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Abstract

We associate to a bimonoidal functor, i.e. a bifunctor which is monoidal in each variable, a nonabelian
version of a biextension. We show that such a biextension satisfies additional triviality conditions which
make it a bilinear analog of the kind of spans known as butterflies and, conversely, these data determine
a bimonoidal functor. We extend this result to n-variables, and prove that, in a manner analogous to
that of butterflies, these multi-extensions can be composed. This is phrased in terms of a multilinear
functor calculus in a bicategory. As an application, we study a bimonoidal category or stack, treating the
multiplicative structure as a bimonoidal functor with respect to the additive one. In the context of the
multilinear functor calculus, we view the bimonoidal structure as an instance of the general notion of
pseudo-monoid. We show that when the structure is ring-like, i.e. the pseudo-monoid is a stack whose
fibers are categorical rings, we can recover the classification by the third Mac Lane cohomology of a ring
with values in a bimodule.

Introduction

Let H and G be monoidal stacks in a topos T and F a monoidal functor F : H → G . It is well known that F
can be represented by a special kind of span. More precisely, if the monoidal laws are group-like, or if we
restrict to the invertible objects (restricting to the invertible objects does not affect the characteristic class),
we can find presentations H• for H and G• for G by crossed modules of T so that F is represented by a
diagram of group-objects of the form

H1

��

  

G1

��

~~
E

~~   

H0 G0

where the salient feature is that the sequence G1→ E→H0 of objects of T is an extension of H0 by G1→ G0:
an exact sequence in which the conjugation action of E on G1 is compatible with that of G0 [AN09]. Such
an extension is conveniently described in geometric terms as a G1-bitorsor E over H0, with the property
that one of the actions is obtained by way of the crossed module structure of G• [Bre90]. A converse of this
correspondence is also available, establishing an equivalence between the groupoid of monoidal functors
from H to G and that of diagrams like the one above (a morphism between two diagrams with the same
wings H• and G• is a homomorphism of E→ E′ compatible with all the maps).

One of the main results of this paper is an analogous result for bimonoidal functors F : H ×K → G , that
is, bifunctors which are monoidal in each variable.

The concept of bimonoidal functor requires G to be braided. In addition, F must satisfy a compatibility
condition requiring that applying the monoidal condition on both of its variables in the two possible orders
lead to the same result. (We can think of F as an obvious generalization of a bilinear map, in which case this
condition is trivially satisfied.) This condition is formally equal to the compatibility one between the two
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partial multiplication laws of a biextension [Mum69; Gro72]. Recall that for abelian groups A, B, C of T, a
biextension of B and C by A consists of an A-torsor E over B×C equipped with two partial commutative and
associative product laws, making E, for each generalized point b ∈ B, an extension of C by A, and, similarly,
for each c ∈ C, an extension of B by A. The coincidence between these conditions is not purely formal: the
bilinear point of view is to regard a biextension as providing a bifunctor ϕE : B×C→ Tors(A), which is then
monoidal (i.e. a homomorphism) in each variable. Notable examples are certain duality pairings where, in
particular, C = B∨ and A = Gm [see, e.g. Boy10; Dat10].

Our result begins from a generalization of these ideas, starting with that of biextension. Thus, for two
groups H and K of T, and a braided crossed module (G1,G0), we define a biextension of H,K by (G1,G0)
as a G1-bitorsor (or, more appropriately, using the terminology of [Bre90], a (G1,G0)-torsor) E over H ×K
such that, for each point x ∈ H (resp. y ∈ K), E is an extension of K (resp. of H) by the crossed module
G1 → G0. The braiding is required by the compatibility between the two partial product laws of E. The
relative diagram is formally the same as in the classical situation, with some differences due to the fact that
none of the groups involved is assumed abelian—although the crossed module G1→ G0 and its associated
stack are braided.

Now, let F be a bimonoidal functor F : H ×K → G , where each of K ,H , and G has a presentation
by a crossed module. We show that F determines a biextension of H0,K0 by the crossed module G1→ G0,
equipped with a pair of compatible trivializations for the two pullbacks along the maps ∂× id : H1 ×K0→
H0 ×K0 and id×∂ : H0 ×K1→H0 ×K0. This is what we call, in this context, a butterfly —the bilinear version
of the notion introduced in [AN09; earlier Noo05, over a point]. Viceversa, given a biextension E of (H0,K0)
by G1→ G0, we obtain a bimonoidal functor

ϕE : H0 ×K0 −→ Tors(G1,G0),

where the right hand side denotes the stack of (G1,G0)-torsors equivalent to G , and where H0 and K0, are
interpreted as discrete monoidal stacks. The additional data provided by the two compatible trivializations
allow to conclude that ϕE is compatible with descent along the presentations H0 nH1

//
//H0 → H and

K0 nK1
//
//K0 →K by the groupoids determined by their respective crossed modules, so it determines a

bimonoidal functor FE : H ×K → G . With the obvious notion of morphism, we obtain:

Theorem (Theorem 7.1 in the main text). There is an equivalence of (pointed) groupoids

u : Biext(H•,K•;G•)
∼−→Hom(H ,K ;G ),

where the right hand side denotes the groupoid of bimonoidal functors, and left hand side that of biextensions
equipped with the aforementioned trivializations.

This result is actually valid over a variable object S of T, hence we have a similar statement where
the left and right side above are replaced by the corresponding stacks, which one obtains by letting
S→ Biext(H•|S ,K•|S ;G•|S ), and similarly for the right hand side.

Bimonoidal categories or stacks provide examples of bimonoidal morphisms. If R is bimonoidal, it
has two monoidal structures, say � and �, satisfying an appropriate set of axioms [Lap72b; Lap72a]; the
distributivity one, in particular, says that � is a bimonoidal functor � : R ×R →R with respect to the other
structure, �. Now, assuming � to be group-like (see [BDRR13] for passing from a merely additive monoidal to
a full group-like one, i.e. from “rig” to “ring”) andR to have a presentation of the form R0 nR1

//
//R0 →R

as above, the bifunctor � can be described by a biextension E� of (R0,R0) by R1→ R0. We are interested in
extracting informations aboutR , especially of a cohomological nature such as the characteristic class, from
the biextension E�. Informations of this kind, which reduces to (usually complicated) cocycle calculations,
ordinarily come from the coherence diagrams of �, among others. These diagrams involve morphisms
like � ◦ (�× id) and � ◦ (id×�), which are monoidal in each of the three variables, and higher iterations of
compositions involving � and id. Ideally, each of those multi-functors corresponds to some kind of iteration
of E�. So we need to generalize the representation of bimonoidal functors by biextensions to an arbitrary
number of variables.

Extending the concept of bimonoidal functor to n variables is immediate, the only difference being the
same compatibility condition we have in the n = 2 case must hold for each pair of variables. Therefore, for the
multivariable analog of the right hand side in the above statement, the only substantial difference is in the
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bookeping aspect, and we immediately see that monoidal functors in n variables can be composed—provided
we restrict ourselves to considering braided objects. While this is easy to verify, it has the far-reaching
consequence that braided monoidal categories, or more generally stacks, comprise the 2-categorical analog
of a multicategory [CS10; Shu10] we denote MBGrSt, where BGrSt is the 2-category they form relative to
ordinary unary monoidal functors.

What about the left hand side of the equivalence in the theorem? For that we must extend the concept
of biextension to n variables and investigate whether such objects admit a composition law. We define
a multi-extension, or an n-extension, by G1 → G0 as a (G1,G0)-torsor (same as for biextensions) over an
n-fold product, this time equipped with n partial product laws which are required to be pairwise compatible
in the same manner as those in a biextension. (The generalization of a biextension to n variables, in the
fully abelian context, is outlined in a remark in [Gro72].) Given n crossed modules Hi,• = (∂ : Hi,1→Hi,0),
i = 1, . . . ,n, we are interested in the n-extensions of H1,0 × · · · ×Hn,0 by G1→ G0 which are also equipped with
n compatible trivializations of their pullbacks along each of the n morphisms ∂i = id×· · · ×∂× · · · × id. We
call them n-butterflies. Now, a direct extension of the above theorem (cf. Theorem 9.1 below) provides an
equivalence

MExt(H1,•, . . . ,Hn,•;G•)
∼−→Hom(H1, . . . ,Hn;G )

of pointed groupoids, where each Hi,• is a presentation of the corresponding Hi , and G• of G , the left hand
side is the groupoid of n-extensions, and the right hand side denotes the groupoid of n-monoidal functors
H1 × · · · ×Hn→ G .

The remarkable fact is that these multi-butterflies can be composed in a way reminiscent of the unary
case discussed in [AN09; Noo05], that is by “wing juxtaposition,” which turns out to be associative up
to coherent isomorphism. Wing juxtaposition (we informally use this term thanks to the shape of the
composition diagrams in the unary case) is an operation which allows to associate to butterflies F1, . . . ,Fn,E,
where E is an n-butterfly, a new one, denoted E(F1, . . . ,Fn), whose underlying bitorsor is a quotient of the
pullback of E to the product F1 × · · · ×Fn—each Fi is equipped with an equivariant section with values in the
ith factor in the base of E; the pullback is along the product of these maps. While we will discuss this in more
detail later, the upshot is that braided crossed modules of T now form a bi-multicategory (i.e. bicategorical
analog of a multi-category) of their own if we use these multi-butterflies as morphisms. In addition, the
composition is compatible with the previous equivalence. More precisely, we have:

Theorem (Theorem 10.1, Propositions 10.3 and 10.4, and Theorem 11.3). Braided crossed modules of T,
equipped with the groupoids MExt(H1,•, . . . ,Hn,•;G•) as Hom-categories, form a bi-multicategory MBXMod.
Further, there is an equivalence of bi-multicategories

MBXMod
∼−→MBGrSt,

induced by the associated stack functor, carrying each MExt(H1,•, . . . ,Hn,•;G•) to Hom(H1, . . . ,Hn;G ).

This is the multi-categorical analog of the unary case treated in [AN09], which states the bicategory
BXMod of braided crossed modules, equipped with groupoids of spans as categories of morphisms, is equiv-
alent (as a bicategory) to BGrSt. (In fact the unary version proved therein holds without any commutativity
assumption.)

Returning to the bimonoidal categories mentioned earlier, we can now discuss them from the broader
and more convenient perspective afforded by the idea of a bi-multicategory. If MC is a bi-multicategory, we
informally look into monoids with respect to the multi-composition structure of MC. Formally, we say that
an object X of MC is a (pseudo-)monoid of C, the underlying bicategory of MC, if it is a pseudo-algebra
over the club N, where N, after [Kel72], denotes the natural numbers equipped with the category structure
described in section A; a club is a multicategory with one object.1 The monoidal structure carried by X is of
the “unbiased” kind [Lei04], namely we have an n-ary operation mn : X × · · · ×X→ X for each object n ∈N,
as opposed to a privileged binary one, with the various coherence conditions being taken care of by the
pseudo-algebra structure.

We apply the previous observation to C = BGrSt or C = BXMod. We say that R is weakly ring-like
(for want of a better name) if it is a pseudo-monoid of BGrSt. The “weakly” adverb refers to the fact that

1For the sake of simplicity we are ignoring the “extraordinary” structure given by the action of permutations.
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the underlying categorical group structure ofR is only braided commutative, whereas we usually define
categorical rings as having underlying braided symmetric categorical groups [see e.g. JP07]. Thus “weak”
does not mean “not strict,” but it signals the commutative law of the additive structure ofR is weaker than
usually required.

We make a similar definition for a pseudo monoid in BXMod: this is a novel object comprised of a
braided crossed module R• and multi-extensions En of (R0, . . . ,R0) (n factors) by R1 → R0 for each n ∈ N,
subject to the conditions dictated by the pseudo-algebra structure. We show that even in the realm of a
genuine bicategory such asBXMod, we obtain coherence conditions resembling a weak version of Mac Lane’s
pentagon (see sections B and C, in particular diagram (C.2)).

Since pseudo-monoids are transported across equivalences, pseudo-monoids in BGrSt are presented by
those in BXMod. We have:

Proposition (Proposition 12.5, Proposition 13.1, and Corollary 13.2). Let R be (weakly) ring-like. Let
R0 nR1

//
//R0 →R be a presentation by a braided crossed module. Then is a pseudo-monoid in BXMod. Further-

more, if A = π0(R ) ' coker∂ and M = π1(R ) ' ker∂, then A is a (possibly non-unital) ring of T and M is an
A-bimodule. The converse also holds.

The A-bimodule structure on M is of course a standard fact. Observe that the presenting crossed module
is far from being internal to (non-unital) rings of T. This in particular holds for ordinary categorical rings,
which are resolved by symmetric crossed modules carrying multi-extensions encoding the ring structure.

We may ask whether the weakly ring-like structure is strong enough to force the underlying braiding
to become symmetric. The answer is affirmative, at least in the more interesting (to us) case where the
multiplicative structure has a unit object. As we shall see, this is tied to the seemingly unrelated problem of
computing a characteristic class for weakly categorical rings.

Our procedure is a bit nonstandard in two aspects. The first is that to compute the class corresponding
toR we only choose local data for the underlying braided group-like structure ofR , or which is the same
thing, for the presentation. We compute the rest of the cocycle from the pseudo-monoidal structure carried
by the presentation, by examining the biextension’s behavior with respect to the chosen local data.

The second aspect is that we choose to initially dispense with the symmetry condition, therefore we
start with a choice of local data for the underlying braided group-like structure of R . This yields an
invariant in the Eilenberg Mac Lane group H4(K(A,2),M), lifting to H5(K(A,3),M) if braiding is symmetric
[JS93; Bre99].2 In fact the initial choice for the local data steers the computation into being based on the
Eilenberg Mac Lane iterated bar construction [EM53; EM54], in place of the more customary Mac Lane’s
Q-construction. (In the stack context, the iterated bar construction emerges as part of the decomposition of
R as a gerbe over A, together with its additional braiding structure [Bre94; Bre99].)

Over a point, a standard categorical ring gives rise to an element in the third Mac Lane cohomology
group HML3(A,M) [JP07; see also Lod98, chap. 13, for general definitions], so the question is whether our
procedure yields anything standard, and in particular the expected invariant in HML3(A,M).

That is does, at least in the important unital case, is due to the fact that, by [Mac58, §11], the third
Mac Lane cohomology can also be computed by employing the infinite bar construction B∞(A)B B(A,1) ⊆
B(A,2) ⊆ · · · instead of the cubical complex Q(A).3 One needs a product structure on B∞(A), explicitly up to
degrees corresponding to the subcomplex B(A,2), to use in the multiplicative bar construction. It follows
that we can plug one of B(A,2), B(A,3), or B∞(A) to calculate a cohomology of A with values in the bimodule
M. In the unital case, all these choices give rise to isomorphic cohomologies. The product structure on
B(A,2), which is unusual, is explicitly given in Mac Lane’s work. We recover that product, and hence the rest
of the structure, directly from the pseudo-monoidal structure attached to the presentation ofR , namely the
biextension plus the various compatibility conditions it satisfies.

We do not obtain the representing cocycle for the class of R in the form corresponding to class in
HML3(A,M) right away. Instead, we find that the class of R is represented by a twisted cocycle in the
multiplicative bar resolution for B(A,2), but the twisting disappears in the unital case, which yields the
desired result. In particular this implies that the braiding is necessarily symmetric. More precisely, we have:

2In a general topos we should interpret them as hypercohomology groups. See the discussion in [Bre70, §2; Bre94, §7; Bre99, §6].
3Recall that classically MacL̃ane cohomology is defined as the Hochschild cohomology of the complex Q(A). The latter computes the

stable homology of the Eilenberg-Mac Lane spaces, that is, Hq(Q(A)) 'Hn+q(K(A,n)), n > q.
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Theorem (Theorem 14.1). There is a bijective correspondence between equivalence classes of weak ring-like stacks
R , with A = π0(R ) and M = π1(R ), and twisted classes in H̃3

2 (A,M) defined below (cf. Definition 14.6). In
the unital case, i.e. when the external monoidal structure ofR has a unit element, A is likewise unital and the
underlying braiding ofR is necessarily symmetric. Hence the weak ring-like structure ofR is fully ring-like, and
[R ] ∈ H̃3

2 (A,M) 'HML3(A,M).

