that k < ` so that m = `−k > 0
and note that it may well be that ` > d. Consider the tile tk = µk(t) = t+ kb ∈ Tk. Since
p is interior to t, p + kb is interior to tk, and so the tile s in Tn meets the interior of the
tile tk of Tk = τk−nTn. Since Tk is a polygonal subdivision of Tn, this implies that tk ⊂ s,
and since p + kb is interior to tk, p + kb is interior to s. The same argument applied to
t` = t + `b implies that t` ⊂ s and that p + `b is interior to s. Choose ε > 0 so that the
disk neighborhoods D(p+ kb, ε) and D(p+ `b, ε)17 are contained in the tile s, and observe
that µm(D(p + kb, ε)) = D(p + `b, ε). It follows that the tile µm(s) of Tn+m contains the
open disk D(p + `b, ε), as does s, and so the tile s and the tile µm(s) meet in an interior
point of both. Since Tn+m polygonally subdivides Tn, we conclude that µm(s) ⊂ s. This
implies, since p+ `b ∈ s, that p+ (`+m)b = µm(p+ `b) ∈ s. Since the integer m > 0, this
contradicts the choice of ` as the largest positive integer for which p+ `b ∈ s. We conclude
that µ cannot be a translation, so a 6= 1.

Since a 6= 1, µ has a unique fixed point in C, namely the fixed point z0 = b/(1− a). Let t
be a tile of T that contains z0 that has maximum area among all the tiles of T that contain
z0. Then µ(t) is a tile of the tiling τT that subdivides T , so z0 = µ(z0) ∈ µ(t) ⊂ t∗, for
some tile t∗ of T . Since t∗ is a tile of T that contains µ(t), a tile of the totally nontrivial
subdivision τT of T , we have area(µ(t)) < area(t∗). By our choice of t, since both t and t∗

are tiles of T that contain z0, area(t∗) ≤ area(t) and we conclude that area(µ(t)) < area(t).
This means that µ is not an isometry and hence not a rotation, and so |a| 6= 1. Finally,
the fact that area(µ(t)) < area(t) implies that µ must be contracting, so that 0 < |a| < 1
and z0 is an attracting fixed point of the similarity transformation µ. �

We emphasize that the lemma implies that no hyperbolic conformal tiling of bounded
degree can have a conformal subdivision induced by a shrinking subdivision operator that
is combinatorially equivalent to the tiling.

The next theorem showcases the types of examples of conformal hierarchies with supersym-
metry that initiated the study of conformal tilings. The original pentagonal tiling of [2] as
well as others constructed subsequently by the authors and by Cannon, Floyd, and Parry
using finite subdivision rules fall under this setting of supersymmetric tilings. These turn
out to be the exception rather than the rule, as one is more likely than not to encounter a
conformal tiling that exhibits a conformal hierarchy that fails to be supersymmetric. We

17The disk neighborhood D(z, ε) is defined to be the set {w ∈ C : |w − z| < ε}.
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will see in the section following how to construct examples with supersymmetry. An iso-
morphism of the planar polygonal complex K onto a subdivision τmK as in this theorem
is called a combinatorial supersymmetry, and when one exists for some positive inte-
ger m, we say that K is a τ-supersymmetric complex. The least value of m for which
K ∼= τmK is called the τ-period of K, or just the period if τ is understood.

Theorem 3.12. Suppose that τ is a shrinking subdivision operator that manifests a con-
formal hierarchy for the conformal tiling T = TK , where K is a planar polygonal complex
of bounded degree. If K ∼= τmK for some positive integer m, then T exhibits a conformal
hierarchy via a bi-infinite sequence {Tn} of conformal tilings manifested by τ such that Tn
is conformally equivalent to Tm+n for all integers n ∈ Z. Moreover, T is parabolic and there
is a supersymmetry µ that simultaneously realizes all the tiling equivalences Tn ∼= Tm+n for
all n ∈ Z. In particular,

µ(Tn) ≡ {µ(t) : t ∈ Tn} = Tm+n

for all n ∈ Z.

Proof. Apply the preceding lemma with τ replaced by τm to conclude that T is parabolic
and to obtain the supersymmetry µ for which µ(T ) = τmT . Letting Tn = τnT for each
non-negative integer n, an exercise verifies that µ(Tn) = Tm+n for all positive integers n.
Each negative integer n may be written uniquely as n = −km+ j for a positive integer k
and an integer j between 0 and m− 1 inclusive. Letting Tn = µ−k(Tj) when n is negative,
we have Tn ∼= µ(Tn) = Tm+n for all integers n. Another exercise verifies that τTn = Tn+1

for all integers n, so that τ is a conformal subdivision operator for the sequence {Tn} that
manifests a conformal hierarchy for T . �

3.5. Addendum. Examples of �-maximal complexes. Though the primary emphasis
of this paper is on tilings that arise from complexes K that are combinatorially repetitive
and of bounded degree, we pause to construct examples that are of more general interest.
The first simple example will be modified to obtain two maximal tilings of differing type—
one parabolic, the other hyperbolic—that are locally isomorphic to one another. This shows
that we need not expect that conformal type is constant across local isomorphism classes,
and it becomes interesting to find conditions on the complex K that would guarantee
constancy of type across (K). Corollary 3.10 presents one such condition and is applied
in the next section on specific concrete examples. It might be guessed that, perhaps, an
ingredient sufficient for constancy of type across local isomorphism classes is repetitiveness,
but Cannon, Floyd, and Parry close their paper [6] with examples of locally isomorphic
repetitive complexes, the one parabolic and the other hyperbolic. Their examples, as well
as others with exotic properties, will be studied anew in a later paper of this series, but
for the present, we are content with the following illustrative examples.
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Example 3.2. A maximal planar polygonal complex under �. Let D1, D2, . . . be a
list, up to isomorphism, of all the finite CW decompositions of the closed disk D into com-
binatorial polygons. Then any planar polygonal complex M that contains pairwise disjoint
finite subcomplexes D′1, D

′
2, . . . with Dn

∼= D′n is universal for finite, planar, connected
CW decompositions into combinatorial polygons in the sense that each finite subcomplex
of any planar polygonal complex embeds isomorphically in M , since any embeds so in at
least one of the Di’s. As such, K �M for all K ∈ C. Explicit constructions appear in the
next example.

√

Example 3.3. Maximal planar polygonal complexes of differing conformal type.
As in Example 3.2, we begin with a listD1, D2, . . . of all finite polygonal complexes obtained
as finite polygonal CW decompositions of the closed disk D. Note that any two planar
polygonal complexes, both of which contain pairwise disjoint isomorphic copies of all the
Di’s, are locally isomorphic. We construct two such examples, Mpar and Mhyp, the first a
parabolic and the second a hyperbolic planar polygonal complex.

For Mpar, let K6 be the constant 6-degree triangulation of the plane, which is a parabolic

planar 3-gon complex since the equilateral metric space |Kβ
6 |eq is conformally equivalent

to |K6|eq, which is isometric to the plane C. Let h : SK6 → C be a conformal isomorphism,
and use the Criterion for Parabolicity Theorem 3.8 to choose a pairwise disjoint sequence
of simple closed edge paths Cn in K6 such that the following conditions hold:

(i) Cn+1 separates Cn from ∞;

(ii) Mod(An) ≥ µ for each n, where An is the ring domain in C bounded by the simple
closed curves h(C2n−1) and h(C2n) and µ > 0 is a fixed constant;

(iii) between the curves C2n and C2n+1 lies a combinatorial disk dn in K6 whose bound-
ary path δn has combinatorial length equal to that of the combinatorial length of
the boundary of Dn.