Hence, unital categorical rings in the sense of the present paper are categorical rings tout-court and, by
[Mac58], we re-obtain their classification in terms of HML3(A,M). (Had we chosen to work with braided
symmetric objects from the beginning there is little doubt the same procedure—i.e. a decomposition of the
underlying group-like stack followed by an analysis of the attached biextension—would have yielded a
Mac Lane cocycle in the right group right from the start. However, the interest was to test to what extent our
framework successfully captured the standard theory, not to just reproduce known facts.)

Organization of the material

We have collected various preliminary items in section 1, including a quick review of standard biextensions.
The recapitulation of the relation between group-like stacks and their presentations by crossed modules,
though standard, involved a contravariance issue which becomes relevant, therefore we provided a brief
outline.

Aside from the preliminary section, we can divide the rest in roughly three parts, plus another containing
some appendices.

We develop the generalization of biextensions and their symmetry properties in sections 2 to 5, and the
butterfly special kind, including the representation of bimonoidal functors, from section 6 to 8.

The extension to an arbitrary number of variables takes sections 9 to 11. In particular, the composition
of butterflies is discussed in section 10. The bi-multicategories comprised by braided group-like stacks on
one side, and braided crossed modules of T on the other, are discussed in section 11.

The idea of categorical ring, or ring-like stack, and its presentation as a pseudo-monoids in their
respective bicategories is expounded in sections 11 and 13, where we also discuss some specific facts about
the presentations. In section 14 we discuss the cohomology of rings and the computation of the characteristic
class.

To avoid unnecessary and possibly long detours, parts of the material have been placed in a number
of appendices. Some of this material is necessary for self-consistency but known to the experts. Thus,
bi-multicategories are discussed in appendices A and B, the analog of the pentagon in a bicategory in C, and
finally appendix D contains just some technical lemmas pertaining to section 5.

What to read

One possibility is to only read Part I, possibly followed by Part III if the reader is willing to only skim through
Part II. For the latter, it is possible to just read the statements, in particular for the n-fold composition
of multi-extensions theorem proved in sect. 10. A detailed proof is included because the juxtaposition
product has features similar to the unary case discussed in [AN09] and [Noo05], but its proof must rely
on geometrical, rather than group-theoretical, techniques, which makes it not an obvious generalization
of the one used in the references. It seems quite possible to just read Part III, in particular section 14, by
only skimming through the previous two. Parts II and III depend the multivariable functor calculus in a
bicategory, an account of which is contained in the first two appendices, which may only be referred to when
needed. Most their content should be known to the experts. An account of what the pentagonal axiom would
look like in a bicategory is contained in Appendix C, and in general a reader will need only equation (C.1)
and diagram (C.2).

Notations and conventions

The convention we use is to equate “additive” with “monoidal,” therefore the term “biadditive” means
“bimonoidal” in the sense used above in the introduction. By extension, “n-additive” means “n-monoidal,”
i.e. monoidal in each of the n-variables.
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A notation of the form G• or G denotes a crossed module (G1,G0,∂), where ∂ : G1→ G0 is the homomor-
phism, and the (right) action is denoted element-wise by (x,g) 7→ gx, but is not otherwise labeled. Very often
we will simply write (G1,G0).

For ease of notation we will often use the convention: (G1,G0) � (G,Π) and, later in the paper, (R1,R0) �
(R,Λ) when we discuss ring-like structures.

Up to section 12, all monoidal structures are notated multiplicatively, with I denoting the identity object.
We switch to an additive notation for one of the two monoidal structures in a bimonoidal situation. In that
case, the identity object is 0. If this is the structure for which we construct a presentation by a crossed
module, then we use an additive notation for the groups in the crossed module, even though they are by no
means assumed commutative.
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Part I

1 Preliminaries

In the following, let T be a topos which is assumed to be Sh(C) for a site C. For the reader’s convenience we
recall some well know facts on monoidal stacks and their relations with crossed modules of T.

1.1 Group-like stacks, crossed modules, and bitorsors

We follow [Bre90; AN09], to which we refer for further details. A crossed module of T consists of a group
homomorphism ∂ : G→Π of T and a right action ofΠ on G such that: (1) ∂ is a morphism of rightΠ-objects,
with Π acting on itself by conjugation; (2) the action of G on itself induced by the Π-action via ∂ coincides
with conjugation. If g,h are (generalized) points of G and x of Π we have the familiar conditions:

∂(gx) = x−1∂(g)x

g∂(h) = h−1 g h,

where the exponent notation denotes the action.
The crossed module G gives rise to a groupoid Γ : ΠnG //

//Π , and hence, via the nerve construction, to
a simplicial group NG whose object in degree p is (· · · (ΠnG)n · · · nG (p factors). The groups π1 = ker∂
and π0 = coker∂ are the homotopy (sheaves of) groups of G• are in fact the only two nonzero homotopy
sheaves of NG. It is easily verified that π1 is abelian and central in G and that π0 is the sheaf of connected
components of the groupoid corresponding to G (and hence of NG).

The group laws of G and ΠnG equip the groupoid Γ with a structure of strict categorical group, that is,
a morphism

m : Γ × Γ −→ Γ

of groupoids satisfying the usual axioms of a group-like, strict monoidal category [see also JS93].
The associated stack construction performed on Γ yields a stack G of T, which inherits the—now

lax—group-like structure. Thus, G is a monoidal stack, in the sense that there exists a stack morphism

m : G ×G −→ G ,

and an associator µ : m ◦ (m× 1)⇒m ◦ (1×m) satisfying the axioms of a monoidal category. We specify the
rest of the group-like structure by requiring the existence of a unit object I , which we can identify with a
morphism I : e→ G (where e is the terminal object of T), and that left and right-multiplications by a fixed
object x induce functorial equivalences

m(x,−) : G −→ G m(−,x) : G −→ G .
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The group-like stack obtained in this way from a crossed module will be denoted [∂ : G→Π]∼.
There is a compelling geometric picture for the associated stack obtained in this way from a crossed

module. Recall the stack Tors(G,Π) is the stack of right G-torsors P whose structure group extension P ∧GΠ
is isomorphic to the trivial torsor [see Del79]. Equivalently, an object of this stack is a pair (P ,s) where P is a
G-torsor and s : P →Π a G-right-equivariant morphism, where G acts on Π on the right via multiplication.
Objects of Tors(G,Π) are called (G,Π)-torsors. The notion makes sense for each group homomorphism, but
if ∂ : G→Π is a crossed module, then Tors(G,Π) becomes group-like. Indeed, each torsor is also equipped
with a left G-action defined by

gu = ugs(u),

where u ∈ P and g ∈ G, which makes it into a G-bitorsor. The monoidal structure is given by the contracted
product

m((P ,s), (Q,t)) = (P ∧GQ,st),
and it is easily proved to be group-like. Finally, the stack Tors(G,Π) is equivalent, as a group-like stack, to
[∂ : G→Π]∼, obtained via the associated stack construction described above.

Conversely, for any group-like stack G there exists a presentation by a crossed module, namely there
exists a crossed module G = (G,Π,∂) and an equivalence G ' [∂ : G→Π]∼. For any group-like stack G we
can define π1 = AutG (I), and π0 as the sheaf associated to the presheaf of connected components. Upon
choosing a presentation, its homotopy sheaves are isomorphic to the ones of G .

In view of the previous geometric interpretation, G is also equivalent to Tors(G,Π). In addition, the
sequence

(1.1) G
∂ //Π

π //G ,

where each object is regarded as a stack, is exact in a homotopical sense. If G is identified with Tors(G,Π),
the projection Π→ G sends x ∈Π to the bitorsor (G,x), that is the trivial right G-torsor whose left action on
itself is given by g ·u = gxu, with u,g ∈ G. (This follows from the fact that x is identified with the equivariant
section that assigns x to the unit section eG.) In particular, (G,eΠ) can be identified with the unit object of G .

1.1 Remark. Since a morphism ϕ : (P ,s)→ (Q,t) in Tors(G,Π) has the form

P

s ��

ϕ
// Q

t��
Π

it immediately seen the equivalence

[∂ : G→Π]∼ −→ Tors(G,Π)

is contravariant. In particular, if g : x→ x′ is a morphism in the strict categorical group Γ , that is, x′ = x∂g,
the corresponding morphism of (G,Π)-torsors is (G,x′)→ (G,x).4

A morphism of group-like stacks is a stack morphism F : H → G preserving the monoidal structure. A
morphism of crossed modules determines one between the associated group-like stacks in the obvious way.
In the converse direction, a morphism F : H → G only determines a morphism in the homotopy category
between corresponding crossed modules. This morphism can be represented by a butterfly, namely a
diagram of group objects of T of the form:

H

∂

��

σ
��

G

∂

��

ı
��

E
π
��



��

Σ Π

(where the vertical arrows are crossed modules) from which a fraction representing the morphism F : H → G
can be obtained (see loc. cit. and below for more details).

4There appears to be no good way to get around the issue. A “fix” is to replace the crossed module with a left one. This restores the
expected direction of the arrows, at the cost of turning one of the monoidal laws into the opposite one [see e.g. Bre90, after Théorème
4.5].
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1.2 Braidings

A braided crossed module, [see JS93; AN09], is a crossed module G = (G,Π,∂) equipped with a bracket

{−,−} : Π×Π −→ G

such that ∂{x,y} = y−1x−1yx, for all points x,y of Π. The bracket satisfies:

(1.2)
{x,yz} = {x,y}z{x,z}, {x,∂h} = h−1hx,

{xy,z} = {y,z}{x,z}y , {∂g,y} = g−yg,

for all x,y,z ∈ Π and g,h ∈ G. These properties all arise from the observation that the bracket {−,−}
corresponds to a braiding in the usual sense for the categorical group determined by G•. Thus cx,y = {x,y}
gives a family of functorial isomorphisms

cx,y : xy −→ yx

for each pair (x,y) of objects in Γ , so that c : m ◦ τ ⇒ m : Γ × Γ → Γ , where τ is the interchange functor.
The properties above can be derived from functoriality and Mac Lane’s hexagon diagrams. Conversely, if
Γ is a braided strict categorical group, setting {x,y} = y−1x−1cx,y : e→ y−1x−1yx defines a braiding on the
corresponding crossed module.

The braiding is symmetric if it has the property that {y,x} = {x,y}−1 for all x,y ∈Π. A symmetric braiding
is Picard if in addition it satisfies the condition {x,x} = e. These conditions match the corresponding ones for
the categorical group Γ . As observed in Breen [Bre94, §1], for a Picard crossed module the bracket is a full
lift of the commutator map.

The braided, symmetric, and Picard structures translate in the expected manner to the associated
group-like stack G ' [∂ : G→Π]∼, and conversely, if G is a braided (resp. symmetric, Picard) stack with
presentation given by [∂ : G→Π], then the latter acquires a braided (resp. symmetric, Picard) structure as
above. Let us observe here that a braiding on G = Tors(G,Π) induces one on the crossed module by way
of the butterfly representing the morphism m : G ×G → G . In the Picard case this leads to two possible
presentations: by a braided crossed module satisfying the Picard condition, or, according to Deligne [Del73],
by a length-one complex of abelian sheaves. We refer the reader to [AN09, §7] for full details on this
correspondence. Here we limit ourselves to observe that if (P ,s) and (Q,t) are two (G,Π)-torsors, the choice
of two sections u ∈ P and v ∈ Q allows us to write the braiding morphism cP ,Q : P ∧G Q → Q ∧G P as
cP ,Q(u ∧ v) = (v ∧ u)χu,v , where χ : P ∧G Q → G, is a coordinate representation of cP ,Q subject to certain
equivariance conditions dictated by the requirements:

cP ,Q(gu ∧ v) = g cP ,Q(u ∧ v),

cP ,Q(ug ∧ v) = cP ,Q(u ∧ g v),

cP ,Q(u ∧ vg) = cP ,Q(u ∧ v)g.

1.2 Lemma. The coordinate χ : P ∧GQ→ G has the expression:

(1.3) χu,v = {s(u), t(v)}−1.

Proof (Sketch). The relation (1.3) is immediate for (P ,s) = (G,x) and (Q,t) = (G,y), where x,y ∈ Π, using
Remark 1.1. The general case follows by descent by exploiting the equivariance conditions for χ and for
{−,−} recalled above.

1.3 Biextensions

Biextensions were introduced in Mumford [Mum69], and later reexamined by Grothendieck [Gro72]. We
refer to the latter and the text by Breen [Bre83] for details on the standard concept of biextensions. We
briefly recall the basic definitions, and later extend them to introduce crossed modules as coefficients.
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LetH , K , G be groups of T, with G assumed to be abelian. A biextension ofH , K by G is a GH×K -torsor E
on H ×K equipped with two partial composition laws ×1 (resp. ×2) making E a central extension of HK (resp.
KH ) by GK (resp. by GH ). These composition laws are required to be compatible with one another. Usually
one also requires ×1 and ×2 to be commutative, which make sense whenever H and K are abelian. Our
definition, in which ×1 and ×2 are not required to be commutative is then referred to as a weak biextension.
Even when H and K are commutative, this notion of biextension is weaker than that of loc. cit. in which the
partial multiplication laws are commutative.

Analogously to extensions, the composition laws can be represented by morphisms of G-torsors. Let
BH and BK be the standard classifying simplicial objects of T.5 The bisimplicial object BH × BK has
face maps dh and dv [see e.g. GJ99]. In particular, for i = 0,1,2 we consider dhi : H ×H ×K → H ×K and
dvi : H ×K ×K →H ×K . Then ×1 and ×2 correspond to morphisms of G-torsors

γ1 : dh2
∗
E ∧G dh0

∗
E −→ dh1

∗
E(1.4a)

and

γ2 : dv2
∗E ∧G dv0

∗E −→ dv1
∗E.(1.4b)

The associativity and commutativity diagrams for γ1 and γ2 are the obvious ones. More interesting is the
compatibility condition of the two structures, which can be expressed as follows.

Let Eh,k be the fiber of E over a generalized point (h,k) of H ×K . Then the compatibility condition reads

(1.5)

Eh,kEh′ ,kEh,k′Eh′ ,k′ //

γ1
h,h′ ;kγ

1
h,h′ ;k′

xx

Eh,kEh,k′Eh′ ,kEh′ ,k′

γ2
h;k,k′γ

2
h′ ;k,k′

&&

Ehh′ ,kEhh′ ,k′

γ2
hh′ ;k,k′ **

Eh,kk′Eh′ ,kk′

γ1
h,h′ ;kk′tt

Ehh′ ,kk′

where we have suppressed the torsor contraction symbol. The horizontal arrow is the canonical symmetry
map swapping the factors in Tors(G), which exists whenever G is abelian. A more intrinsic way to express
the same thing is to observe that the above compatibility condition amounts to the equality

(1.6) γ2
dh1
∗
E
◦ (dv2

∗γ1dv0
∗γ1) = (1× c × 1) ◦γ1

dv1
∗E ◦ (dh2

∗
γ2dh0

∗
γ2)

as morphisms from (dh0d
v
2 )∗E∧(dh2d

v
0 )∗E∧(dh0d

v
0 )∗E∧(dh1d

v
1 )∗E to (dh1d

v
1 )∗E overH×H×K×K . c is the symmetry

morphism which swaps the two terms in the middle.
With the straightforward notion of morphism, when H , K are also abelian, biextensions of T form a

Picard category Biext(H,K ;G). The relative version of it, where we consider the various Biext(HS ,KS ;GS )
over a variable base S, is a Picard stack, denoted Biext(H,K ;G). As observed in Grothendieck [Gro72] and
Breen [Bre83], Biext(H,K ;G) is biadditive in all three variables.

1.4 Schreier-Grothendieck-Breen theory of extensions

It is well-known that an extension E of K with a possibly nonabelian kernel G determines a morphism
 : E→ Aut(G) from the action of E on G by conjugation [see, e.g. Mac95]. A refinement of this situation
is when G is part of a crossed module ∂ : G → Π. Since part of the crossed module data is precisely
a homomorphism Π → Aut(G), an extension of K by that crossed module, or by (G,Π) for short, is a
commutative diagram of group objects of the form [Bre90, §8]

1 // G
ı //

∂
��

E
p
//


��

K // 1

Π

5That is, BH = NH[1], where H[1] is the groupoid with a single object e and Aut(e) =H .
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where the row is exact and ı(g)e = eı(g(e)), for points g of G and e of E. An equivalent characterization is that
E is a (G,Π)-torsor over K such that the equivariant morphism structural morphism toΠ is a homomorphism.
By loc. cit. and [AN10], such an extension corresponds to a group-like stack morphism F : K → [G→Π]∼,
where K is identified with the (discrete) group-like stack. In this sense the above diagram is a butterfly
representing this morphism.

In all these characterizations the morphism  arises as the structural equivariant section of the (G,Π)-
torsor, whereas ı is the identification G ' E1, where the (G,Π)-torsor E1, isomorphic to the unit one, is the
fiber over the unit section of K . This identification is explicitly given as ı(g) = g e0 = e0 g, where e0 is the
central section of E1 corresponding to the unit section of G. Since  is a homomorphism, we obtain the
commutativity of the “wing” in the diagram above. The conjugation property satisfied by ı and  reflects
the structure of (G,Π)-torsor of E. The product structure of E is encoded by a 1-cocycle of (G,Π)-torsor
isomorphisms

γk,k′ : Ek ∧G Ek′
∼−→ Ekk′ ,

satisfying the standard associativity condition [Gro72; Bre90; AN10]. In particular, we have that ı(g)e (resp.
eı(g)), product in E, agrees with the left (resp. right) G1-action on E.

2 Biadditive morphisms

If H,K,G are groups of T, a biadditive (or bimultiplicative) morphism is a map f : H ×K → G which is a
homomorphism in each variable. For abelian groups this is none other than a Z-bilinear morphism.

More generally, if H, K, and G are categories, which we assume to be group-like, we say that a bifunctor
is biadditive (or bimultiplicative) if it is monoidal in both variables, in a compatible way.6 For this, we
must also assume G be endowed with a braiding c. More precisely, we have:

2.1 Definition. A bifunctor F : H×K→G is biadditive if:

1. it has the structure of additive functor with respect to each variable, namely there exist functorial
(iso)morphisms

λ1
h,h′ ;k : F(h,k)F(h′ , k) −→ F(hh′ , k) and λ2

h;k,k′ : F(h,k)F(h,k′) −→ F(h,kk′)

satisfying the standard associativity conditions and compatibility with the braiding of G;

2. for all objects h,h′ of H and k,k′ of K we have a functorial commutative diagram

(2.1)

(
F(h,k)F(h′ , k)

)(
F(h,k′)F(h′ , k′)

) ĉ //

λ1
h,h′ ;kλ

1
h,h′ ;k′

��

(
F(h,k)F(h,k′)

)(
F(h′ , k)F(h′ , k′)

)
λ2
h;k,k′λ

2
h′ ;k,k′

��

F(hh′ , k)F(hh′ , k′)
λ2
hh′ ;k,k′

// F(hh′ , kk′) F(h,kk′)F(h′ , kk′)
λ1
h,h′ ;kk′

oo

where the upper horizontal arrow is the “commuto-associativity” morphism

(xy) (zw) −→ (xz) (yw)

arising from the braiding of G (an explicit definition can be found in [JP07]);

3. the two morphisms F(IH, IK)→ IG that can be deduced from the first condition coincide.

The second condition ensures that the two possible ways to compute F(hh′ , kk′) agree. The obvious
similarity with Diagram (1.5) will be exploited below.

6A better choice would be to use “bi-monoidal” in place of biadditive. The latter is motivated by continuity with the naming
convention in [AN09], where morphisms between gr-stacks are called additive—a convention derived from the particular but significant
Picard case.
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The definition can be extended to the case where all three categories are braided. In this case, we add
to the biadditivity the condition that F be braided in each variable, namely that the following diagrams
commute:

F(h,k)F(h′ , k) λ1
//

cF,F
��

F(hh′ , k)

F(c,k)
��

F(h′ , k)F(h,k)
λ1
// F(h′h,k)

and

F(h,k)F(h,k′) λ2
//

cF,F
��

F(h,kk′)

F(h,c)
��

F(h,k′)F(h,k)
λ2
// F(h,k′k)

A natural transformation ϕ : F ⇒ F′ between two biadditive morphisms is a natural transformation of
bifunctors such that in each variable the conditions to be a natural transformation of additive functors are
satisfied. We denote by Hom(H,K;G) the resulting groupoid of biadditive morphisms.

It is clear that the same definitions can be stated in the case of group-like stacks as opposed to categories.
Similarly to the pointwise case, we obtain a groupoid Hom(H ,K ;G ) of biadditive morphisms. For the latter,
by way of a standard process of restricting to variable base S, we obtain a stack Hom(H ,K ;G ) arising from
the various fiber categories S→Hom(H |S ,K |S ;G |S ).

3 Biextensions by braided crossed modules

We extend the notion of biextension by adapting it to include braided crossed modules as coefficients.
Let G = (∂ : G→Π, {·, ·}) be a braided crossed module of T, and let H , K be groups of T.

3.1 Definition. A biextension ofH , K by (G,Π) is a (G,Π)H×K -torsor E overH×K equipped with two partial
composition laws ×1 (resp. ×2) making E into an extension ofHK (resp. KH ) by (G,Π)K (resp. by (G,Π)H )—cf.
sect. 1.4. We require the composition laws to be compatible in the manner described by a diagram formally
identical to (1.5) in sect. 1.3.

To be precise, in the last condition of the above definition we must specify that the horizontal arrow in
diagram (1.5), adapted to the present case,

(3.1) ĉ : (Eh,k ∧G Eh′ ,k)∧G (Eh,k′ ∧G Eh′ ,k′ ) −→ (Eh,k ∧G Eh,k′ )∧G (Eh′ ,k ∧G Eh′ ,k′ )

is given by the braiding of the stack G = [∂ : G→ Π]∼ in a manner analogous to the horizontal arrow of
diagram (2.1) in Definition 2.1. A global version of the compatibility condition is given by equation (1.6).

The two partial composition laws give rise to morphisms of (G,Π)-torsors

γ1
h,h′ ;k : Eh,k ∧G Eh′ ,k

∼−→ Ehh′ ,k

and

γ2
h;k,k′ : Eh,k ∧

G Eh,k′
∼−→ Eh,kk′

each satisfying the obvious associativity condition, relative to the relevant variables, which can be obtained,
mutatis mutandis, from [refs. Gro72; Bre83]. Again, a global version is given by (1.4).

The morphism (3.1) can be explicitly computed through the braiding of G as follows.

3.2 Proposition. Let u,u′ ,v,v′ be points of Eh,k ,Eh′ ,k ,Eh,k′ , and Eh′ ,k′ , respectively. Then we have

(3.2) (u ×1 u
′)×2 (v ×1 v

′) = (u ×2 v)×1 (u′ ×2 v
′) {f (u′), f (v)}−f (v′),

where f is the equivariant section into the trivial Π-torsor.

Proof. Use Lemma 1.2 to express the morphism Eh′ ,k ∧G Eh,k′ → Eh,k ∧G Eh′ ,k . The right action by f (v′) arises
from the relation between the left and right G-torsor structures of E.
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3.3 Example. A standard biextension E of H,K by G (all groups assumed commutative) is a biextension
in the sense specified above with coefficients in the complex G[1] : [G→ 0]. The interchange law, when
expressed in terms of points, takes the standard form

(u ×1 u
′)×2 (v ×1 v

′) = (u ×2 v)×1 (u′ ×2 v
′).

Dropping the commutativity of the partial multiplication laws, E becomes a biextension of the sort mentioned
in the “variants” in [Gro72]. For such a biextension each extension determined by the partial multiplication
laws is a central extension.

3.4 Remark. We do not require the partial multiplication laws to be commutative, even if the groups H and
K are. It is not difficult to verify that if we do require the multiplication laws to be commutative, G becomes
abelian and ∂ : G→Π factors through zero, hence the biextension reduces to one of the type mentioned in
Example 3.3 above. See however below for a more appropriate notion of commutativity.

3.5 Definition. A morphism of biextensions ofH,K by (G,Π) is a morphism of the underlying (G,Π)-torsors
compatible with the partial composition laws.

The compatibility with the composition laws means that there are commutative diagrams of (G,Π)-torsors

Eh,k ∧G Eh′ ,k

ϕ∧ϕ
��

γ1
// Ehh′ ,k

ϕ

��

E′h,k ∧
G E′h′ ,k γ ′1

// E′hh′ ,k

and

Eh,k ∧G Eh,k′

ϕ∧ϕ
��

γ2
// Eh,kk′

ϕ

��

E′h,k ∧
G E′h,k′ γ ′2

// E′h,kk′ .

The trivial biextension is I = (GH×K , eΠ). More generally, a biextension will be considered trivial if it is
isomorphic, in the sense specified above, to the trivial one.

With the above notion of morphism, biextensions of H,K by G form a pointed groupoid Biext(H,K ;G). A
standard argument based on descent shows that over a variable base S, the collection of all Biext(HS ,KS ;GS )
forms a stack, equally pointed, denoted Biext(H,K ;G). The question of whether either of Biext(H,K ;G) and
Biext(H,K ;G) possess a monoidal structure is more delicate, and it will require additional commutativity
properties from G, as discussed below.

The groupoid Biext(H,K ;G) is evidently additive with respect to the last variable, namely

Biext(H,K ;G1 ×G2) ' Biext(H,K ;G1)×Biext(H,K ;G2),

and the same holds for Biext(H,K ;G). Additivity on the other two variables relies on the commutativity of
the partial multiplications for the same reason as [Bre83, §1.2], hence it will not hold in our case.

Biextensions by (G,Π) have certain structural properties analogous to those of extensions reviewed in
sect. 1.4, more precisely, we have:

3.6 Lemma. If E→H ×K is a biextension of H , K by (G,Π), then E is equipped with a map  : E→Π which is a
homomorphism for each partial composition law. For all points e ∈ Eh,1, or e ∈ E1,k , and g ∈ G we have the relation

(3.3) ı(g)e = eı(g(e)).

and the diagram

(3.4)

G

∂
��

ı // E
p
//


��

H ×K

Π

commutes, where ı is the identification (G1, eΠ)
∼→ E1,1 as (G,Π)-torsors.
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The identification of the fiber E1,1 above the unit (eH , eK ) ofH ×K with the unit torsor I = (G,eΠ) amounts
to the definition of exactness of the row in (3.4).

Proof. The arguments are virtually the same as those of [Gro72], except for the part concerning the morphism
. Following loc. cit., we can use the facts about extensions recalled in sect. 1.4 by working over the terminal
object K (resp. H) when we view E as an extension of HK (resp. KH ) by (G,Π)H (resp. (G,Π)K ).

With this in mind, let f = (,p) : E→ΠH×K , with  : E→Π, be the equivariant morphism which is part of
the (G,Π)H×K -torsor structure. As an extension of HK by (G,Π)K , E has a structure of (G,Π)K ×K HK -torsor
overHK , hence f : E→ΠK×KHK 'Π×H×K is written as f = (K ,p), where K : E→ΠK . We have K = (,pK ),
where pK (resp. pH ) is the composite of p with the projection to K . A similar picture holds by exchanging H
with K . Since K and H are homomorphisms for the corresponding product structure,  is a homomorphism
for both.

Let eH/K = (eH , idK ) be the unit section ofHK and eK/H = (idH , eK ) that of KH . Since the fibers E1,k = e∗H/KE
and Eh,1 = e∗K/HE are respectively identified with GK and GH as (G,Π)-torsors, we have the unit section eE/K
(resp. eE/H ) in E1,k (resp. Eh,1). Now let E1,1 = (eH , eK )∗E be the fiber over the unit section (eH , eK ) of H ×K .
This is the common pullback of both E1,k and Eh,1. The same argument as in [Gro72, §2.2] shows that the
restriction eE/K and eE/H to (eH , eK ) agree, so let eE ∈ E1,1 be their common value. From [Gro72, §2.1] eE is
central, since both eE/K and eE/H are, and we define ı by ı(g) = g eE = eE g. Note, ı is the common restriction
of ıK and ıH respectively defined by eE/K and eE/H .

Analogously to the case of extensions, the commutativity of the “wing” in (3.4) follows from the equivari-
ance of f , and hence of , having observed that (eE) must be equal to the unit of Π. Finally, the relation (3.3)
follows from the definition of the bitorsor structure underlying that of a (G,Π)-bitorsor (cf. the end of
sect. 1.1).

3.7 Remark. In the converse direction to Lemma 3.6 a biextension of H,K by (G,Π) can be recovered from
the datum (E,×1,×2, ı, ), where p : E→H ×K is an object of T/H×K equipped with two partial composition
laws satisfying the interchange law, and ı and  satisfy the conditions of the lemma.

If E′ is a second biextension, with maps ı′ : G→ E and ′ : E→Π satisfying the conditions of Lemma 3.6,
a biextension morphism ϕ : E→ E′ makes the following diagram

G

ı′

��

∂
��

ı // E
ϕ
//


��

E′

′ooΠ

commutative.
For a biextension which is globally of the form (GH×K ,x), where x : H ×K →Π characterizes the equivari-

ant structural morphism, we obtain a decomposition in terms of a pair of nonabelian cocycles, which we
briefly describe.

The partial multiplication laws are described by

(h,k,a)(h′ , k,a′) = (hh′ , k,g1(h,h′ ;k)ax(h′ ,k)a′),(3.5a)

(h,k,b)(h,k′ ,b′) = (h,kk′ , g2(h;k,k′)bx(h,k′)b′).(3.5b)

The actions stem from the change from right to left action,

(h,k,a)(h′ , k,a′) = ((h,k,eG)a)(h′ , k,a′) = (h,k,eG)(a(h′ , k,a′)) = (h,k,eG)(h′ , k,ax(h′ ,k)a′),

and similarly for the other one. From the associativity property and the fact that the equivariant section
GH×K →Π must be a homomorphism for both laws, we find that (g1, g2,x) must satisfy a pair of nonabelian
cocycle conditions:

g1(hh′ ,h′′ ;k)g1(h,h′ ;k)x(h′′ ,k) = g(h,h′h′′ ;k)g1(h′ ,h′′ ;k)(3.6a)

x(h,k)x(h′ , k) = x(hh′ , k)∂g1(h,h′ ;k)(3.6b)

14



and

g2(h;kk′ , k′′)g2(h;k,k′)x(h,k′′) = g2(h;k,k′k′′)g2(h;k′ , k′′)(3.6c)

x(h,k)x(h,k′) = x(h,kk′)∂g2(h;k,k′)(3.6d)

The cocycles (g1,x) and (g2,x) are not independent: from the compatibility between the partial multiplication
laws, using Proposition 3.2, we find:

(3.7) g2(hh′ ;k,k′)g1(h,h′ ;k)x(hh′ ,k′)g1(h,h′ ;k′) =

g1(h,h′ ;kk′)g2(h,k,k′)x(h′ ,kk′)g2(h′ ;k,k′){x(h′ , k),x(h,k′)}−x(h′ ,k′).

These cocycles are a coboundary if there exists u : H ×K → G such that:

u(hh′ , k)g1(h,h′ ;k) = u(h,k)u(h′ , k)(3.8a)

u(h,kk′)g2(h;k,k′) = u(h,k)u(h,k′)(3.8b)

x(h,k) = ∂u(h,k).(3.8c)

4 Biadditive morphisms and biextensions

Let E be a biextension of H,K by (G,Π). Then E defines a biadditive morphism

FE : H ×K −→ G ,

in the sense of Definition 2.1, where G is the group-like associated stack, by assigning to a point (h,k) ∈H×K
the (G,Π)-torsor Eh,k . Indeed, it is easily seen that the isomorphisms γ1 and γ2 plus the compatibility of
the two composition laws expressed by (1.5) satisfy the required conditions. It is also easily verified that a
morphism of biextensions ϕ : E→ E′ induces a natural transformation (denoted with the same symbol)

ϕ : FE ⇒ FE′ : H ×K −→ G .