Let An be the combinatorial annulus in K6 bounded by C2n−1 and C2n, so that |Aβ
n|eq is

the piecewise equilateral ring domain in the equilateral surface |Kβ
6 |eq bounded by C2n−1

and C2n that h maps onto An. Note that the disks dn are pairwise disjoint and do not meet
any of the combinatorial annuli Ak. Now for each positive integer n, remove the interior
of the disk dn and glue to δn the combinatorial disk Dn along its boundary. The result is
the planar polygonal complex Mpar that is maximal with respect to the pre-order �.

Our claim is that the conformal type of the planar polygonal complex Mpar is parabolic.
We use the Criterion for Parabolicity Theorem 3.8 to verify this. Indeed, the equilateral

surface |Mβ
par|eq contains, for every n, the equilateral ring domain |Aβ

n|eq, and the complex
structure of SMpar gives these ring domains the same respective moduli as does SK6 , since

those atlases agree on |Aβ
n|eq, for all n. Thus |Aβ

n|eq is a ring domain in SMpar such that

Mod(|Aβ
n|eq) = Mod(An) ≥ µ. Now if D is a compact subset of SMpar , then |Aβ

n|eq separates
D from ∞ if n is large enough, and this confirms the Criterion for Parabolicity. We
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conclude that SMpar is parabolic, so that Mpar is a parabolic planar polygonal complex
that is maximal with respect to �.

The construction of Mhyp is similar to that of Mpar, except that we begin with a hyperbolic
planar complex, say K7, the constant 7-degree triangulation of the plane. Let h : SK7 → D
be a conformal isomorphism and H the upper half disk {z ∈ D : Im(z) ≥ 0}. Conformally,
H is the complement of a nontrivial arc in the boundary of a closed disk and is to be
distinguished, conformally, from its homeomorphic cousin, the complement of a point in
the boundary of a closed disk. The fact we will use is that, though both C and D contain
closed homeomorphic copies of H, only D contains a closed conformally equivalent copy of
H, a closed subset that is the image of H under a homeomorphism that is conformal on
the interior of H. Choose simple closed edge paths δn in K7 disjoint from h−1(H) whose
complementary disks are pairwise disjoint and of respective combinatorial lengths agreeing
with those of the respective boundaries of Dn. Let Mhyp be the complex obtained by
replacing the complementary disks of the sequence δn by the combinatorial disks Dn. Then
the �-maximal planar polygonal complex Mhyp is of hyperbolic type since the Riemann
surface SMhyp

contains h−1(H), a closed conformal copy of H.
√

4. Subdivision Rules and Expansion Complexes

The first conformal hierarchy for a conformal tiling recognized as such was one con-
structed18 from a loxodromic supersymmetry of the pentagonal tiling of [2], which is gen-
erated by a finite subdivision rule. Theorem 3.7 and its corollaries, 3.9 and 3.10, were
uncovered in the attempt to understand why any conformal tiling combinatorially locally
isomorphic with the pentagonal one is parabolic, and then to generalize this to a wider
setting. Though the hierarchy of the pentagonal tiling may be generated by a loxodromic
supersymmetry, this turns out to be a very special case in that the typical hierarchical
conformal tiling admits no supersymmetry. In this section, we study the conformal tilings
that arise as expansion complexes of rotationally invariant subdivision operators, and prove
that these complexes exhibit a combinatorial hierarchy. This latter claim is proved after
exploring some of the combinatorial properties possessed by these expansion complexes,
including the fact that they are combinatorially repetitive. We then specialize to those with
dihedral symmetry and apply the results of Section 3.4 to conclude that certain conformal
tilings have a conformal hierarchy and are constantly parabolic across their local isomor-
phism class, including the original pentagonal one. Finally, we examine the subdivision
map defined on the local isomorphism class (K) of the expansion complex K, relating the
existence of finite orbits in (K) to the existence of supersymmetries on elements of (K).
We prove that this map has at most finitely many k-orbits for any fixed positive integer k,
and the proof points us to an elegant construction method for expansion complexes that

18Perhaps constructed is too strong a word, for the hierarchy appears automatically in constructing the
tiling and is perceived immediately by the intuition when one first encounters the graphics of the tiling.
The loxodromic supersymmetry just confirms precisely the intuition.
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admit combinatorial supersymmetries, cellular isomorphisms to their τk-subdivisions. We
close out this section, and indeed the paper, with a zoo of graphical examples.

In the following, we are going to use a definition of the interior of a CW complex that
corresponds to usage of the term in manifold theory rather than in general topology. It
will be used only in the case where F is a finite, 2-dimensional planar CW complex. In this
case, the interior of F is defined as the largest 2-manifold (without boundary) contained in
|F |, the underlying space of F . This is precisely the union of the open faces of F , the open
edges that meet two closed faces of F , and the vertices of F that have a disk neighborhood
contained in |F |, and is denoted as F ◦.

4.1. Expansion complexes associated to subdivision operators. Let τn be a non-
trivial, regular oriented CW-decomposition of the oriented n-gon ∆ that is rotationally
symmetric and subdivides ∆ into ` combinatorial n-gons. We can think of τn as the seed
that defines the subdivision operator τ that is defined only on the set of planar n-gon
complexes rather than on the set of all planar polygonal complexes, an (n, n)-subdivision
rule in that it yields a planar n-gon complex upon its action on a planar n-gon com-
plex. We call τ a rotationally invariant (n, n)-subdivision operator when emphasis
is needed.19 We will apply τ as a subdivision operator on the expansion complexes that
are defined next. Under this convention that τn defines the subdivision operator τ , we may
write τn = τ∆, and we define τkn = τk∆ for each positive integer k. Obviously, τkn is a
subdivision of ∆ into `k combinatorial n-gons. Let

(‡) F1 ↪→ F2 ↪→ · · · ↪→ Fm ↪→ Fm+1 ↪→ · · ·

be any sequence of isomorphic embeddings of CW complexes that satisfies the following
properties.

(1) For each positive integer m, Fm is a connected subcomplex of τ imn , for some integer
im ≥ m;

(2) for each m, im < im+1;

(3) each map Fm ↪→ Fm+1 is a cellular, orientation-preserving isomorphic embedding
of CW complexes;

(4) for each m, there exists a positive integer p for which the image of |Fm| under the
composition Fm ↪→ · · · ↪→ Fm+p is contained in the interior of Fm+p;

20

19Using Cannon, Floyd, and Parry’s machinery of finite subdivision rules and model complexes, one may
place this in the setting of their one-tile rotationally invariant finite subdivision rule, which is explored in
their paper [6]. That machinery, though elegant, is a bit more sophisticated than our need demands and,
as has been stated already, is avoided in this paper.