This establishes a functor
u : Biext(H,K ;G) −→Hom(H,K ;G ),

and in fact one between stacks
u : Biext(H,K ;G) −→Hom(H,K ;G ),

These functors are evidently fully faithful. In the converse direction, we have:

4.1 Proposition. Let F : H×K → G be a biadditive morphism, and let G have a presentation by way of the braided
crossed module G = (G,Π,∂, {·, ·}). Then the pullback of the sequence (1.1) along F determines a biextension E = EF
of H,K by G.

Proof. Let E = (H ×K) ×G Π be the pullback. Set p : E → H ×K (resp.  : E → Π) equal to the first (resp.
second) projection. We claim that E is a biextension of H,K by G.

The sequence (1.1) can be seen as the universal extension by (G,Π). In particular, Π can be identified
with the universal G,Π)-torsor (the identity idΠ is tautologically the structural equivariant section). This
makes apparent that the pullback to H × K is a (G,Π)-torsor with structural map . As for the partial
multiplication laws, observe that, with the same notation as sect. 1.3, the biadditivity of F amounts to a pair
of natural transformations

(F ◦ dh2 ) (F ◦ dh0 ) =⇒ (F ◦ dh1 ) : H ×H ×K −→ G , (F ◦ dh2 ) (F ◦ dh0 ) =⇒ (F ◦ dh1 ) : H ×K ×K −→ G ,

and the equality of two transformations (see eqns. (1.6) and (2.1))

(Fdh0d
v
2 ) (Fdh2d

v
0 ) (Fdh0d

v
0 ) (Fdh1d

v
1 ) =⇒ (Fdh1d

v
1 ) : H ×H ×K ×K −→ G .
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This translates into the required properties for E once we observe that the universality ofΠ (as a (G,Π)-torsor
over G ) implies that for any pair f ,g : S→ G we have an isomorphism f ∗Π∧G g∗Π ' (f g)∗Π of (G,Π)-torsors.
Last, the morphism ı is the image, under a further pullback along the unit section (eH , eK ) ∈ H × K , of
∂ : G→Π. It is clear ı and  have the properties stated in Lemma 3.6.

In more down-to-earth terms, everything can be explicitly checked by writing out explicit expressions
for the points of the pullback. Thus, a point e ∈ E is a triple e = ((h,k), a,x), where (h,k) ∈H ×K , x ∈Π, and
a : F(h,k)→ (G,x). The G-action becomes evident by looking at two points e, e′ in the same fiber. We must
have a commutative diagram of (G,Π)-torsors

F(h,k) a′ //

a

$$

(G,x′)

g

��

(G,x)

where the vertical arrow, as a map of (G,Π)-torsors whose underlying G-torsor is trivial, is completely
determined by a point g ∈ G (the image of the unit section eG) such that

x′ = x∂g.

The situation for the left action is completely analogous, with x′ = ∂g x.
When (h,k) = (eH , eK ), the point eE = ((eH , eK ), l, eΠ), where l is the unique morphism coming from the

third condition in Definition 2.1, is the central unit section of E. This gives the morphism ı : G → E.
The partial multiplications are obtained as follows. Let e = ((h,k), a,x) and e = ((h′ , k), a′ ,x′). Then ee′ =
((hh′ , k), a′′ ,xx′), where the morphism a′′ is obtained from the diagram

F(h,k)F(h′ , k)

λ1
hh′ ,k
��

aa′ // (G,xx′)

F(hh′ , k)
a′′

88

The second multiplication is defined in the same way. The interchange law immediately follows from the
above and (2.1).

Since it is clear that if ϕ : F⇒ F′ is a natural transformations of biadditive morphisms by pullback we
obtain a corresponding isomorphim EF → EF′ of biextensions, the construction of Proposition 4.1 provides
functors

v : Hom(H,K ;G ) −→ Biext(H,K ;G)

and
v : Hom(H,K ;G ) −→ Biext(H,K ;G).

4.2 Lemma. The functor u is essentially surjective.

Proof. For each F biadditive, we construct a morphism F→ F′ = FE , where E = (H ×K)×G Π. The biadditive
morphism determined by E assigns to each (h,k) ∈H ×K the (G,Π)-torsor Eh,k consisting of pairs (f ,x) such
that

f : F(h,k)
∼−→ (G,x).

Having observed this, the proof proceeds in a manner identical to that of Proposition 4.4.2 in [AN09] (in
particular, cf. 4.4.2.1 and 4.4.2.2).

Summarizing the previous discussion, we have

4.3 Proposition. The functors u and v are quasi-inverses.

In words, Hom(H,K ;G ) and Biext(H,K ;G) are equivalent, pointed groupoids. The distinguished point is
the trivial biextension, corresponding to the trivial biadditive morphism sending (h,k) ∈H ×K to the trivial
(G,Π)-torsor. The same holds for Hom(H,K ;G ) and Biext(H,K ;G).
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5 Symmetry properties of biextensions

It is well-known (and see the discussion at the end of [AN10]) that the groupoid of extensions of K by (G,Π)
admits a monoidal structure if and only if the crossed module ∂ : G→Π (or equivalently the associated
stack G ) is braided. This monoidal structure is itself equipped with a commutativity isomorphism if and
only if the braiding carried by G is symmetric.

For biextensions the situation is more rigid. This is already apparent from the fact that in the very
definition of a biextension a braided structure is required in order to be able to formulate the compatibility
condition between the two multiplication laws. Carrying on this line of thought, we have

5.1 Proposition. Let E and F be two biextensions of (H,K) by (G,Π). The contracted product (as (G,Π)-torsors)
E ∧G F carries a biextension structure if and only if the braiding on the crossed module G = (G,Π,∂, {−,−}) (or
equivalently G ) is symmetric.

Proof. If E and F are biextensions, we can use the braiding of G to construct the partial multiplication laws
in the expected manner:

(Eh,k ∧G Fh,k)∧G (Eh′ ,k ∧G Fh′ ,k)
ĉ //(Eh,k ∧G Eh′ ,k)∧G (Fh,k ∧G Fh′ ,k)

γ1∧µ1
//Ehh′ ,k ∧Fhh′ ,k .

Let us simply denote the first multiplication morphism so obtained by γ1µ1, and let γ2µ2 denote the second
multiplication structure obtained in exactly the same way.

For the compatibility condition between the two multiplications we must write diagram (1.5) for γ1µ1

and γ2µ2. To simplify notations and readability, let us suppress the symbol ∧G and the associativity
morphisms. Set: a = Eh,k , x = Fh,k , y = Eh′ ,k , z = Fh′ ,k , u = Eh,k′ , v = Fh,k′ , w = Eh′ ,k′ , b = Fh′ ,k′ . Also, let us use
parentheses to denote the various codomains of γ , µ, namely (ay) = Ehh′ ,k , (xz) = Fhh′ ,k , etc. Consider the
following diagram:

axyzuvwb //

��

		

axuvyzwb

��

��

ayxzuwvb

""

��

auxvywzb

||

��

ayuwxzvb //

��

auywxvzb

��

(ay)(xz)(uw)(vb) //

,,

(ay)(uw)(xz)(vb)

$$

(au)(yw)(xv)(zb)

zz

(au)(xv)(yw)(zb)oo

rr

Ehh′ ,kk′Fhh′ ,kk′

The outer pentagon corresponds to the sought-after compatibility for the partial multiplications of E ∧G F,
whereas the little inner one is obtained by juxtaposing the compatibility conditions for E and F. Thus the
inner pentagon commutes. The triangles commute by definition, since they just hold the definitions of γ1µ1

and γ2µ2. The quadrangles are commutative by inspection. This leaves the big hexagon in the middle. The
position of the external variables is unchanged throughout, hence it reduces to the commutativity of the
diagram in Lemma D.2. This proves the proposition.

Once the coefficient crossed module carries a symmetric braiding, we are provided with a product of
biextensions. An easy argument, based on the definition of the partial multiplication laws in the proof of
Proposition 5.1 and Lemma D.1, or alternatively [AN10, §8.2], shows that the braiding provides a morphism

c : E ∧G F −→ F ∧G E

of biextensions, which is evidently symmetric. We summarize the previous discussion as
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5.2 Proposition. Biext(H,K ;G) (resp. Biext(H,K ;G)) is a braided symmetric group-like groupoid (resp. stack) if
and only if G = (G,Π,∂, {−,−}) carries a symmetric braiding.

By equivalence, the same statement holds for Hom(H,K ;G ) and Hom(H,K ;G ), respectively; the resulting
symmetric monoidal structure is given by the pointwise product of functors (with respect to the monoidal
structure of G ).

Let G be symmetric. If F1,F2 : H ×K → G correspond, via Proposition 4.3, to the biextensions E1 and
E2, then it is not difficult to see that E1 ∧G E2 is the biextension corresponding to F1F2 : H ×K → G , where
F1F2 is computed pointwise, i.e. for all h ∈ H and k ∈ K we set (F1F2)(h,k) B F1(h,k)F2(h,k), where the
juxtaposition on the right indicates the monoidal structure in G . Thus, Proposition 4.3 is upgraded to an
equivalence of symmetric group-like groupoids or stacks. More precisely, we get:

5.3 Proposition. The assignment defined by u in Proposition 4.3 gives an equivalence

u : Biext(H,K ;G)
∼−→Hom(H,K ;G )

(resp.
u : Biext(H,K ;G)

∼−→Hom(H,K ;G ))

of symmetric group-like categories (resp. stacks).

6 Butterflies

Let H• :H1
∂→H0 and K• : K1

∂→ K0 be a pair of crossed modules, and let ∂ : G1→ G0 be a crossed module
equipped with a braiding {−,−}. We denote by H ,K , and G the corresponding associated stacks.

6.1 Definition. A butterfly from H• ×K• to G• is a biextension E ∈ Biext(H0,K0;G•) equipped with trivial-
izations of its pullbacks (∂, id)∗E and (id,∂)∗E, i.e. maps s1 : H1 ×K0→ E and s2 : H0 ×K1→ E subject to the
following conditions:

1. (Restriction) s1 and s2 agree on H1 ×K1: (id,∂)∗s1 = (∂, id)∗s2.

2. (Compatibility) For all (h,z) ∈H1 ×K0 and (y,k) ∈H0 ×K1, and e ∈ Ey,z, s1 and s2 satisfy:

(6.1)
s1(h,z)×1 e = e ×1 s1(hy , z) ,

s2(y,k)×2 e = e ×2 s2(y,kz) .

A morphism ϕ : (E,s1, s2)→ (E′ , s′1, s
′
2) is a morphism of the underlying biextensions preserving the trivial-

izations.
Butterflies form a pointed groupoid, denoted Biext(H•,K•;G•). The distinguished object is the trivial

biextension.

If we identify the sections corresponding to the trivializations with s1 : H1 ×K0→ E and s2 : H0 ×K1→ E,
condition 1 in the Definition implies that

s1(h,∂k) = s2(∂h,k).

Let s : H1 ×K1 → E be the resulting morphism. The next lemmas characterize these objects in terms of
explicit diagrams (see (6.2) and (6.6) below). Their shape justifies the name.

6.2 Lemma. The trivializations s1 and s2, as maps s1 : H1 ×K0→ E and s2 : H0 ×K1→ E, render the following
diagrams commutative

(6.2)

H1 ×K0

(∂,id)

��

s1

##

G1

∂

��

ı

{{
E

p
{{


##

H0 ×K0 G0

H0 ×K1

(id,∂)

��

s2

##

G1

∂

��

ı

{{
E

p
{{


##

H0 ×K0 G0
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with  ◦ s1 and  ◦ s2 equal to the trivial map (identically equal to the unit e0 of G0). In addition, s1 and s2 have the
following properties:7

1. (Multiplicative) s1 and s2 are multiplicative in each variable, namely

(6.3)
s1(h,z)×1 s1(h′ , z) = s1(hh′ , z), s1(h,z1)×2 s1(h,z′) = s1(h,zz′),

s2(y,k)×1 s2(y′ , k) = s2(yy′ , k), s2(y,k)×2 s2(y,k′) = s2(y,kk′);

2. (Central) For all g ∈ G1, and whenever ∂h (resp. ∂k) is equal to the unit section of H0 (resp. K0), we have:

(6.4)
s1(h,z)ı(g) = ı(g)s1(h,z),

s2(y,k)ı(g) = ı(g)s2(y,k).

Proof. Since the pullbacks (∂, id)∗E and (id,∂)∗E split as extensions, we immediately get relations (6.3), as
well as the fact that the compositions  ◦ s1 and  ◦ s2 must be equal to the unit element.

The trivializing section of a bitorsor must be central, hence, say

(6.5) s1(h,z)g = g s1(h,z)

where the juxtaposition indicates the G1-action. Of course, a similar relations is valid for s2, as well. Then
the relations (6.4) follow from it and (3.3) of Lemma 3.6.

6.3 Remark. An alternative way to characterize a butterfly is to say that it consists of a biextension E of
(H0,K0) by G• such that s1 and s2 provide it with the structure of butterflies in the ordinary sense of [AN09]
from (H•)K0

(resp. (K•)H0
) to G• in a compatible way.

It is clear that properties similar to those pertaining to s1 and s2 stated in Lemma 6.2 hold for their
common restriction s : H1 ×K1→ E. In particular, the following diagram

(6.6)

H1 ×K1

(∂,∂)

��

s

##

G1

∂

��

ı

{{
E

p
{{


##

H0 ×K0 G0

is commutative, with  ◦ s equal to the trivial map (identically equal to the unit e0 of G0). In addition, s is
multiplicative in each variable:

(6.7)
s(h,k)×1 s(h

′ , k) = s(hh′ , k)

s(h,k)×2 s(h,k
′) = s(h,kk′).

Relations (6.4) (collapsed into one) and (6.1) also hold. As an easy consequence we have the following

6.4 Lemma. Let (E,s1, s2) ∈ Biext(H•,K•;G•). The pullback (∂,∂)∗E is isomorphic (via s) to the trivial biextension
in Biext(H1,K1;G•).

6.5 Remark. The correspondence (E,s1, s2) 7→ (E,s) determines a morphism

Biext(H•,K•;G•) −→HKer
(

Biext(H0,K0;G•)
(∂,∂)∗

//Biext(H1,K1;G•)
)

where HKer denotes the homotopy kernel (recall both groupoids are pointed) which is not an equivalence, in
general. Requesting that the biextension E become trivial when pulled back to H1 ×K1 is a weaker condition
for it does not provide for the two other pullbacks to be trivializable.

7In some of the following formulas we explicitly write the the product symbols ×1 and ×2 to avoid ambiguities.
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6.6 Remark. A butterfly has a description in terms of cocycles if the underlying (G1,G0)-torsor E is globally
trivial as a right G1-torsor. As seen at the end of sect. 3, E has the form (H0×K0×G1,x), with x : H0×K0→ G0.
Thus, a cocyclic description has formulas (3.5), (3.6), (3.7) (with h,h′ ∈ H0 and k,k′ ∈ K0). We must add
formulas for the trivializations of the two pullbacks toH1×K0 andH0×K1. The required triviality conditions
are the same as those for a nonabelian 1-cocycles of the sort that appears in the theory of extensions. Thus
there must be u1 : H1 ×K0→ G1 and u2 : H0 ×K1→ G1 such that

u1(hh′ , z)g1(∂h,∂h′ ;z) = u1(h,z)u2(h′ , z)(6.8a)

x(∂h,z) = ∂u1(h,z)(6.8b)

and

u2(y,kk′)g2(y;∂k,∂k′) = u2(y,k)u2(y,k′)(6.8c)

x(y,∂k) = ∂u2(h,z)(6.8d)

for all pairs (h,z), (h′ , z) ∈ H1 ×K0 and (y,k), (y,k′) ∈ H0 ×K1. Moreover, since the two trivializations must
agree when pulled back to H1 ×K1, we must have u1(h,∂k) = u2(∂h,k). Denoting this common restriction by
u : H1 ×K1→ G1, we must have

u(hh′ , k)g1(∂h,∂h′ ;∂k) = u(h,k)u(h′ , k)(6.9a)

u(h,kk′)g2(∂h;∂k,∂k′) = u(h,k)u(h,k′)(6.9b)

x(∂h,∂k) = ∂u(h,k).(6.9c)

for all h,h′ ∈H1 and k,k′ ∈ K1. Comparing with (3.8), we see that the latter set corresponds to a trivialization
as a biextension, as implied by Lemma 6.4.

7 Biadditive morphisms and butterflies

We now consider biadditive morphisms
F : H ×K −→ G

with G braided (cf. sect. 2). As before, we assume we have presentations by crossed modulesH ' [H1→H0]∼,
K ' [K1→ K0]∼, and G ' [G1→ G0]∼, the latter equipped with a braiding structure {−,−}. Our purpose is
to prove the following

7.1 Theorem. There is an equivalence of (pointed) groupoids

u : Biext(H•,K•;G•)
∼−→Hom(H ,K ;G ).

In essence, the theorem states that any biadditive functor F : H ×K → G can be represented by a
butterfly involving the presentations. This equivalence is compatible with restriction and base-change so
that, via the usual mechanism of considering the above equivalence relative to a variable object S of T, we
obtain a corresponding equivalence

u : Biext(H•,K•;G•)
∼−→Hom(H ,K ;G ).

Following [AN09] and sect. 4, we exhibit a pair of quasi-inverse functors. We will essentially confine
ourselves to just exhibit the relevant definitions, for the methods are quite similar to those in [AN09, §4],
with the exception of biadditivity. The latter is discussed explicitly, where the need arises.

Let F̄ be the composition of the projection π : H0 ×K0→H ×K with F. It is evidently biadditive.

7.2 Proposition. There exists a functor v : Hom(H ,K ;G )→ Biext(H•,K•;G•) whose value at an object F is the
pullback E = (H0 ×K0)×F̄,G ,π G0.

7.3 Lemma. Let E be as in proposition 7.2. The biextension E satisfies the conditions in the statement of lemma 6.2.
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Proof. We must verify the pullbacks of E toH1×K0 andH0×K1 are trivializable. This is a direct consequence
of the fact that H1

//H0
//H and K1

//K0
//K are (homotopically) exact. Furthermore, the decompo-

sition (∂,∂) = (id,∂) ◦ (∂, id) = (∂, id) ◦ (id,∂) and condition 3 of definition 2.1 ensure that the restriction
condition in definition 6.1 is satisfied.

In explicit terms, a point of the pullback (∂, id)∗E is given by a triple ((h,z), f ,x) where (h,z) ∈ H1 ×K0,
x ∈ G0 and f is an isomorphism

F(π(∂h),π(z))
f
//(G1,x).

We have π(∂h) = (H1,∂h), so there must be an isomorphism IH = (H1, eh0
) −→ (H1,∂h). Thus, there is a chain

of isomorphisms

F(IH ,π(z))

��

// F(π(∂h),π(z))
f
// (G1,x)

IG

so that we must have x = ∂g, g ∈ G1. This provides an explicit trivializing section s1 for (∂, id)∗E. Similarly
for the other one, s2, and their common restriction s.

A computation based on the biadditivity of F and the same technique at the end of the proof of 4.1
shows that both s1 and s2 are multiplicative, i.e. each satisfies condition 1 of lemma 6.2, with respect to both
variables. Condition 2 also follows from a direct calculation, as in [AN09, §4.3.6].

The pullback biextension construction is functorial (cf. the end of section 4). In particular, if ϕ : F⇒ F′

is a morphism of biadditive functors, the resulting morphism of biextensions is compatible with the
trivializations. This observation proves Proposition 7.2.

For the converse direction, we proceed as in ref. [AN09, §§4.3.2–4.3.4]. Specifically, an object of H ×K
will be represented by a pair of torsors, as ((Y ,y), (Z,z)) where (Y ,y) is an (H1,H0)-torsor and (Z,z) an
(K1,K0)-torsor. Let (E,s) be an object of Biext(H•,K•;G•). We define a FE,s1,s2 : H ×K → G by assigning to
the above pair the (G1,G0)-torsor (X,x) where:

X BHomH1,K1
(Y ,Z;E)(y,z), x : X −→ G0

e 7−→  ◦ e.

X consists of separately H1 or K1-equivariant local lifts of (y,z) : Y ×Z→H0 ×K0 to E. By this we mean that
the lift of (y ∂h,z) is related to that of (y,z) by e(y ∂h,z) = e(y,z)s1(h,z). Similarly, e(y,z∂k) = e(y,z)s2(y,k).
The notion is consistent thanks to Conditions 1 and the multiplicativity of s1 and s2. This construction is
obviously functorial with respect to each of its arguments. It gives the defining part of the

7.4 Proposition. There exists a functor

u : Biext(H•,K•;G•) −→Hom(H ,K ;G ),

whose value at (E,s1, s2) is the bifunctor FE,s1,s2 defined above.

Proof. We must verify the biadditivity property, namely that F(Y1,Z)∧G1 F(Y2,Z)
∼−→ F(Y1 ∧H1 Y2,Z), which

follows from the diagram:

E ×K0
E

γ1
//

(p,p)
��

E

p

��

Y1 ×Y2 ×Z
∆Z // Y1 ×Z ×Y2 ×Z //

(e1,e2)
55

(H0 ×K0)×K0
(H0 ×K0) // H0 ×K0

It is easy (and left to the reader) to check that the diagram is invariant under replacing (e1g,e2) by (e1, ge2)
and (y1h,y2) by (y1,hy2). (The first arrow to the left is the diagonal of Z followed by the swap of the two
inner factors.)
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7.5 Remark. A coordinate version of the construction of the functor u above is as follows. According to
the beginning of section 4, if E is the underlying biextension of an object in Biext(H•,K•;G•), we obtain a
biadditive morphism H0 ×K0→ G by sending the pair (y,z) to the (G1,G0)-torsor Ey,z. Since E is part of a
butterfly, this construction is compatible with morphisms in H andK (in fact, in the prestacks defined by
the presentations) because, if say y′ = y ∂h, we have

Ey′ ,z←− Ey,z ∧G1 E∂h,z
∼←− Ey,z,

since from the definition the existence of s1 implies E∂h,z is a trivial (G1,G0)-torsor. (Similarly for Ey,∂k .) We
have a similar calculation whenever z′ = z∂k, and the properties of the butterfly (plus the compatibility of
×1 and ×2) ensure we obtain a unique morphism

Ey,z −→ Ey′ ,z′ ,

which allows us to define u(E) on more general objects by descent. The connection with the global version
above is of course that HomH1,K1

(Y ,Z;E)(y,z) reduces to Ey,z when (Y ,y) = (H1, y) and (Z,z) = (H1, z).

Proof of Theorem 7.1. We prove that u and v are quasi-inverses. To this end, recall that for a G1-torsor P we
have the isomorphism

(7.1) HomG1
(G1, P )

∼→ P , m 7→m(eG1
),

[Gir71, Proposition III 1.2.7]. This extends to (G1,G0)-torsors by assigning to m : G1 → P the element
s(m(eG1

)) ∈ G0 (see [AN09, n. 4.4.2]). We apply this observation to both v(u(E)) and u(v(F)), where (E,s1, s2)
is a butterfly with underlying biextension E and F : H ×K → G is biadditive. In the first case, a point of the
biextension v(u(E)) is given by a tuple ((y,z), f ,x) with (y,z) ∈H0 ×K0 and x ∈ G0, such that

f : Ey,z
∼−→ (G1,x).

Considering the fiber over (y,z) we have the following chain of morphisms of (G1,G0)-torsors:

(7.2) v(u(E))y,z
∼−→HomG1

(G1,Ey,z)
∼−→ Ey,z,

where the first arrow sends (f ,x) to f −1, and the projection (f ,x)→ x, namely the equivariant section, to
 ◦ f −1. Therefore we have obtained an isomorphism of biextensions v(u(E))

∼→ E, by virtue of the result
quoted at the beginning. This is (tautologically) an isomorphism of butterflies. For this, consider the
composite isomorphism IG = (G1, e)

∼→ E∂h,z
∼→ (G1,x) (resp. IG = (G1, e)

∼→ Ey,∂k
∼→ (G1,x)) which provides

the trivialization of the pullback v(u(E)) to H1 × K0 (resp. H0 × K1), as in the proof of Lemma 7.3. The
resulting identifications of the pair (f ,x) with an element g ∈ G1 is clearly compatible via the chain (7.2),
with the trivialization (G1, e)

∼→ Ey,z.
In the second case, v(F) = (H0 × K0) ×G G0 and u(v(F)) is the biadditive morphism that assigns to

(y,z) ∈H0 ×K0 the (G1,G0)-torsor

v(F)y,z = {(f ,x)|F(π(y),π(z))
f
−→ (G1,x)} ∼−→ F(π(y),π(z)),

where the isomorphism on the right is by way of (7.1) and loc. cit. The pullback v(F) has the required trivial-
izations by Lemma 7.3, which are evidently compatible with F(π(∂h),π(z))

∼→ (G1, e) and F(π(y),π(∂k))
∼→

(G1, e), showing that the above isomorphism holds for general objects and is functorial, proving there is an
isomorphism u(v(F)) ' F.

7.6 Theorem (Theorem 7.1, symmetric version). Let the monoidal structure of G be symmetric. Then the
equivalence in Theorem 7.1 extends to one of group-like groupoids or stacks.

Proof (Sketch). We need only check the trivializations. Suppose F, F′ and E, E′ are the corresponding
butterflies. In particular, let s1, s2 and s′1, s

′
2 be trivialization morphisms of E and E′ , respectively. We claim

the pairs (s1, s′1) and (s2, s′2) give the two trivialization morphisms turning the biextension E ∧G E′ into a
butterfly.

The restriction condition 1 in Definition 6.1 is immediate. The compatibility condition 2 can verified by
a simple computation, by using the definition of the partial multiplications from the proof of Proposition 5.1
and Lemma 1.2.
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8 Commutative structures

With the equivalence between u : Biext(H•,K•;G•)→Hom(H ,K ;G ) at our disposal, we can discuss com-
mutativity conditions for biextensions (cf. Remark 3.4 above).

8.1 Definition. Let H ,K , and G all be equipped with a braiding structure. Then we say that (E,s1, s2) ∈
Biext(H•,K•;G•) (or simply E by abuse of language) is braided if the biadditive morphism u(E) is braided
in the sense of sect. 2.

In order to turn the definition into actual diagrams, we use the explicit variance of the biextension E,
Remark 7.5. Here the point of Remark 1.1 becomes relevant. Whereas the morphism u(E) : H ×K → G
is covariant in each variable, the biextension E itself is a (G0,G1)-torsor over H0 ×K0, and Tors(G1,G0) is
anti-equivalent to G .

Using the trivialization s1 : H1 ×K0→ E and s2 : H0 ×K1→ E, and the braidings {−,−}H and {−,−}K for
the presentations, we have morphisms η1 and η2:

η1
y,y′ ;z : Ey′y,z −→ Eyy′ ,z η2

y;z,z′ : Ey,z′z −→ Ey,zz′

e 7−→ e ×1 s1({y′ , y}H , z) e′ 7−→ e′ ×2 s2(y, {z′ , z}K ).

Thus, for y,y′ ∈H0 and z,z′ ∈ K0 the following diagrams must commute:

(8.1)

Ey,z ∧G1 Ey′ ,z
γ1
y,y′ ;z
//

cy,y′ ;z
��

Eyy′ ,z
OO

η1
y,y′ ;z

Ey′ ,z ∧G1 Ey,z
γ1
y′ ,y;z

// Ey′y,z

and

Ey,z ∧G1 Ey,z′
γ2
y;z,z′
//

cy;z,z′

��

Ey,zz′
OO

η2
y;z,z′

Ey,z′ ∧G1 Ey,z
γ2
y;z′ ,z

// Ey,z′z

In both diagrams the vertical arrow to the left comes from the braiding in G . The two vertical arrows on the
right express the functoriality with respect to the braiding structures of H• and K•.

Alternatively, the directions in the right vertical arrows of both diagrams in (8.1) can be restored if we
interpret them as morphism in Tors(G1,G0) arising from the morphisms

(H0, yy
′) −→ (H0, y

′y) and (K0, zz
′) −→ (K0, z

′z)

in Tors(H1,H0) and Tors(K1,K0), respectively. This requires writing η1 and η2 (going in the opposite
direction) in terms of

s1({y′ , y}−1
H , z) and s2(y, {z′ , z}−1

K ).

Using Lemma 1.2 to express the braiding morphisms cy,y′ ;z and cy;z,z′ we arrive at the expressions, valid for
e ∈ Ey,z, e′ ∈ Ey′ ,z:

e′ ×1 e =
(
e ×1 e

′ ×1 s1({y′ , y}−1
H , z)

)
{(e), (e′)}G;(8.2a)

and for e ∈ Ey,z, e′ ∈ Ey,z′ :

e′ ×2 e =
(
e ×2 e

′ ×2 s2(y, {z′ , z}−1
K )

)
{(e), (e′)}G.(8.2b)

It follows that the (ordinary) butterfly corresponding to each variable must be braided in the sense of [AN09,
§7.4.1].

Theorems 7.1 and 7.6 specialize to this situation.

8.2 Theorem (Theorems 7.1, 7.6 fully commutative case). LetK , H , and G be all braided and have presenta-
tions by braided crossed modules. The equivalence u of Theorem 7.1 restricts to an equivalence

u : Biextb(H•,K•;G•)
∼−→Homb(H ,K ;G )

of groupoids. Furthermore, if G is braided symmetric, u (from Theorem 7.6) becomes an equivalence of group-like
groupoids. Similar statements hold for Biextb(−,−;−) and Hom

b(−,−;−).
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In the following we will restrict to this commutative situation, and consistently drop the superscript “b”
from the notation.

As an application of these additional assumptions, we can discuss whether Biext(H•,K•;G•) and
Hom(H ,K ;G ) are biadditive in their variables. We have observed that regardless the commutativity
assumptions (but keeping G braided) they always are biadditive in the third variable (the same conclusion
holds for Biext(H•,K•;G•) and Hom(H ,K ;G )). More precisely, we have

8.3 Proposition. The groupoid Hom(−,−;−) is biadditive in all variables for symmetric group-like stacks.

Proof. We can use the same argument as [Bre83, §1.2]. Specifically, consider the three (additive) functors
di : H ×H →H (d1 is additive since H is braided). Let F : H ×K → G be a biadditive morphism, and let
E = v(F) be the corresponding butterfly. Then

λ1 : d∗2Fd
∗
0F −→ d∗1F

is a morphism in Hom(H ×H ,K ;G ). As in loc. cit. this follows from the compatibility between λ1 and λ2

and the fact that λ1 is an additive morphism thanks to the (symmetric) braiding. In view of the equivalence
Hom(−,−;−) ' Biext(−,−;−), the above morphism corresponds to a morphism of biextensions

γ1 : d∗2E ∧
G1 d∗0E −→ d∗1E

which is in fact a morphism of butterflies in Biext(H• ×H•,K•;G•), after one checks the trivializations. From
Proposition 5.1 we see that the braiding must be symmetric. Now, for additive morphisms R,S : H ′→H ,
we obtain a morphism

(R× I)∗F (S × I)∗F −→ ((RS)× I)∗F

in Hom(H ′ ,K ;G ), showing biadditivity in the first variable. The second variable is treated analogously.