20We could have required that the image of |Fm| under the embedding Fm ↪→ Fm+1 be contained in the
interior of Fm+1 and arrived at the same collection of expansion complexes. The slightly more complicated
condition (4) makes for easier proofs in what follows.
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(5) for each m and each combinatorial simple closed edge path γ in Fm, there exists a
positive integer q for which the image of γ under the composition Fm ↪→ · · · ↪→ Fm+q

bounds a combinatorial disk in Fm+q.
21

The CW complex K = lim
−→

Fm, the direct limit of the system (‡), is called an expansion

complex associated to the subdivision operator τ .22 In most cases, each Fm in the sequence
defining the expansion complex will be a CW decomposition of a closed topological disk
and the image of the closed disk |Fm| under the single embedding Fm ↪→ Fm+1 will be
contained in the interior of the disk |Fm+1|. Properties (4) and (5) automatically adhere in
this case. We can define a more general expansion complex by removing property (4) from
the list. Property (4) guarantees that any expansion complex is a CW decomposition of
a planar surface without boundary and, ultimately, is a planar n-gon complex. Removing
the property (4) requirement would allow for expansion complexes that have nontrivial
boundary components of infinite length, and removing property (5) would allow for holes,
even an infinite number of these. We wish to avoid these pathologies in this study.

Theorem 4.1. The expansion complex K = lim
−→

Fm is a planar n-gon complex.

Proof. Property (4) guarantees that the topological space |K| underlying the CW complex
K is a non-compact topological 2-manifold. Property (5) guarantees that |K| is simply con-
nected. It follows that |K| is homeomorphic to the plane so that K is a CW-decomposition
of the plane. Since each of the subdivided n-gons τ imn is a complex with only n-gon faces,
each face of K is an n-gon, and since each subdivision τ imn is regular, so too is the CW
decomposition K. It follows that K is a planar n-gon complex. �

The most useful property of an expansion complex is encased in the next theorem, Theo-
rem 4.2. First we need a few definitions. A τ-aggregate of the planar n-gon complex K
is a combinatorial aggregate L of K for which τL = K. We do not claim that τ -aggregates
are unique. As an example, let Z be the integer lattice 4-gon complex and let τ be the
subdivision of the regular 4-gon ∆4 that subdivides each edge into three sub-edges and
subdivides the single face into nine 4-gon sub-faces as in Fig. 8. Notice that there are two
types of sub-faces in ∆4, a single center sub-face surrounded by eight edge sub-faces.
Let f be the unit square face of Z whose lower left-hand vertex is the origin (0, 0). Let
L be the (unique) τ -aggregate of Z for which the face f of Z is a center sub-face of the

21We make no claim that these five properties are independent. Under mild restrictions on τ , property
(5) is a consequence of properties (3) and (4).

22The expansion complexes defined by Cannon, Floyd, and Parry in [5] are more restricted than these
in that they, like the original pentagonal example, come equipped with an expansion map, which is the
inverse of a combinatorial supersymmetry of unit period. Theirs therefore do not include the expansion
complexes defined herein that have no combinatorial supersymmetry, nor those with a combinatorial su-
persymmetry of period greater than 1. We will see subsequently that when K is plural, of the uncountably
many pairwise distinct expansion complexes associated to τ , at most countably many have a combinatorial
supersymmetry, and at most finitely many of those have period 1 and, therefore, an expansion map.
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τ

Figure 8. A 4-gon subdivision rule τ with non-unique aggregates.

unique face g of L containing f , and let L′ be a τ -aggregate of Z for which the face f
of Z is an edge sub-face of the unique face g′ of L′ containing f . Then L 6= L′ and so
τ -aggregates fail to be unique. Of course, L is isomorphic to L′, but no isomorphism of L
to L′ can take f set-wise to itself. The point is that the face f sits within the aggregate
L differently than it sits within the aggregate L′. This causes a problem that requires the
proof of Theorem 4.2 to be a bit more involved than one might at first suspect, and it will
help in that proof to understand this problem. Suppose K and K ′ are locally isomorphic
planar n-gon complexes with respective τ -aggregates L and L′ and h : F → F ′ is an iso-
morphism of the subcomplex F of K onto a subcomplex F ′ of K ′. Let H be the smallest
subcomplex of L whose τ -subdivision contains F and H ′ the smallest subcomplex of L′

whose τ -subdivision contains F ′. It does not follow that H is isomorphic with H ′, even if
K and K ′ are isomorphic, and even more importantly, when H and H ′ are isomorphic, it
does not follow that the isomorphism h extends to an isomorphism of τH with τH ′. In
fact, even if K = K ′ and H and H ′ are isomorphic, the CW complex pairs (τH, F ) and
(τH ′, F ′) may not be isomorphic as pairs. This is aptly illustrated in Z = K = K ′ by
setting F = F ′, the smallest subcomplex of Z with the single face f , and letting H be the
smallest subcomplex of L with the single face g and H ′ the smallest subcomplex of L′ with
the single face g′.

Theorem 4.2. Any expansion complex K = lim
−→

Fm associated to a rotationally invariant

(n, n)-subdivision operator τ has a τ -aggregate that is itself an expansion complex associated
to τ .

Proof. For each m > 1, let Gm be the smallest subcomplex of τ im−1
n whose τ -subdivision

τGm, a subcomplex of τ imn , contains Fm. Ideally, the complexes Gm would admit appropri-
ate embeddings, Gm ↪→ Gm+1 so that, first, the embedding τGm ↪→ τGm+1 would extend
the embedding Fm ↪→ Fm+1, and, second, the direct limit L = lim

−→
Gm would be an expan-

sion complex associated to τ . It then would follow that τL = K, making the expansion
complex L a τ -aggregate of K. Unfortunately this is not necessarily true and in trying to
modify this idea to get a proof, the problem articulated in the paragraph above presents
itself. The remainder of this proof merely adjusts this idea to make it work.
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First, by identifying each Fm with its canonical embedded copy in the direct limit K, we
may write K as the increasing union ∪∞m=1Fm. By passing to a subsequence if necessary,
property (4) allows us to assume, for each positive integer m, that Fm is contained in
the interior of Fm+1. In fact the use of property (4) allows us to assume, without loss
of generality, that the δK-distance from any face of Fm to any face in the complement of
Fm+1 is greater than ` + 1, where we recall that ` is the number of faces of τn, the seed
of the subdivision operator τ . A partial τ-aggregate of Fm is a finite connected n-gon
complex H contained in |K| whose τ -subdivision τH is a subcomplex of K that contains
Fm as a subcomplex. The assumption that the δK-distance from Fm to the complement
of Fm+1 exceeds ` + 1 implies that any partial τ -aggregate of Fm, each of whose faces
meets Fm, is contained in F ◦m+1, the interior of the complex Fm+1. We now describe a

partial τ -aggregate of Fm. Let Hm be the smallest subcomplex of τ
im+1−1
n whose faces are

precisely those faces f of τ
im+1−1
n whose τ -subdivision τf meets the image of Fm under

the embedding Fm ↪→ Fm+1. Since Fm is connected, so too is Hm. By our assumptions,
we may consider that τHm is a subcomplex of K contained in Fm+1, and so Hm is a
partial τ -aggregate of Fm each of whose faces meets Fm. It follows that there are cellular
containments

Fm ⊂ τHm ⊂ Fm+1

with |Hm| ⊂ F ◦m+1. Now in this construction there appear other partial τ -aggregates of
Fm. Indeed, for each integer p ≥ m, let Hm,p be the smallest subcomplex of Hp whose
faces are precisely those faces of Hp that meet Fm. Then for every p ≥ m, Hm,p is a partial
τ -aggregate of Fm contained in the interior F ◦m+1. As explained in the paragraph preceding
the theorem, the complexes Hm,p for p ≥ m need not be isomorphic, and even if they are,
the pairs (τHm,p, Fm) need not be isomorphic as pairs. Nonetheless, since for each p ≥ m
the complex τHm,p is a subcomplex of the finite complex Fm+1, we may conclude that there
are infinitely many indices among the integers p for which the complexes τHm,p are equal
to one another. As there are at most finitely many ways to τ -aggregate any finite complex,
we may conclude further that there are infinitely many indices among the integers p for
which the complexes Hm,p are equal to one another. This is the observation that drives
the argument.

Applying the argument of the preceding paragraph with m = 1 provides a subsequence
H′1 = (H1,pi : i ∈ N) of H1 = (H1,p : p ∈ N) for which H1,pi = H1,pi+1 for all positive
integers i. Let G1 = H1,p1 and observe that G1 is a partial τ -aggregate of F1 with cellular
containments

F1 ⊂ τG1 ⊂ F2

for which |G1| ⊂ F ◦2 . By construction, G1 is a subcomplex of H2,pi for all positive integers

i ≥ 2. Moreover, we have G1 ⊂ Hp1 ⊂ τk1n where k1 = ip1+1 − 1. We now apply the latter
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part of the argument of the preceding paragraph again, but this time to the sequence
H2 = (H2,pi : i ≥ 2) = (H2,s : H1,s ∈ H′1 and s > p1). The point is that for each integer
i ≥ 2, H2,pi is a partial τ -aggregate of F2 contained in the interior F ◦3 and so τH2,pi is
a subcomplex of the finite complex F3. We may conclude that there are infinitely many
indices among the integers i ≥ 2 for which the complexes τH2,pi are equal to one another,
and hence there are infinitely many such indices for which the complexes H2,pi are equal.
This provides a subsequence H′2 of H2 that consists of pairwise equal terms. Let G2 be the
initial element of the subsequence H′2. Note that G2 = H2,pj for some j ≥ 2, and therefore

G1 is a subcomplex of G2 and G2 ⊂ Hpj ⊂ τk2n where k2 = ipj+1 − 1, so that k1 < k2 since
p1 < pj . The cellular containments

F1 ⊂ τG1 ⊂ F2 ⊂ τG2 ⊂ F3

hold, along with |G2| ⊂ F ◦3 . Since |G1| ⊂ F ◦2 , we have |G1| ⊂ G◦2. Of course, G2 is a
subcomplex of H for all complexes H ∈ H3 = (H3,s : H2,s ∈ H′2 and s > pj), and we may
continue the construction. Continuing in this manner we may extract, via an inductive
construction, a sequence (Gm : m ∈ N) of finite n-gon complexes where, for each positive
integer m,

(i) there are cellular containments Fm ⊂ τGm ⊂ Fm+1.

(ii) Gm is a partial τ -aggregate of Fm contained in the interior of Fm+1;

(iii) the finite n-gon complex Gm is a connected subcomplex of Gm+1;

(iv) Gm is isomorphic to a subcomplex of τkmn where km < km+1;

(v) |Gm| ⊂ G◦m+1;

The ingredients are in place now to complete the argument. Items (iii) through (v) show
that the sequence of cellular containments

G1 ⊂ G2 ⊂ · · · ⊂ Gm ⊂ Gm+1 ⊂ · · ·

satisfies properties (1) through (4) of the definition of expansion complex, and item (i)
along with the fact that the sequence (Fm) satisfies property (5) guarantee that property
(5) holds for the sequence (Gm). We conclude that the direct limit, which in this case is
the union L = lim

−→
Gm = ∪∞m=1Gm, is an expansion complex associated to τ . Moreover,

item (ii) guarantees that the τ -subdivision τL is equal to K so that L is a τ -aggregate of
K. This completes the proof. �

From this theorem we are able to dissect the local isomorphism class of K, uncover some
of the combinatorial structure of K, and prove that every expansion complex exhibits a
combinatorial hierarchy. The important implications appear in the four corollaries that
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follow and culminate in Theorem 4.7. For each of these corollaries, τ is a rotationally
invariant (n, n)-subdivision operator.

Corollary 4.3. If K = lim
−→

Fm and L = lim
−→

Gm are expansion complexes associated to τ ,

then K is locally isomorphic with L.

Proof. It suffices to verify that, for each positive integer k, the subdivided n-gon τkn isomor-
phically embeds in K. Apply Theorem 4.2 iteratively k times, starting with K, to obtain
a τk-aggregate of K, a planar n-gon complex K ′ such that K = τkK ′. Let f be any n-gon
face of K ′ and observe that τkf is a subcomplex of K isomorphic to τkn . �

The proof of this corollary shows more.

Corollary 4.4. Every expansion complex associated to τ is combinatorially repetitive.

Proof. Let H be any finite connected subcomplex of the expansion complex K = lim
−→

Fm

associated to τ . Then there exists a positive integer k for which H is contained in Fk,
where we have identified Fk, a subcomplex of τ ikn , with its canonical copy in the direct
limit K. Let K ′ be a τ ik -aggregate of K and recall that there are `ik n-gon faces in the
complex τ ikn . Since the subcomplex τ ikf contains an isomorphic copy of H for every face
f of K ′, every face of K is `ik -close to an isomorphic copy of H in the δK-metric, and this
implies that each vertex of K is n`ik/2-close to an isomorphic copy of H. We conclude
that H is quasi-dense in K, and this proves K to be combinatorially repetitive. �

Corollary 4.3 proves one half of the next corollary, that the local isomorphism class of an
expansion complex associated to τ is nothing more than the set of all expansion complexes
associated to τ .

Corollary 4.5. The local isomorphism class (K) of the expansion complex K = lim
−→

Fm

associated to τ is precisely the set of all isomorphism classes of expansion complexes asso-
ciated to τ .

Proof. We need only show that if the planar n-gon complex L is locally isomorphic to
the expansion complex K, then L is an expansion complex associated to τ . Again we
identify each Fm with its canonical copy in K and write K = ∪∞m=1Fm. Let Cm for m ≥ 1
be a sequence of pairwise disjoint simple close edge-paths in L such that Cm+1 separates
Cm from infinity and let Bm be the combinatorial disk bounded by Cm. Then Bm is
contained in the interior of Bm+1. Since K is locally isomorphic to L, Bm is isomorphic
to a subcomplex B′m of K and there exists an index k(m) such that B′m is contained
in Fk(m). We may assume by choosing k(m) sequentially that k(m) < k(m + 1) so that

jm = ik(m) < ik(m+1) = jm+1, where Fm is a subcomplex of τ imn as in property (1). We then

have the isomorphic embedding Bm ∼= B′m ⊂ Fk(m) ⊂ τ
jm
n , and properties (1) through (5) in
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the definition of expansion complex are satisfied. We conclude that L = ∪∞m=1Bm
∼= lim
−→

B′m
is an expansion complex associated to τ . �

Corollary 4.6. If K = lim
−→

Fm is an expansion complex associated to τ , then, for all

positive integers k, the subdivision τkK is an expansion complex associated to τ and hence
is locally isomorphic with K.