8.4 Remark. In the proof, if ER and ES are the butterflies corresponding to R,S : H ′ →H , we obtain the
morphism of butterflies in Biext(H ′•,K•;G•) is(

(ER × I)×
H1
H0
E
)
∧G1

(
(ES × I)×

H1
H0
E
)
−→

(
(ER ∧H1 ES )× I

)
×H1
H0
E

expressing the biadditivity in the first variable at the level of biextensions. Here I is a shorthand for the
diagram corresponding to the identity morphism. (This kind of compositions is systematically studied in
the next Part II.)

Part II

9 Multiextensions and compositions

The generalizations of the previous notions of biextension and biadditive morphism to the case of n-
variables is straightforward [see Gro72, §2.10.2; Bre99, §7]. Let (G,Π,∂, {−,−}) be a braided crossed module.
A multiextension, or n-extension, of (H1, . . .Hn) by (G,Π) is a (G,Π)H1×···×Hn-torsor E over H1 × · · · ×Hn
equipped with n partial multiplication laws ×1, . . . ,×n, plus a compatibility relation of the type (1.5) for each
pair (×i ,×j ).

Lemma 3.6 remains valid, as well as the analogs of Propositions 4.1 and 4.3. In fact, the notion of butterfly
can be extended to this case. Let us consider H1, . . . ,Hn and G , the latter equipped with a braiding as usual.
There is an evident notion of n-additive functor F : H1×· · ·×Hn→ G , which can be defined by an appropriate
generalization of Definition 2.1. If we suppose that each Hi has a presentation Hi ' [Hi,1 → Hi,0]∼, we
can define a butterfly (or, more precisely, an n-butterfly) from H1,• × · · · ×Hn,• to G• as an n-extension E of
(H1,0 × · · · ×Hn,0) by G• equipped with n trivializations si : H1,0 × · · · ×Hi,1 × · · · ×Hn,0→ E, each satisfying the
conditions of Definition 6.1, with the obvious modifications. Theorem 7.1 and its symmetric variant 7.6
generalize to this case. Let us state this independently for future reference. Denoting by MExt the groupoid
of n-butterflies, we have
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9.1 Theorem. There is an equivalence of (pointed) groupoids:

u : MExt(H1,•, . . . ,Hn,•;G•)
∼−→Hom(H1, . . . ,Hn;G ),

sending a multi-extension E, to the n-additive functor u(E) that to the object (y1, . . . , yn) ofH1×· · ·×Hn, where each
yi is in the essential image of Hi,0, assigns the (G,Π)-torsor Ey1,...,yn . It is an equivalence of group-like groupoids
whenever G is symmetric.

Once again, the axioms of Definition 6.1 ensure this is compatible with the descent, ensuring u(E) is a
well defined morphism. Just like for biextensions, the equivalence is compatible with localization, with the
stacks MExt and Hom in place of the global groupoids.

Multi-additive functors can be composed in the following way. Let G , H1, . . . ,Hn, Ki,1, . . . ,Ki,mi , i =
1, . . . ,n, be group-like stacks, with G and H1, . . . ,Hn braided. Let F ∈ Hom(H1, . . . ,Hn;G ), and for i =
1, . . . ,n let Gi ∈Hom(Ki,1, . . . ,Ki,mi ;Hi). Then if x1,1, . . . ,xn,mn , collectively denoted x1, . . . ,xm, are objects of
K1,1, . . . ,Kn,mn , define F(G1, . . . ,Gn) as usual by

(9.1) F(G1, . . . ,Gn)(x1 . . . ,xm)B F(G1(x1, . . . ), . . . ,Gn(. . . ,xm)).

9.2 Proposition. The composition defined in (9.1) assigns to the tuple (F,G1, . . . ,Gn) a well defined object
F(G1, . . . ,Gn) of Hom(K1,1, . . . ,Kn,mn ;G ). This composition is associative.

An identical statement holds with Hom replaced by Hom.

Proof. The only thing to check is that the composition F(G1, . . . ,Gn) satisfy the conditions (2.1) for each pair
(i, j) of indices within the list {1, . . . ,m1 +m2 + · · · +mn}, where mk is the arity of Gk . There are two cases
depending on whether the variables corresponding to the pair (i, j) belongs to the same “slot,” say relative to
Gk , or when i and j fall into two different slots, relative to Gk and Gl , with k , l. We now indicate the main
points of the verification, leaving the easy task of writing the complete diagrams to the reader.

In the former case, the mechanics of the verification are completely captured by considering the values
n = 1, m1 = 2. First we write the pentagonal diagram corresponding to (2.1) for F(G). In it, we use the
functoriality of F to reduce the arrow

(F(G(x,y))F(G(x′ , y))) (F(G(x,y′))F(G(x′ , y′))) //(F(G(x,y))F(G(x,y′))) (F(G(x′ , y))F(G(x′ , y′)))

to the arrow

F((G(x,y)G(x′ , y)) (G(x,y′)G(x′ , y′))) //F((G(x,y)G(x,y′)) (G(x′ , y)G(x′ , y′))) ,

and then use the fact that G itself satisfies (2.1). For the latter case, the general situation is captured by
considering n = 2, m1 =m2 = 1, so we need to write the diagram (2.1) for F(G1,G2). For this, the interchange
law for F gives us a unique morphism from

(F(G1(x),G2(y))F(G1(x′),G2(y))) (F(G1(x),G2(y′))F(G1(x′),G2(y′)))

to
F(G1(x)G1(x′),G2(y)G2(y′)).

Now the functoriality of F gives the morphism

F(G1(x)G1(x′),G2(y)G2(y′)) −→ F(G1(xx′),G2(yy′))

by way of the square

F(G1(x)G1(x′),G2(y)G2(y′)) //

��

F(G1(x)G1(x′),G2(yy′))

��

F(G1(xx′),G2(y)G2(y′)) // F(G1(xx′),G2(yy′))

The statement about associativity is immediate.
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10 Compositions of n-butterflies

From Theorem 9.1, the multilinear functors can be expressed in terms of multi-extensions, and from
Proposition 9.2 multilinear functors can be composed. Hence we expect an analogous composition exists for
multi-extensions. In this section we provide a construction of this composition, generalizing the composition
for single butterflies found in [AN09, §5.1].

For i = 1, . . . ,n, and integers ji = 1, . . . ,mi , let G•, H1,•, . . .Hn,• and Ki,1,•, . . . ,Ki,mi ,• crossed modules, of
which G•, H1,•, . . .Hn,• are assumed to be braided. Let E be a braided n-butterfly from H1,• × · · · ×Hn,• to G•,
and for i = 1, . . . ,n let Fi be an mi-butterfly from Ki,1,• × · · · ×Ki,mi ,• to Hi,•. In the following we let

P = (F1 × · · · ×Fn)
�

H1,0×···×Hn,0

E,

be the (H1,1 × · · · ×Hn,1)-equivariant (G1,G0)-torsor over F1 × · · · ×Fn.

10.1 Theorem. The (G1,G0)-torsor P has a well defined quotient by H1,1 × · · · ×Hn,1, denoted

(F1 × · · · ×Fn)
H1,1×···×Hn,1�
H1,0×···×Hn,0

E,

which carries a structure of m1 + · · ·+mn-extension (=butterfly) from K1,1,• × · · · ×Kn,mn,• to G•.

10.2 Definition. The composition E(F1, . . . ,Fn) of E with F1, . . . ,Fn is

E(F1, . . . ,Fn)B (F1 × · · · ×Fn)
H1,1×···×Hn,1�
H1,0×···×Hn,0

E.

We call this composition the juxtaposition product, since it entails placing the butterflies wing-by-wing
next to one another.

Proof of Theorem 10.1–Construction of the juxtaposition product. We will use element notation through-
out. The procedure consists of several steps. The first is to form the fiber product exactly as in loc. cit.

P = (F1 × · · · ×Fn)
�

H1,0×···×Hn,0

E,

which as noted is an (H1,1 × · · · ×Hn,1)-equivariant (G1,G0)-torsor over F1 × · · · ×Fn, and to mod out the left
and right actions of H1,1 × · · · ×Hn,1. Let us use the notation

(y1, . . . , yn)B (1(v1), . . . n(vn)) = p(u)

for the tuple in H1,0 × · · · ×Hn,0, where i : Fi →Hi,0 for each (Hi,1,Hi,0)-torsor Fi , i = 1, . . . ,n.
Consider first the right action of elements of the form (1, . . . ,hi , . . . ,1), where hi ∈Hi,1. The action on P is

given by sending a point (v1, . . . , vn,u) to

(v1, . . . , vi hi , . . .vn,u ×i si(y1, . . . ,hi , . . . , yn)),

For the left action, we have

(v1, . . . ,hi vi , . . .vn, si(y1, . . . ,hi , . . . , yn)×i u) = (v1, . . . , vi h
yi
i , . . .vn,u ×i si(y1, . . . ,h

yi
i , . . . , yn)),

which follows from Definition 6.1, adapted to the multi-variable case. These actions are compatible for i , j.
Acting with hi and then with hj , assuming for example that i < j, we have(

u ×i si(y1, . . . ,hi , . . . , yn)
)
×j sj (y1, . . . , yi∂hi , . . . ,hj , . . . , yn)

=
(
u ×i si(y1, . . . ,hi , . . . , yn)

)
×j

(
sj (y1, . . . , yi . . . ,hj , . . . , yn)×i sj (y1, . . . ,∂hi , . . . ,hj , . . . , yn)

)
,
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where we used the multiplicativity property of sj . Now, using the interchange property for ×i and ×j , and
the compatibility between the trivializations si and sj , the right hand side becomes(

u ×j sj (y1, . . . ,hj , . . . , yn)
)
×i

(
si(y1, . . . ,hi , . . . , yn)×j si(y1, . . . ,hi , . . . ,∂hj , . . . , yn)

)
,

which coincides with the action of hj first, followed by that of hi . This ensures that following formula for the
right action of a generic point (h1, . . . ,hn) is well defined:

(10.1)
(
v1 h1, . . .vn hn,

(
· · ·

(
u ×1 s1(h1, y2, . . . , yn)

)
×2 s2(y1∂h1,h2, . . . , yn) · · ·

)
×n sn(y1∂h1, . . . , yn−1∂hn−1,hn)

)
.

The reader will have no difficulty in writing the corresponding formulas for the left action. Since each Fi is
an (Hi,1,Hi,0)-torsor, the action is free.

Note also that the G1-actions on P (both left and right) are compatible with the action of H1,1 × · · · ×Hn,1
thanks to the relations (6.4) in Lemma 6.2 (property 2). In particular, the G1-actions happen by way of those
on the last element of the tuple; denoting the class of a tuple by brackets we have:

[v1, . . . , vn,u]g = [v1, . . . , vn,u g], g [v1, . . . , vn,u] = [v1, . . . , vn, g u] = [v1, . . . , vn,u g
u].

Finally, the equivariant section from the quotient of P to G0 is defined to be

(v1, . . . , vn,u) 7−→ (u).

Next, we define m1 + · · · +mn partial product structures ×i,j for i = 1, . . . ,n and j = 1, . . . ,mi as follows.
Using our established index convention, let us use the notation

(z1,1, . . . , zi,j , . . . , zn,mn ) ∈ K1,1,0 × · · · ×Ki,j,0 × · · · ×Kn,mn,0

for a point of the base of P /(H1,1 × · · · × Hn,1). To begin with, consider the special case of two points
(v1, . . . , vj , . . . , vn,u) and (v1, . . . , v

′
j , . . . , vn,u

′) of P such that

pi(vi) = (zi,1, . . . , zi,j , . . . , zi,mi ), pi(v
′
i ) = (zi,1, . . . , z

′
i,j , . . . , zi,mi ),

in Ki,j,0, for fixed i and j ∈ {1, . . . ,mi}, everything else being equal. Define:

(10.2) (v1, . . . , vj , . . . , vn,u)×i,j (v1, . . . , v
′
j , . . . ,vn,u)B (v1, . . . , vj ×i,j v′j , . . . ,vn,u ×i u

′).

The symbol ×i,j on the right hand side of (10.2) denotes the jth product structure (within j = 1, . . . ,mi) of Fi ,
and the resulting point of P projects onto the point (z1,1, . . . , zi,jz

′
i,j , . . . , zn,mn ).

In general, let us consider points e = [v1, . . . , vn,u] and e′ = [v′1, . . . , v
′
n,u
′] of P /(H1,1 × · · · ×Hn,1) above

(z1,1, . . . , zi,j , . . . , zn,mn ) and (z1,1, . . . , z
′
i,j , . . . , zn,mn ), respectively. (As before, only the zi,j and z′i,j coordinates are

different.) For j = 1, . . . ,n, j , i, there exist unique hj ∈Hj,1 such that v′j = vj hj . As a result,

[v′1, . . . , v
′
n,u
′] = [v1, . . . , v

′
i , . . . , vn,u

′′],

where u′′ is related to u′ by an application of (10.1). Then we define e ×i,j e′ as the class

[v1, . . . , vj ×i,j v′j , . . . , vn,u ×i u
′′],

which is computed using (10.2) above. We must show that this is independent of the various choices involved
through the use of (10.1). The computation is quite elaborate, but otherwise not illuminating nor eventful,
therefore we omit it. We also omit the easy verification that each of these partial multiplication laws is
associative.

On the other hand, to claim that we have constructed a genuine multi-extension, we must prove the
partial multiplication laws just defined obey pairwise compatibility (interchange) laws. This we prove
explicitly. Like in the proof of Proposition 9.2, there are two distinct cases to address, depending on whether
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the two partial product laws have the same first index. The easiest is when they do not, so we treat it first.
Thus, let i , k ∈ {1, . . .n}. For brevity let Q = P /(H1,1 × · · · ×Hn,1) and consider:

ei,j = [v1, . . . , vi , . . . , vk , . . . , vn,ui] ∈Qz1,1,...,zi,j ,...,zk,l ,...,zn,mn

e′i,j = [v1, . . . , v
′
i , . . . , vk , . . . , vn,u

′
i ] ∈Qz1,1,...,z

′
i,j ,...,zk,l ,...,zn,mn

ek,l = [v1, . . . , vi , . . . , v
′
k , . . . , vn,uk] ∈Qz1,1,...,zi,j ,...,z

′
k,l ,...,zn,mn

e′k,l = [v1, . . . , v
′
i , . . . , v

′
k , . . . , vn,u

′
k] ∈Qz1,1,...,z

′
i,j ,...,z

′
k,l ,...,zn,mn

.

We first compute the products with ×i,j :

ei,j ×i,j e′i,j = [v1, . . . , vi ×i,j v′i , . . . , vk , . . . , vn,ui ×i u
′
i ] ek,l ×i,j e′k,l = [v1, . . . , vi ×i,j v′i , . . . , v

′
k , . . . , vn,uk ×i u

′
k].

Then

(ei,j ×i,j e′i,j )×k,l (ek,l ×i,j e′k,l) = [v1, . . . , vi ×i,j v′i , . . . , vk ×k,l v
′
k , . . . , vn, (ui ×i u

′
i )×k (uk ×i u′k)]

= [v1, . . . , vi ×i,j v′i , . . . , vk ×k,l v
′
k , . . . , vn, (ui ×k uk)×i (u′i ×k u

′
k) {(u

′
i ), (uk)}

−(u′k )]

= (ei,j ×k,l ek,l)×i,j (e′i,j ×k,l e
′
k,l) {(u

′
i ), (uk)}

−(u′k ),

where in the second line we have used the interchange law for the ith and kth product laws in E, Proposi-
tion 3.2.

The other case is the one with the same first index, say ×i,j and ×i,l , for j , l. In this situation we consider
instead:

ei,j = [v1, . . . , vi , . . . , vn,ui] ∈Qz1,1,...,zi,j ,...,zi,l ,...,zn,mn

e′i,j = [v1, . . . , v
′
i , . . . , vn,u

′
i ] ∈Qz1,1,...,z

′
i,j ,...,zi,l ,...,zn,mn

ei,l = [v1, . . . ,wi , . . . , vn, ti] ∈Qz1,1,...,zi,j ,...,z
′
i,l ,...,zn,mn

e′i,l = [v1, . . . ,w
′
i , . . . , vn, t

′
i ] ∈Qz1,1,...,z

′
i,j ,...,z

′
i,l ,...,zn,mn

.