Proof. First observe that τK is an expansion complex associated to the subdivision opera-
tor τ . Indeed, the sequence of embeddings defining an expansion complex for τK is merely
τFm ↪→ τFm+1, where τFm is a subcomplex of ττ imn = τ im+1

n . This and induction then
imply that, for all positive integers k, τkK also is an expansion complex associated to τ ,
and an application of Corollary 4.3 finishes the proof. �

Finally, Dane Mayhook will prove in his doctoral thesis that any expansion complex asso-
ciated to a shrinking, dihedrally symmetric (n, n)-subdivision operator of bounded degree
satisfies a θ-isoperimetric inequality and hence has combinatorial FLC.

4.2. Combinatorial hierarchy, conformal hierarchy, and expansion complexes.
The work of the preceding section pays off to verify rather easily that every expansion
complex associated to τ exhibits a combinatorial hierarchy.

Theorem 4.7. Every expansion complex associated to a rotationally invariant (n, n)-
subdivision operator exhibits a combinatorial hierarchy.

Proof. Let K = K0 be an expansion complex associated to the rotationally invariant (n, n)-
subdivision operator τ . For positive integers k, let Kk = τkK and define the planar n-gon
complex K−k inductively using Theorem 4.2 so that τK−k = K−k+1 for all k. Theorem 4.2
guarantees that each K−k is an expansion complex associated to τ . Corollaries 4.3 and 4.6
imply that Kk is locally isomorphic to Kk+1, for all integers k. It follows that {Kk} is a
combinatorial hierarchy manifested by τ . �

In case the (n, n)-subdivision operator τ in Theorem 4.7 is additionally dihedrally symmet-
ric, it serves as a conformal subdivision operator for a conformal hierarchy of the conformal
tiling TK determined by any expansion complex K associated to τ . This follows immedi-
ately by an application of Theorem 3.5. We state this formally as the next corollary.

Corollary 4.8. The conformal tiling determined by any expansion complex associated to
a dihedrally symmetric (n, n)-subdivision operator exhibits a conformal hierarchy.

The (n, n)-subdivision operator τ has bounded degree if there is a positive constant β,
called a face bound for τ , such that each vertex of τkn meets at most β faces of τkn , for
all positive integers k. In particular, if K is a planar n-gon complex of bounded degree



62 PHILIP L. BOWERS AND KENNETH STEPHENSON

such that each vertex of K meets at most µ faces of K, then, for every positive integer k,
the subdivision τkK has bounded degree with each vertex meeting at most βµ faces. We
can say a bit more when K is an expansion complex associated to τ . In this case, K has
bounded degree with at most β faces of K meeting at a vertex and, by an application of
Theorem 4.2 and Corollary 4.6, the same holds for every τk-subdivision and τk-aggregate
of K.

The following corollary uses the results of Section 3 to verify that type is constantly para-
bolic across the local isomorphism class of an expansion complex associated to an appro-
priate dihedrally symmetric subdivision operator. In particular, the results of this section
and Corollary 3.10 imply the following result.

Corollary 4.9. Let τ be a shrinking, dihedrally symmetric (n, n)-subdivision operator of
bounded degree. Then τ manifests a combinatorial hierarchy for any expansion complex K
associated to τ and the conformal tiling TK exhibits a conformal hierarchy manifested by τ ,
has parabolic type, and tiles the complex plane C. Moreover, conformal type is constantly
parabolic across the local isomorphism class (K).

This applies to the original pentagonal example P of [2] to answer Maria Ramirez-Solano’s
question that instigated this study of type among locally isomorphic conformal tilings.
All conformal tilings locally isomorphic to the pentagonal tiling P are parabolic. In this
pentagonal example, we don’t need the full machinery of conformal hierarchies that has
been developed in this paper. This is because a fairly straightforward proof of constancy of
parabolic type across (P ) exists using the fact that an aggregate may be defined uniquely
by aggregating along “central” pentagons of the tiling, those whose vertices meet only
three tiles. This is a very special property of the tiling P not shared by general conformal
hierarchical tilings, and we will spare the reader the details.

4.3. Supersymmetric expansion complexes and the action of τ̂ on (K). If τ is
a nontrivial subdivision operator, then τK is never equal to K for any planar polygonal
complex K. Of course, it may be that τK is isomorphic to K. For example, if ν is the
simple quad subdivision operator, then νZ ∼= Z for the integer lattice complex Z, though,
of course, νZ 6= Z. As introduced on page 31, we use the symbol τ̂ to denote the function
induced on appropriate isomorphism classes of planar polygonal complexes, so that τK is
a specific planar polygonal complex that subdivides K while τ̂K is the isomorphism class
in C of τK. Our interest is in the action of τ̂ on a local isomorphism class (K). For
example, since Z is singular, (Z) is a singleton and the map ν̂ is singularly uninteresting,
so our interest resides in plural complexes K. In general, τ̂ : (K)→ (τK), but notice that
Corollary 4.6 implies that the image of (K) under τ̂ is contained in (K) whenever K is an
expansion complex associated to the rotationally invariant (n, n)-subdivision operator τ ;
moreover, Theorem 4.2 additionally implies that τ̂ takes (K) onto (K). We close this paper
with a brief examination of the mapping τ̂ in this setting, that K is an expansion complex
associated to the rotationally invariant (n, n)-subdivision operator τ , which is assumed for
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the remainder of the paper; additionally, to avoid the triviality expressed above, we make
the assumption that K is plural. In the setting of this section then,

τ̂ : (K)→ (K)

is surjective. As a first observation, note that if L ∈ (K), then L is a point in a finite
periodic orbit under the forward iteration of τ̂ if and only if L is τ -supersymmetric, and
in this case, the number of elements in the periodic orbit is the τ -period of L. One of the
goals of this section is to construct τ -supersymmetric expansion complexes with τ -period
k, for arbitrary positive integers k, but first we prove that such complexes are the exception
rather than the rule among shrinking subdivision operators of bounded degree. A k-orbit
of the action of τ̂ on (K) is a forward periodic orbit with exactly k elements.

Theorem 4.10. Let τ be a shrinking, rotationally invariant (n, n)-subdivision operator of
bounded degree. Then up to isomorphism, at most countably many expansion complexes
associated to τ are τ -supersymmetric. In fact, for each positive integer k, there are at
most finitely many k-orbits of τ̂ in (K); equivalently, up to isomorphism, there are at most
finitely many τ -supersymmetric expansion complexes associated to τ of τ -period k.

Proof. The proof is divided into three parts.

Part 1: Classifying fixed points of the action of τ̂ on (K) by combinatorics.
Let J be an expansion complex associated to τ that is a fixed point of the action of τ̂ .
Then J is a CW-decomposition of the plane C and τJ is a CW complex that subdivides
J with τ̂J = J . This means that J is isomorphic to τJ and we let λJ : C → C be a
homeomorphism of the complex plane that is a cellular isomorphism of J onto τJ . In
Part 1, we make two assumptions about the subdivision operator τ and the isomorphism
λJ . The first assumption is that τ is strictly shrinking and the second is that there is a
closed cell bJ of J for which λJ(bJ) ⊂ b◦J . We will call bJ a fixture of the homeomorphism
λJ . The goals of this first part of the proof are to characterize combinatorially those fixed
points J of τ̂ that satisfy the second assumption under the condition that τ is strictly
shrinking and to use this characterization to see that there are at most finitely many fixed
points of the action of τ̂ on (K) that satisfy the second assumption.

Let CJ be the core of J determined by the cell bJ and cJ be the core of τJ determined
by the cell λJ(bJ). CJ and cJ are both vertex, edge, or face cores depending on whether
the cell bJ is, respectively, a vertex, edge, or face of J , and, in fact, it is easy to see
that λJ(CJ) = cJ . We claim that the core cJ is contained in the interior (τCJ)◦ of the τ -
subdivided core CJ . First we show that cJ is contained in the interior of the core CJ . When
cJ is a face core, then automatically cJ = λJ(bJ) is contained in the open face b◦J = C◦J .
When cJ is an edge core, the fact that the subdivision operator τ is both strictly shrinking
and rotationally invariant and λJ(bJ) ⊂ b◦J imply that a face f of τJ with boundary edge
λJ(bJ) is contained in both open angles ∠gu and ∠gv, where g is the face of J containing
f and u and v are the vertices incident to bJ . This implies in turn that cJ ⊂ C◦J . Finally,
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in case cJ is a vertex core with, say, bJ = v, a vertex of J , then the fact that τ is strictly
shrinking implies that every face f of cJ is contained in the open angle ∠gv, where g is
the face of J that contains f . This implies that cJ ⊂ C◦J . Since C◦J = (τCJ)◦, we conclude
also that cJ is contained in the interior of τCJ .

Let J and L be expansion complexes that serve as fixed points of the action of τ̂ , both of
which satisfy the second assumption. Define J and L to be λ-equivalent if there exists
a homeomorphism h : |CJ | → |CL|23 that is a cellular isomorphism of the cell complex
τCJ onto the cell complex τCL such that h(cJ) = cL and for which h−1 ◦ λL ◦ h = λJ ||CJ |.
Our aim is to show that if J and L are λ-equivalent fixed points of τ̂ , then J ∼= L so that
J = L in (K). To prove this, we first show how to recover J from the triple (CJ , cJ , λJ |CJ ).
Indeed, our claim is that

J = ∪∞i=1λ
−i
J (τ iCJ),

where λiJ : J → τ iJ is the isomorphism of complexes gotten from iterating the mapping λJ
i times. To verify the claim, note that, since cJ = λJ(CJ) is a subcomplex of τCJ , the core
CJ = λ−1

J (cJ) is a subcomplex of λ−iJ (τ iCJ) for every positive integer i. It follows that the

union J ′ = ∪∞i=1λ
−i
J (τ iCJ) is a connected subcomplex of J . To see that J ′ = J , it suffices

to verify that, for each positive integer i, the complex λ−iJ (τ iCJ) is contained in the interior

of λ−i−1
J (τ i+1CJ). But this follows from induction with the basis established from the fact

that the complex cJ is contained in the interior of τCJ , implying after an application of
λ−1
J that CJ is a subcomplex of J contained in the interior of λ−1

J (τCJ). Now, assuming

that the expansion complex L is λ-equivalent to J , as with J write L = ∪∞i=1λ
−i
L (τ iCL) and

let h : |CJ | → |CL| be a homeomorphism with the properties described in the definition of
λ-equivalence. This means that h is a homeomorphism of |CJ | onto |CL| that is a cellular
isomorphism of τCJ onto τCL, and this implies by the obvious τ -aggregation that h is also
a cellular isomorphism of the complex CJ onto the complex CL. From h−1◦λL◦h = λJ ||CJ |
we may infer that h = λ−1

L ◦h◦λJ ||CJ |. For each positive integer i, this allows us to extend

the cellular isomorphism h of CJ onto CL to a cellular isomorphism hi = λ−iL ◦ h ◦ λiJ ||Ji|
of Ji = λ−iJ (τ iCJ) onto Li = λ−iL (τ iCL) and we obtain the diagram of commuting cellular
containments and cellular isomorphisms hi:

CJ

h ∼=
��

� � // λ−1
J (τCJ)

h1 ∼=
��

� � // λ−2
J (τ2CJ)

h2 ∼=
��

� � // · · ·
lim
−→ // J

CL
� � // λ−1

L (τCL) �
� // λ−2

L (τ2CL) �
� // · · ·

lim
−→

// L.

23Recall that if F is a subcomplex of the planar polygonal complex K, |F | denotes the underlying space
of F , the union of the cells of F , and is a subspace of the plane.



CONFORMAL TILINGS II 65

This induces an isomorphism of CW complexes J ∼= L and implies that J = L in (K).

Armed with the observation of the preceding paragraph, we can verify that there are at
most finitely many fixed points of the action of τ̂ on the local isomorphism class (K) that
satisfy the second assumption. Indeed, we have shown that each fixed point J of the action
of τ̂ that satisfies the second assumption identifies a CW pair (τCJ , cJ), where CJ is a core
of J and cJ is a core of τJ , and that J ∼= L whenever L is a fixed point of τ̂ satisfying the
second assumption that is λ-equivalent to J . Since τ has bounded degree, the expansion
complex K has bounded degree and, up to isomorphism, there are only finitely many pairs
(τC, c) where C is a core of K and c is a core of τK. Since the expansion complex J is
locally isomorphic to K, the pair (τCJ , cJ) is, up to isomorphism, one of these finitely many
pairs (τC, c) from K. Moreover, for any fixed pair (C, c), there are, up to cellular isotopy,
only finitely many orientation preserving cellular isomorphisms λ from the cell complex C
onto the cell complex c. This implies that each triple (CJ , cJ , λJ |CJ ) is represented among
the finitely many distinct triples (C, c, λ), and this implies that there are only finitely many
λ-equivalence classes of expansion complexes in (K) that satisfy the second assumption,
and therefore only finitely many fixed points of τ̂ that satisfy the second assumption. This
completes the verification of Part 1.

Part 2: The existence of a fixture for a power of the homeomorphism λJ .
We are still under the assumption that τ is strictly shrinking. In this second part of the
proof, we would like to show that any cellular isomorphism λJ of any fixed point J of τ̂
onto its subdivision τJ has a fixture; unfortunately, though, this fails to be true. At the
conclusion of the proof, we will give an example illustrating this. Our aim in Part 2, then,
is to prove that the strictly shrinking subdivision operator τ determines a positive integer
M such that, for every fixed point J of τ̂ , there exists a positive integer m ≤M such that
the cellular isomorphism λmJ of J to τmJ has a fixture. In fact, we will show that M = 6β
works, where β is a face bound for τ .

The verification of the existence of a fixture for a positive power of λJ depends strongly on
the fact that τ is rotationally invariant and shrinking so that any combinatorial hierarchy
manifested by τ is expansive. As an illustrative aside, the hyperbolic complex H of Ex-
ample 3.1 provides a fixture-free homeomorphism z 7→ z + i of C that serves as a cellular
isomorphism of H to σ0H, where σ0 is the non-rotationally invariant and non-shrinking
subdivision rule of the example that divides each pentagonal face into two pentagons and
for which σ̂0H = H.