Proceeding in an analogous way we first get:

ei,j ×i,j e′i,j = [v1, . . . , vi ×i,j v′i , . . . , vk , . . . , vn,ui ×i u
′
i ], ek,l ×i,j e′k,l = [v1, . . . ,wi ×i,j w′i , . . . , vn, tk ×i t

′
k].

And then:

(ei,j ×i,j e′i,j )×i,l (ei,l ×i,j e′i,l) = [v1, . . . , (vi ×i,j v′i )×i,l (wi ×i,j w′i), . . . , vn, (ui ×i u
′
i )×i (ti ×i t′i )]

= [v1, . . . , (vi ×i,j v′i )×i,l (wi ×i,j w′i) {i(wi), i(v
′
i )}
−i (w′i )
Hi

, . . . , vn,

(ui ×i u′i )×i (ti ×i t′i )×i si(y1, . . . , {i(wi), i(v′i )}
−i (w′i )
Hi

, . . . , yn)]

= [v1, . . . , (vi ×i,l wi)×i,j (v′i ×i,l w
′
i), . . . , vn, (ui ×i ti)×i (u′i ×i t

′
i ) {(u

′
i ), (ti)}

−(t′i )
G ],

where in the intermediate equality we used the the action by an element of Hi,1, whereas in the last one the
interchange law (within the multi-extension Fi) and (8.2) were used. But the last line equals

(ei,j ×i,l ei,l)×i,j (e′i,j ×i,l e
′
i,l) {(u

′
i ), (ti)}

−(t′i )
G ,

as wanted.
The final step is to show that Q, in addition to being a multi-extension of K1,1,0 × · · · ×Kn,mn,0 by G•, is in

fact a butterfly, that is, it carries a trivialization for each of its pullbacks to K1,1,0 × · · · ×Ki,j,1 × · · · ×Kn,mn,0.
Such trivializations can be defined as follows.

For each i = 1, . . . ,n and for each j = 1, . . . ,mi , let si,j be the trivialization si,j : Ki,1,0×· · ·×Ki,j,1×· · ·×Ki,mi ,0→
Fi . Observe that the fiber of P above (v1, . . . , si,j(zi,1, . . . , ki,j , . . . , zi,mi ), . . . , vn) ∈ F1 × · · · × Fi × · · · × Fn (where
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vk is a point of Fk , for k , i) can be identified with G1. This is because that point maps via (1, . . . , n) to
(y1, . . . ,1, . . . , yn), and the fiber of E above it is identified with G1. (In turn, this follows from the fact that
biextensions in particular, and multi-extensions in general, are canonically trivialized over identity sections,
see sect. 3.) It follows that the fiber of Q over (z1,1, . . . ,∂ki,j , . . . , zn,mn ) is similarly identified with G1. Thus,
we obtain a trivializing section ŝi,j of the pullback of Q to K1,1,0 × · · · ×Ki,j,1 × · · · ×Kn,mn,0 by sending the
point (z1,1, . . . , ki,j , . . . , zn,mn ) to [v1, . . . , si,j(zi,1, . . . , ki,j , . . . , zi,mi ), . . . , vn, ei], where ei is the unit (central) section
of the restriction of E to H1,0 × . . . {1} × · · · ×Hn,0. Observe this does not depend on the choice of vj ∈ Fj , for
j , i, since Fj /Hj is just (zj,1, . . . , zj,mj ). Note that  : Q→ G0 composed with any of ŝi,j is identically equal
to 1, since so is the result of applying E : E→ G0 to ei . The conditions (Compatibility and Restriction) of
Definition 6.1 are easy to verify and so this task is left to the reader.

This ends the proof.

10.3 Proposition. The composition in Definition 10.2 gives rise to a well-defined composition functor

MExt(K1,1,•, . . . ;H1,•)× · · · ×MExt(. . . ,Kn,mn,•;Hn,•)×MExt(H1,•, . . . ,Hn,•;G•) −→MExt(K1,1,•, . . . ,Kn,mn,•;G•),

where we are using the same convention for the indices as above and in sect. A. Same with MExt in place of MExt.

Proof. We need only check that if f : E→ E′ and gi : Fi → F′i are butterfly isomorphisms, then we get a well
defined isomorphism of k =m1 + · · ·+mn-butterflies

f (g1, . . . , gn) : E(F1, . . . ,Fn) −→ E′(F′1, . . . ,F
′
n).

This is easy to check from the construction of the juxtaposition product provided above.

Associativity only holds up to isomorphism. This is due to the same phenomenon, ultimately a mani-
festation of the same lack of strict associativity for fiber products, observed in the unary case [see AN09;
Noo05]. We omit the proof.

10.4 Proposition. The composition in Definition 10.2 is associative up to coherent isomorphism.

11 The bi-multicategories of group-like stacks and crossed modules

By using Proposition 9.2 we can rely on the framework recalled in the technical section A to promote the
2-category of braided group-like stacks to a 2-multicategory. In particular, by putting together all

Hom(H n;G ) = Hom(H , . . . ,H︸     ︷︷     ︸
n−times

;G ),

we can define categories {H ,G }. We ambiguously use the same symbol to denote the stack obtained using
Hom in place of Hom, as which version will be in use will be clear from the context. We immediately obtain:

11.1 Proposition. For group-like stacksK , H , and G , we have the assembly map

(11.1) � : {H ,G } o {K ,H } −→ {K ,G }

which to the object (F;G1, . . . ,Gn) assigns the composition F(G1, . . . ,Gn).
In particular, MG B {G ,G } is a monoid for this composition, whenever G is braided, with identity object given

by (id; ) (the empty string in the second slot).

11.2 Remark. As alluded in sect. A, the formalism includes the symmetry structure, which makes it slightly
more general than needed in the sequel. All objects of interest shall have augmentations factoring through
the discrete subcategory N of S, which amounts to ignoring the permutation structure and hence symmetry
conditions.
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From Propositions 10.3 and 10.4 and the formalism of sect. A the bicategory of braided crossed modules
of T equipped with butterflies as morphisms [see AN09, Theorem 5.3.6] is promoted to a genuine bi-
multicategory. In particular, we obtain objects {H•,G•} and an analog of Proposition 11.1 with assembly
map

(11.2) � : {H•,G•} o {K•,H•} −→ {K•,G•}

for braided crossed modules K•, H•, and G•.
The equivalence between the 2-categoryBGrSt of (braided) group-like stacks and the bicategoryBXMod

of (braided) crossed modules [cf. AN09, Theorem 5.3.6] lifts to the present case.

11.3 Theorem. There is an equivalence of bi-multicategories

Ma : MBXMod
∼−→MBGrSt

induced by the associated stack functor.

Proof. Recall that a functor F : MC→MD between bi-multicategories is an equivalence if for each tuple
(x;y1, . . . , yn) of objects of MC the functor F(x;y1,...,yn) : HomC(y1, . . . , yn;x) → HomD(F(y1), . . . ,F(yn)) is an
equivalence of categories, and the underlying ordinary homomorphism [F]1 : C→D is essentially surjective.8

The associate stack functor at the level of the underlying bicategories a : BXMod→BGrSt is an equiv-
alence, hence, in particular, essentially surjective. The equivalence is proved in [AN09, Theorem 5.3.6]
without the braiding hypothesis, however Theorem 4.3.1 in loc. cit. applies to the braided case as well by §7,
ibid., and presentations by braided crossed modules are easily obtained by using Lemma 1.2. Thus essential
surjectivity follows.

The equivalence at the level of the multi-arrow categories directly follows from Theorem 9.1. Finally we
check that the functor u of Theorem 9.1 preserves the (horizontal) compositions up to coherent isomorphism.
Like the single variable case, this follows from the fiber product construction of the quasi-inverse to u.

11.4 Remark. The situation becomes decidedly more pleasant if we confine ourselves to symmetric objects.
We can consider a symmetric variant of the above based on the bicategories SXMod and SGrSt. The
equivalence in Theorem 11.3 restricts to between these new entities:

Ma : MSXMod
∼−→MSGrSt,

which, by Theorem 9.1, both ought to be regarded as multicategories enriched over symmetric group-like
groupoids. Furthermore, using the version of {−,−} based on Hom, SGrSt becomes closed. Indeed one has
the analog of [Kel72, Theorem 2], in that

HomC(K oH ,G ) 'HomC(K , {H ,G }),

where C = SGrSt (or even C = SGrSt/S using extraordinary structure briefly discussed in sect. A—see
[Kel72] for all the details). A proof can be obtained along the same lines, proceeding from Theorem 9.1 and
sect. A. We will not pursue this further.

Part III

12 Bimonoidal structures and weakly categorical rings

For a braided stack R , an additive bifunctor m : R ×R →R gives a binary law which is automatically
distributive with respect to the monoidal structure ofR by virtue of (2.1) in Definition 2.1. If m is itself
part of a monoidal structure, that is, there exists µ : m(m, id)⇒m(id,m) satisfying the standard pentagon
identity, thenR is said to be bimonoidal. In fact it satisfies the axioms of a categorical ring in the usual
sense [JP07], except possibly the requirement for the underlying group-like structure ofR to be symmetric.

8[F]1 is the homomorphism we obtain by restricting F to arrows of arity equal to one.

30



From sections 9 and A, the binary operation m and id are objects of MR = {R ,R }, and µ : m(m, id)⇒
m(id,m) is a morphism of MR , with the pentagon identity expressing the equality between two morphisms
thereof. Rather than using the classical, “biased,” definition of the monoidal structure, it is more convenient
to exploit the multi-categorical structure comprising all the multilinear functors. Now, biased and unbiased
definitions yield equivalent structures [Lei04], hence we can simply define it in terms of the multicategory
MBGrSt.

12.1 Definition. LetR be a braided stack. A (weak) categorical ring structure onR is a lax monoidal functor
(t,θ) : N→MR . A (weak) ring-like stack is a braided stack R equipped with such a structure, namely a
pseudo-monoid in the 2-multicategory MBGrSt.9

12.2 Remark. The 2-multicategory MBGrSt has of course more structure than in the abstract situation
discussed in sections A and B. In particular, the objects of BGrSt, being themselves categories, have an
internal structure, so for any two objects G and H the wreath product G oH is defined, say by using the
same definition as in sect. A with G and H interpreted as objects over 1. It follows that by a special case of
the adjunction discussed in [Kel72], which in the present case can be verified by hand, the lax monoidal
functor providing the exterior monoidal structure onR corresponds to

(t̃, θ̃) : N oR −→R ,

which is required to satisfy diagrams similar to (B.1) and (B.3). In this form we have that R is a pseudo
algebra over N.

We drop the “weak” attribute is the underlying braiding is symmetric. In such a case, we will see the
fibers ofR are categorical rings in the usual sense, so thatR becomes the stack analog of the categorical
rings described in e.g. [JP07].

12.3 Remark. For a symmetric R , we can define the ring-like structure in the same way, but working
in SGrSt. In such case the pseudo-algebra structure of R can be verified directly from the adjunction
mentioned in Remark 11.4 above.

A pseudo monoidR in MBGrSt ought to correspond to one in MBXMod. More precisely, any pseudo
monoidR ought to be equivalent to one whose underlying stack is the one associated to a presentation by a
braided crossed module, i.e. an object of BXMod. This will be made precise below. First, we can write the
analog of Definition 12.1, namely:

12.4 Definition. A (weakly) ring-like crossed module is a pseudo monoid in the bi-multicategory MBXMod,

that is, a braided crossed module R• : R1
∂→ R0 equipped with a pseudo monoidal functor

(t,θ) : N −→MR•.

We drop the “weak” attribute if the underlying braiding is symmetric.

An operation of arity n is realized in this case by an n-butterfly En = t(n), an object of Hom(Rn• ;R•),
composed according to (B.2), realized by the juxtaposition product

(12.1) θn;m1,...,mn : Em1+···+mk −→ En(Em1
, . . . ,Emn ),

plus the coherence condition expressed by the full diagram (B.4), which reads

(12.2)

Ek(El1 , . . . ,Elk )

��

Eh //oo En(Ej1 , . . . ,Ejn )

��

En(Em1
, . . . ,Emn )(El1 , . . . ,Elk )

// En(Em1
(El1 , . . . ), . . . ,Emn(. . . ,Elk ))

9In the sequel we shall use “weak”, when referring to bimonoidal structures, in this sense; it will not refer to the laxness of the
monoidal structures.
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The bottom arrow is the association isomorphism in the butterfly juxtaposition. For n ≤ 4, with all the
sequences emanating from n = 4 as in sect. B, we obtain the “generalized pentagon” diagram (C.2).

Theorem 11.3 and the fact that pseudo monoids are preserved by pseudo functors (Definition B.4)
guarantee that a weakly ring-like R• gives rise, through the associated stack construction, to a weakly
ring-like stack. More interesting is the converse direction, namely:

12.5 Proposition. If (R , t,θ) is a weakly categorical ring and R1→ R0→R a presentation, then R• : R1→ R0
is a pseudo monoid in MBXMod.

Proof. From Theorem 11.3 we get an equivalence MaR : {R•,R•}
∼→ {R ,R }.

Here is an explicit construction of a quasi-inverse to MaR. By Theorem 9.1, or rather the generalization
of the proof of Theorem 7.1, the functor u has a quasi-inverse v computed by the fiber product construction
which yields an n-butterfly En = v(t(n)); for a composition t(n)(t(m1), . . . , t(mn)) we obtain a morphism

v(t(n)(t(m1), . . . , t(mn)))
∼−→ En(Em1

, . . . ,Emn ).

Thus, for any
θn;m1,...,mn : t(m1 + · · ·+mn)→ t(n)(t(m1), . . . , t(mn))

in MR , we obtain
Em1+···+mn

∼−→ v(t(n)(t(m1), . . . , t(mn)))
∼−→ En(Em1

, . . . ,Emn ),

eventually arriving at (12.2).
The notion of morphism for both weakly categorical rings and crossed modules is straightforward. In

each instance, the notion is a special case of that of morphism of pseudo-monoid examined in sect. B.

Notation. From now on it will be convenient to refer to the monoidal structure ofR as a group-like object
as the “intrinsic” or “internal” one, and denote it by a plus. Correspondingly, the relative unit object will
be denoted by 0R , or simply 0, if no confusion is bound to arise. (This retroactively justifies the choice of
the attribute “biadditive” for the functor m.) The second monoidal structure (m,µ) will be referred to as
the “extrinsic” or “external” one. The result of the application of m will be denoted by a juxtaposition. The
corresponding unit object, if it exists, will be denoted by IR or simply I .

13 The presentation of a categorical ring

In this section we show that the presentation of a (weak) categorical ring or ring-like stack is a crossed module
with certain additional properties. In particular, its zeroth and first homotopy sheaves are, respectively, a
ring and a bimodule over that ring, as in the standard case.

Let R be as above. Let A = π0(R ) and M = π1(R ) be the sheaves of connected components and of
automorphisms of the (additive) identity object. Since the definition of πi applies to the underlying (group-
like) stack, by the usual arguments A and M are also zeroth and first homotopy sheaves of any crossed
module R• used to presentR . In fact the homotopy kernel of the projection $ : R → A is identified with
the Picard stackM = Tors(M) of M-torsors. One has the familiar diagram

M

��

ı // R1

∂
��

// 0

��

0

��

// R0

π
��

q
// A

M // R
$ // A

with homotopy-exact columns and where the top two levels of each column (the part within the box above)
provide a presentation of the item immediately below. The colored sequence in it is the standard extension
of A by M by way of the crossed module R•. Of course, the top two rows, considered as a sequence of
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complexes of length one, is exact only in the sense that the group-like categories or stacks they determine
form a short exact sequence.

For objects X1,X2, . . . ,Xn ofR define the result of applying the n-ary operation t(n) simply by X1X2 · · ·Xn.
Then, by defining [X1][X2] · · · [Xn] B [X1X2 · · ·Xn], we immediately get that $ : R → A is a morphism of
pseudo monoids, so that A is a ring—unital if R possesses a unit object IR for the external monoidal
structure. (It follows thatM behaves like a bilateral ideal inR , namely the monoidal structure onR , and
more precisely its binary operation, restricts to a pair of actions:

R ×M −→M and M ×R −→M .)