Let J be any fixed point of the action of τ̂ . We know from Theorem 4.7 that J exhibits a
combinatorial hierarchy manifested by τ , but we can say more in this case. Indeed, forward
and backward iteration of the mapping λJ builds such a hierarchy {Jk}, where for each
integer k, Jk = λkJ(J). Since τ is shrinking, Theorem 3.3 implies that the hierarchy {Jk}
is exponentially expansive. Our first goal is to show that there exist positive integers p
and q and a polygonal face g of J−p such that λqJ(g) ⊂ g. Toward this goal, let f0 be any
face of J and, for any positive integer m, let fm be that unique face of J that contains
the face λmJ (f0) of Jm. Since the hierarchy is expansive, there is a positive integer p and a
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core c of J−p that engulfs f0 ∪ f1 ∪ · · · ∪ fβ, where β is a face bound for τ , and therefore
a bound on the number of combinatorial n-cell faces that meet at any vertex of any Jk of
the hierarchy. Since the subcomplex c of J−p is a core, it has at most β faces and it follows
that, since each of the faces f0, f1, . . . , fβ is a face of the subcomplex τpc, there is at least
one face, say g, of c that contains two of the faces from the list f0, f1, . . . , fβ. Assume that
the two faces fi and fj satisfy fi ∪ fj ⊂ g, where 0 ≤ i < j ≤ β are chosen so that q = j− i
is as small as possible. By the definition of the faces fm, we have λiJ(f0) ∪ λjJ(f0) ⊂ g

with λqJ(λiJ(f0)) = λjJ(f0). It follows that the face λqJ(g) of λqJ(J−p) = J−p+q contains the

face λjJ(f0) of its subdivision Jj , as does the face g of J−p. This shows that the face λqJ(g)

of J−p+q meets the open face g◦ since λjJ(f0)◦ ⊂ λqJ(g) ∩ g◦. Since the face λqJ(g) of the
complex J−p+q meets the open face g◦ of J−p, and since J−p+q subdivides J−p, we conclude
that λqJ(g) ⊂ g.

Since g is a face of J−p, the combinatorial n-cell a = λpJ(g) is a face of J with λqJ(a) =

λp+qJ (g) ⊂ λpJ(g) = a. If λqJ fixes a vertex v of a, then bJ = {v} is a fixture of λqJ , or if
λqJ(e) ⊂ e◦ for an edge e of a, then bJ = e is a fixture of λqJ . Assume that λqJ neither fixes
a vertex of a nor maps an edge of a into the corresponding open edge. Since τ is strictly
shrinking, so too is τ q. This implies that λqJ(a), a face of τ qJ and a subset of a, is a subset
of an open angle ∠av for a vertex v of a. If λqJ(a) ⊂ a◦, then bJ = a is a fixture of λqJ ;
otherwise, λqJ(a) meets one or both of the half-open edges {v} ∪ d◦ and {v} ∪ e◦, where d
and e are the edges of a incident to v. The remainder of the argument rests on where v goes
under the action of λqJ . There are four possibilities: λqJ(v) ∈ ∠av = {v} ∪ d◦ ∪ e◦ ∪ a◦, and
as this is a disjoint union, λqJ(v) lies in exactly one of the open cells {v}, d◦, e◦, or a◦. We
have assumed though that λqJ fixes no vertex of a, so the first possibility is ruled out. The
last possibility, that λqJ(v) ∈ a◦, implies that the image of the open angle ∠av under λqJ is

contained in the open cell a◦, and from this we have λ2q
J (a) ⊂ a◦, so that bJ = a is a fixture

of λ2q
J . The remaining two possibilities are symmetric, so we assume that λqJ(v) ∈ e◦. This

implies, since λqJ is a cellular isomorphism of J to a subdivision Jq, that λqJ(e◦) is contained
in either e◦ or a◦. In the former case, since λqJ(e) also is contained in the open angle ∠va,

then λqJ(e) ⊂ {v} ∪ e◦. But this implies that λ2q
J (e) ⊂ e◦ and therefore bJ = e is a fixture

of λ2q
J . In the latter case, λ2q

J (v) ∈ a◦, implying that the image of the open angle ∠av
under λ2q

J is contained in the open cell a◦. From this we have λ3q
J (a) ⊂ a◦, so that bJ = a

is a fixture of λ3q
J . This paragraph’s discussion verifies that at least one of the mappings

λqJ , λ2q
J , or λ3q

J has a fixture. A quick inductive argument proves that, for any positive
integer s, a fixture for λsJ is a fixture for λstJ for all positive integers t. We conclude that

the mapping λ6q
J has a fixture, and since 1 ≤ q ≤ β, we may set M = 6β. This concludes

the second part of the proof.

Part 3: The general case. We now assume that the subdivision operator τ is shrinking,
with τ s strictly shrinking for the positive integer s. Fix a positive integer k. Our aim is
to count the number of k-orbits of the action of τ̂ on (K). Note first that an expansion
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complex for τ is automatically an expansion complex for any positive power of τ and vice-
versa, so if J ∈ (K), then J is an expansion complex associated to τkr for any positive
integer r. In particular, the results of Parts 1 and 2 may be applied to any power of τ that
satisfies the pertinent assumptions of those parts of the proof. In particular, Part 2 applied
to the strictly shrinking (n, n)-subdivision operator τks with face bound β = β(k) implies
that, for every fixed point J of τ̂ks, there exists a positive integer m ≤ 6β such that λmJ
has a fixture, where λJ is a cellular isomorphism of J onto τksJ .

We now count the k-orbits of τ̂ . Let J be any point of (K) that lies in a k-orbit of τ̂ . Now
J is a fixed point of the action of τ̂k on (K) and hence a fixed point of τ̂ks. Therefore,
there is a positive integer m ≤ 6β such that λmJ has a fixture, where λJ : J → τksJ is
a cellular isomorphism. Note that λmJ is a cellular isomorphism of J to the subdivision

τmksJ . We see then that Part 1 applies to J since J is a fixed point of the action of τ̂mks,
τmks is a strictly shrinking, rotationally invariant (n, n)-subdivision operator of bounded
degree, and the cellular isomorphism λmJ of J onto τmksJ has a fixture. It follows that

J ∈ Fm, where Fm is the set of points of (K) that are fixed by τ̂mks and satisfy the second
assumption of Part 1. But Part 1 implies that Fm is a finite subset of (K). We have shown
that any expansion complex J in a k-orbit of τ̂ must lie in one of the finite sets Fm, for
some 1 ≤ m ≤ 6β. It follows that there are at most finitely many k-orbits of τ . This
finishes the proof of the theorem. �

We already mentioned in Part 2 of the proof that the hyperbolic complex H of Example 3.1
provides an example of a cellular isomorphism of H onto a subdivided complex that fails to
have a fixture. Of course the subdivision operator σ0 of this example is neither shrinking
nor rotationally invariant, and the hierarchy constructed in Example 3.1 is not expansive.
In fact, it is not difficult to see that the mapping σ̂0 induced on the local isomorphism
class (H) is the identity, so that every element of (H) is a fixed point even though H is
plural and (H) is uncountably infinite.24 The next example fulfills a promise of Part 2 of
the proof to give an example of a cellular isomorphism of a planar n-gon complex onto its
τ -subdivision that fails to have a fixture, even though τ is a strictly shrinking, rotationally
invariant (n, n)-subdivision operator of bounded degree.

Example 4.1. A fixture-free cellular isomorphism. The integer lattice 4-gon com-
plex Z described on page 31 admits many cellular isomorphisms onto its quad-subdivision
νZ, some of which have a fixture, others of which do not. Quad-subdivision defines a
rotationally invariant (4, 4)-subdivision operator that is strictly shrinking and of bounded
degree. Let Rπ/2 be the counterclockwise rotation of π/2 radians about w = (1/2, 1/2), the
center of the unit square face a of Z whose lower left-hand vertex is the origin O = (0, 0),
and let M1/2 be the map that multiplies each complex number by 1/2, and so dilates the
complex plane toward the origin O. Then λZ = M1/2 ◦ Rπ/2 is a cellular isomorphism of

24Dane Mayhook’s doctoral thesis will explore the local isomorphism class (H) of this hyperbolic complex
and give a constructive description of all elements of (H).
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Z onto νZ with no fixture. Though λ2
Z also fails to have a fixture, the face a serves as a

fixture of λ3
Z .

√

4.3.1. Identifying fixed points and k-orbits: A construction of supersymmetric expansion
complexes from the proof of Theorem 4.10. The proof of Part 1 of Theorem 4.10 may
be backward engineered to build a procedure for constructing k-orbits of τ̂ , for arbitrary
positive integers k. For a given positive integer k, the procedure may be used to define
an expansion complex F for which τkF is cellularly isomorphic to F , so that τ̂kF = F .
Moreover, an isomorphism λF of F onto τkF is apparent and the complex F may be
encoded by a finite n-gon complex pair with distinguished vertices. Below we describe this
construction method for expansion complexes and close the paper with several illustrative
graphical examples.

For convenience, suppose that τ is strictly shrinking and of bounded degree with face
bound β. Let k be a positive integer and choose any 4-tuple C = (C, v; c, w) that satisfies
the following properties.

(1) C is a core of the complex τ tn = τ t∆, for some positive integer t, that is contained
in the interior of τ tn;

(2) c is a core of τkC that is contained in the interior of a combinatorial disk in C;

(3) v is a vertex of C that lies in its boundary;

(4) w is a vertex of c that lies in its boundary;

(5) there exists an orientation-preserving cellular isomorphism λ0 : C → c with λ0(v) =
w.

Let µ0 : c ↪→ τkC be the cellular inclusion and, for each positive integer m, let µm :
τkmc ↪→ τk(m+1)C be the cellular inclusion induced from µ0, and let λm : τkmC → τkmc
be the cellular isomorphism induced from λ0. Setting Fm = τkmC, for each non-negative
integer m we have the isomorphic embedding Ξm = µm ◦ λm : Fm ↪→ Fm+1 and a quick
check verifies that this sequence of embeddings satisfies the five properties that define an
expansion complex associated to τ . Let F = lim

−→
Fm be the expansion complex defined by

this sequence of embeddings. The idea here is that the isomorphic embedding Ξm shrinks
C via λ to c and then includes c back into C via µ, and the subscript m merely tells one the
level at which Ξ is cellular, namely, at the level of the τkm-subdivision. Now set fm = τkmc
and let ξm = λm+1 ◦ µm : fm ↪→ fm+1, an isomorphic embedding of fm into the interior
of fm+1. Again, a quick check verifies that the sequence of embeddings ξm : fm ↪→ fm+1

satisfies the five properties that define an expansion complex associated to τ , and we let
f = lim

−→
fm.

The following diagram commutes, and this has interesting implications for the expansion
complexes F and f :
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F0

λ0
��

Ξ0 // F1

λ1
��

Ξ1 // · · ·
Ξm−1 // Fm

λm
��

Ξm // Fm+1

λm+1

��

Ξm+1// · · ·
lim
−→ // F

f0

µ0

>>

ξ0
// f1

µ1

>>

ξ1
// · · ·

>>

ξm−1

// fm

µm

<<

ξm
// fm+1

ξm+1

// · · ·
lim
−→

// f.

Since the vertical arrows are all cellular isomorphisms, they induce a cellular isomorphism
λ : F → f and, since the diagonal arrows are cellular inclusions of fm into Fm+1 =
τkFm, they induce a cellular inclusion µ : f → τkF . Since the image of each µm lies
interior to Fm+1, the induced inclusion µ must be onto, and this implies that µ is a
cellular isomorphism of f onto τkF . That the diagram commutes further implies that the
composition λF = µ ◦ λ : F → τkF is a cellular isomorphism, and hence τ̂kF = F in (K).
It follows that F generates an `-orbit of the action of τ̂ on (K) for some positive integer
` ≤ k. The 4-tuple C that generates F , f , and λF is called a combinatorial footprint
for F .

Before presenting examples, we make some observations about this construction. If C is a
face core, then C is merely an oriented combinatorial n-gon and c is obtained by making
a choice of one of the faces of the subdivided n-gon τkC that is interior to C. The only
remaining choice to make to define C—and therefore F , f , and the cellular isomorphism
λF—is the choice of an orientation-preserving isomorphism λ0 of the combinatorial n-gon
C onto the combinatorial n-gon c. There are exactly n of these up to isotopy, and one may
be distinguished uniquely by the choices of a vertex v of C and a vertex w of c and then
requiring that λ0(v) = w. The combinatorial n-gon C identified naturally as the base face
of F is a fixture of the isomorphism λF since, under this identification, λF (C) = c ⊂ C◦.
The situation for edge and vertex cores is a bit more complicated. In this case, the mapping
λF may have no fixture, but of course the proof of Theorem 4.10 shows that a power m ≤ 6β
of λF will have one.

4.4. A zoo of graphical examples: Supersymmetric expansion complexes and
their combinatorial footprints. In this final section, we illustrate the ideas of the pre-
ceding one by exhibiting various footprints for supersymmetric complexes associated to
the pentagonal subdivision operator τ . In each, we picture the combinatorial footprint C
of F and a snapshot of a finite patch of the conformal tiling T = TF with a polygonal
τk-subdivision. Since the pentagonal rule is dihedrally symmetric, τ is a conformal sub-
division operator, and the combinatorial supersymmetry determined by a footprint may
be realized by a conformal supersymmetry µ, a Möbius transformation of the plane whose
application to the conformal tiling T determined by the footprint conformally subdivides
T , à la Theorem 3.12 and Corollary 4.9.
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C = (C, v; c, w)

Figure 9. The conformal tiling T on the right is sampled in a neighborhood
of the fixed point of its loxodromic supersymmetry µ, which is a conformal
isomorphism of the tiling T with τ2T = µ(T ). The fixed point lies interior
to the small bold-sided pentagonal tile near the center, and the image of the
large bold-sided and shaded pentagon under the supersymmetry is the mid-
sized bold-sided and shaded pentagon, whose image in turn is the small
bold-sided and shaded tile. The tiling T fails to be isomorphic with the
subdivision τT and so has τ -period 2. The tiling arises from the footprint
C = (C, v; c, w) on the left for which C is a pentagonal face core and c is
the shaded pentagon in the interior of the second subdivided complex τ2C.
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Figure 10. In this example, the conformal supersymmetry µ is a contrac-
tion followed by a counterclockwise rotation of angle 2π/3. The fixed point
is the central vertex in the shaded region. In the footprint on the left, the
core C is a vertex core and c is the central vertex core of τC. The τ -period
is 1 and this represents a fixed point of the action of τ̂ on (K).
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C = (C, v; c, w)

Figure 11. This example has a loxodromic supersymmetry of τ -period 2.
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C = (C, v; c, w)

Figure 12. This example has τ -period 2 and the conformal supersymmetry
is a pure contraction toward a fixed point that lies in the horizontal edge
that determines the inner-most bold-sided edge core on the right. The
horizontal line of edges the eye picks out lies along a Euclidean straight line
that serves as a line of Euclidean-reflective symmetry of the tiling.

Department of Mathematics, The Florida State University, Tallahassee, FL 32306

Department of Mathematics, The University of Tennessee, Knoxville, TN 37996