While there is no direct map R0 × R0 → R0, the exterior monoidal structure m2 = t(2) : R ×R → R is
“covered” by the diagram

(13.1)
R0 ×R0

E

R0

p

��



��

which is part of the structure of the biextension. Given a pair (x,y) ∈ R0 ×R0, and the choice of a point
in the fiber e ∈ Ex,y , we get a “value” (e) ∈ R0. The latter is of course only defined up to shifting e by the
action of R1, namely (e r) = (e) +∂r, where r ∈ R1. The connected component q(x) ∈ A is well-defined and
independent of all choices. Moreover, by Theorem 7.1, or rather its proof, we have Ex,y = m2(π(x),π(y)),
and therefore $(Ex,y) =$(π(x))$(π(y)) = q(x)q(y). We conclude that, with e ∈ Ex,y as above, q((e)) = q(x)q(y).
Put differently, the diagram displayed above, if interpreted as a “virtual ring structure” for R0, covers the
multiplication map of A. This consideration extends to any number of variables.

Hence the following standard fact holds:

13.1 Proposition. M is an A-bimodule.

We recall the main idea of the proof, as it will be needed to translate the above fact in terms of the
presentation ofR and the multi-extensions associated to its second monoidal structure.

Proof of 13.1 (Sketch). Recall that the standard way to relate the automorphisms of 0R to those of any other
object X ofR is to use the diagram

X + 0R
idX +α

//

��

X + 0R

��

X
α̃

// X

Left and right multiplications by an object Y (i.e. the additive functors m2(Y ,−) and m2(−,Y )) translate
the above diagram into the corresponding ones for automorphisms Yα and αY . If β : Y → Z, so that
[Y ] = [Z] ∈ A, then we arrive at the square

XY + 0R
id+αY //

idX β+id0

��

XY + 0R

idX β+id0

��

XZ + 0R id+αZ
// XZ + 0R

from which we conclude that αY = αZ. The situations for Yα, Zα is analogous.

Combining this with Proposition 12.5 we have:

13.2 Corollary. Every categorical ringR has a presentation

0 //M //R1
∂ //R0

//A //0,

where R• : R1→ R0 is a braided crossed module, A = π0(R ) a ring and M = π1(R ) an A-bimodule.
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In fact, something more can be said about the presentation, despite R0 having the weaker structure given
by (13.1). In addition, we will need to describe the A-bimodule structure of M in terms of (13.1) and the
biextension E.

Consider the morphism examined in Remark 7.5: for an arrow x → x′ = x + ∂r of [R1 → R0]∼, with
x ∈ R0 and r ∈ R1, we have the morphism of (R1,R0)-torsors ρy : Ex,y → Ex′ ,y , e 7→ e ×1 s1(r,y). If ∂r = 0, so
r ∈ π1(R ) =M, then ρy is an automorphism of Ex,y , hence ρ ∈M as well (depending on x,y), since in general
Aut

Tors(R1,R0)(E) 'MR0×R0
. Similarly, we construct an automorphism λx : Ex,y → Ex,y corresponding to the

automorphism of y ∈ R0 given by r ∈ R1.

13.3 Lemma-Definition. The automorphism ρy (resp. λx) is identified with a section −ry (resp. −xr) of M such
that if y,y′ ∈ R0 (resp. x,x′ ∈ R0) and q(y) = q(y′) ∈ A (resp. q(x) = q(x′) ∈ A), then ry = ry′ (resp. xr = x′r).

With the above notations, define ar B xr and rbB ry, where a = q(x),b = q(y) ∈ A.

13.4 Remark. The apparently bizarre choice of inserting an inverse (denoted additively) is due to the point
raised in Remark 1.1.

Proof of the Lemma. The identification between the automorphisms of E and M is standard: for any section
e ∈ Ex,y we have ρy(e) = e rρy (e), with rρy (e) ∈M. On the other hand, this must be equal to e ×1 s1(r,y), the
latter coming from the composition

Ex,y −→ Ex,y ∧R1 E0,y −→ Ex,y .

Recall from sect. 3 that, analogously to the standard case of abelian biextensions [Gro72], for x,y ∈ R0, the
fibers Ex,0 and E0,y are canonically identified with the unit (R1,R0)-torsor: the identification

R1
∼−→ E0,y , 0R1

7−→ ey ,

sends the unit section of R1 (which we write as 0 according to the current additive convention) to the central
section ey ∈ E0,y . Note that as a result (ey) = 0R0

. By the above, we have

(13.2) s1(r,y) = ey (−ry),

where ry B −rρy (ey) ∈ R1, and the juxtaposition stands for the right R1-action. In fact, we have ry ∈M, since
 ◦ s1 is trivial (cf. sect. 6).

Now, assume we have y→ y′ = y +∂u, u ∈ R1. We have

E0,y

u

��

R1

ey 77

ey′ ''

E0,y′

e 7−→ e ×2 s2(0,u)

Using the identities (6.3) and the restriction condition 1 in Definition 6.1 we calculate:

s1(r,y)×2 s2(0,u) = s1(r,y)×2 s2(∂r,u)

= s1(r,y)×2 s1(r,∂u)

= s1(r,y +∂u)

= s2(r,y′).

Using (13.2) the above calculation gives

ey (ry)×2 s2(0,u) = ey ×2 (ry)s2(0,u)

= ey ×2 s2(0,u) (ry)

= ey′ (ry
′) .

The fact that the identification is canonical gives ey ×2 s2(0,u) = ey′ and hence ry = ry′ .
The situation with ex ∈ Ex,0, xr, and x′r is entirely analogous.
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13.5 Remark. In the extension of A by M above, R1 and R0 are only groups, in general, even though the
crossed module R• they form comes equipped with a braiding. In particular, unless certain strong triviality
conditions on the biextension E2 = t(2) ∈ Biext(R•,R•;R•) hold, R0 is not a ring, in general. This remark
applies to stock categorical rings as well, which therefore admit a presentation of the above type with R•
a braided symmetric crossed module. This is in sharp contrast with the so-called Ann-Categories [see e.g.
Qua03; QHT08], whose underlying categories are Picard groupoids. In a companion paper [Ald15] we prove
that Picard stacks with a ring-like structure of this type admit presentations given by crossed bimodules,
namely crossed modules such as in the presentation above where R0 is a ring and R1 is an R0-bimodule, with
∂ a bimodule morphism satisfying an appropriate version of the Pfeiffer identity. The general comparison
between these structures is intricate and it will be addressed elsewhere.

14 Decomposition of categorical rings and the cohomology of rings

Let R , A, and M be as above. In general, a decomposition [Bre94] of R consists in the choice of local
data (objects, morphisms) subordinate to a hypercovering of A leading to the calculation of cohomological
invariants ofR . We use the pseudo-monoidal structure carried by a presentation ofR for this purpose.

We let L•i (A), i = 2,3 be the sharp truncations of the iterated bar complexes B(A,i), i = 2,3 of A as
an abelian group. By [Mac58, §11] it carries a product structure, defined explicitly up to cells in B(A,2).
For i = 2,3 we let H3

i (A,M) denote the (hyper)cohomology groups computed using the multiplicative
bar construction over Li•(A). From the previous reference we have the H3

3 (A,M) ' HML3(A,M), the third
Mac Lane cohomology of A with values in M. Furthermore, we let H̃3

2 (A,M) denote the group of twisted
classes satisfying (14.2) below.

14.1 Theorem. There is a bijective correspondence between equivalence classes of weak ring-like stacks R ,
with A = π0(R ) and M = π1(R ), and twisted classes in H̃3

2 (A,M) defined below (cf. Definition 14.6). In the
unital case, i.e. when the external monoidal structure of R has a unit element, A is likewise unital and the
underlying braiding ofR is necessarily symmetric. Hence the weak ring-like structure ofR is fully ring-like, and
[R ] ∈ H̃3

2 (A,M) 'HML3(A,M).

The statement follows from Proposition 14.8, Corollary 14.9, and Proposition 14.10 below. The rest of
this section is devoted to the details of the proof of the theorem.

14.1 The bar complex

We establish the notation for the iterated bar complex of the abelian group A. We quote, with minor
changes in the notation, from [Dug14, §7]. The part of B∞(A) of interest is the following complex, written
homologically:

L3
•(A) : Z[A] Z[A2]

∂1oo
Z[A3]⊕Z[A2]

∂2oo
Z[A4]⊕Z[A3]⊕Z[A3]⊕Z[A2]

∂3oo

We place the complex in homological degrees [0,3], with generators:

Degree Generators

0 [a]
1 [a |1 b]
2 [a |1 b |1 c] [a |2 b]
3 [a |1 b |1 c |1 d] [a |1 b |2 c] [a |2 b |1 c] [a |3 b]
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The differential is given by:

∂1[a |1 b] = [b]− [a+ b] + [a]

∂2[a |1 b |1 c] = [b |1 c]− [a+ b |1 c] + [a |1 b+ c]− [a |1 b]

∂2[a |2 b] = [a |1 b]− [b |1 a]
∂3[a |1 b |1 c |1 d] = [b |1 c |1 d]− [a+ b |1 c |1 d] + [a |1 b+ c |1 d]− [a |1 b |1 c+ d] + [a |1 b |1 c]

∂3[a |1 b |2 c] = [a |1 b |1 c]− [a |1 c |1 b] + [c |1 a |1 b]− [b |2 c] + [a+ b |2 c]− [a |2 c]
∂3[a |2 b |1 c] = [a |1 b |1 c]− [b |1 a |1 c] + [b |1 c |1 a] + [a |2 c]− [a |2 b+ c] + [a |2 b]

∂3[a |3 b] = [a |2 b] + [b |2 a].

The subcomplex L2
•(A) is the one obtained by dropping the component Z[A2] of L2

3(A), namely the one
generated by symbols [a |3 b]. The degrees are shifted in a way compatible with the reset needed to form the
infinite bar construction, so in effect we have Li•(A) = B(A,i)[−i], for i = 2,3, and therefore

H2(L2
•(A)) 'H4(K(A,2)), H2(L3

•(A)) 'H5(K(A,3)).

In the stable situation, this shift is compatible with the degrees in the Q construction.

14.2 Product structure

Let now A be considered with its ring structure. We describe the product structure on L2
•(A) and L3

•(A) [see
Mac58, §11]. The non zero products among the generators are the following:

[a][b] = [ab]

[a][b |1 c] = [ab |1 ac] [a |1 b][c] = [ac |1 bc]
[a][b |1 c |1 d] = [ab |1 ac |1 ad] [a |1 b |1 c][d] = [ad |1 bd |1 cd]

[a][b |2 c] = [ab |2 ac] [a |2 b][c] = [ac |2 bc]

and the most interesting one10:

[a |1 b][c |1 d] = [ac |1 bc |1 ad + bd]− [ac |1 ad |1 bc+ bd] + [ad |1 bc |1 bd]− [bc |1 ad |1 bd]− [bc |2 ad].

With this product L2
•(A) and L3

•(A) become DGAs. Furthermore, both are equipped with the augmentation
η : Lk•(A)→ A given by η([a]) = a, for x ∈ A, and zero in all other degrees. Thus, they become augmented DGAs
to which we can apply the (reduced) bar construction B̄i,•(A)B B̄N (Li•(A),η) of loc. cit. (more details below).
We are interested in the resulting cohomology groups H3(Hom(B̄i,•(A),M)), where M is an A-bimodule as
above. As remarked, for i = 3 we have H3(Hom(B̄3,•(A),M)) 'HML3(A,M).

14.3 The multiplicative bar construction and third cohomology of rings

To avoid typographical clutter, the generators of B̄i,•(A) are denoted ~u1, . . . ,un�, where the uks are homoge-
neous elements of Li•(A). The degree is

deg~u1, . . . ,un� = n+ |u1|+ · · ·+ |un|,

where we let |uk | = deguk . We quote [Mac58, p. 323] the expression for the differential in the bar complex; it
is ∂tot = ∂′ +∂′′ , where

∂′~u1, . . . ,un� = −
n∑
i=1

(−1)εi−1~u1, . . . ,∂ui , . . . ,un�

∂′′~u1, . . . ,un� = η(u1)~u2, . . . ,un�+
n−1∑
i=1

(−1)εi~u1, . . . ,uiui+1, . . . ,un�+ (−1)εn~u1, . . . ,un−1�η(un),

10There appears to be a discrepancy in the second slot of the second term of the right hand side, presumably a misprint in [Mac58].
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where we have set εi = deg~u1, . . . ,ui�. On the right hand side of the expression for ∂′ the inner ∂ui indicates
the differential in the complex Li•(A).

The cells of total dimension (=degree) 3 are:

n Generators

3 ~[a], [b], [c]�
2 ~[a |1 b], [c]� ~[a], [b |1 c]�
1 ~[a |1 b |1 c]� ~[a |2 b]�

Therefore a 3-dimensional cochain over B̄i,•(A) with values in M is a 5-tuple ξ = (f ,α1,α2, f+, g+), where

f : A3 −→M

α1 : A2 ×A −→M, α2 : A×A2 −→M

f+ : A3 −→M, g+ : A2 −→M.

To write the cocycle condition δξ = ξ ◦ (∂′ +∂′′) = 0 in explicit form we need the cells of dimension four:

n Generators

4 ~[a], [b], [c], [d]�
3 ~[a |1 b], [c], [d]� ~[a], [b |1 c], [d]� ~[a], [b], [c |1 d]�
2 ~[a |1 b], [c |1 d]� ~[a |1 b |1 c], [d]� ~[a |2 b], [c]� ~[a], [b |1 c |1 d]� ~[a], [b |2 c]�
1 ~[a |1 b |1 c |1 d]� ~[a |1 b |2 c]� ~[a |2 b |1 c]� ~[a |3 b]�†

The element marked with a (†) would only figure in the bar complex B̄3,•(A). In explicit form, the cocycle
condition on the five components of ξ consists of several equations, which unfortunately makes it hard to
take in. Arranging the various equations in different groups we have (see below for specific comments):

(14.1a) af (b,c,d)− f (ab,c,d) + f (a,bc,d)− f (a,b,cd) + f (a,b,c)d = 0

(14.1b)

f (b,c,d)− f (a+ b,c,d) + f (a,c,d) = α1(ac,bc;d)−α1(a,b;cd) +α1(a,b;c)d

−f (a,c,d) + f (a,b+ c,d)− f (a,b,d) = aα1(b,c;d)−α1(ab,ac;d)−α2(a;bd,cd) +α2(a;b,c)d

f (a,b,d)− f (a,b,c+ d) + f (a,b,c) = aα2(b;c,d)−α2(ab;c,d) +α2(a;bc,bd)

(14.1c) f+(ac,bc,ad + bd)− f+(ac,ad,bc+ bd) + f+(ad,bc,bd)− f+(bc,ad,bd)− g+(bc,ad) =

α1(a,b;d)−α1(a,b;c+ d) +α1(a,b;c) +α2(b;c,d)−α2(a+ b;c,d) +α2(a;c,d)

(14.1d)

f+(ad,bd,cd)− f+(a,b,c)d = −α1(b,c;d) +α1(a+ b,c;d)−α1(a,b+ c;d) +α1(a,b;d)

f+(ab,ac,ad)− af+(b,c,d) = α2(a;c,d)−α2(a;b+ c,d) +α2(a;b,c+ d)−α1(a;b,c)

g+(ac,bc)− g+(a,b)c = −α1(a,b;c) +α1(b,a;c)

g+(ab,ac)− ag+(b,c) = α2(a;b,c)−α2(a;c,b)

(14.1e)

f+(b,c,d)− f+(a+ b,c,d) + f+(a,b+ c,d)− f+(a,b,c+ d) + f+(a,b,c) = 0

f+(a,b,c)− f+(a,c,b) + f+(c,a,b) = g+(b,c)− g+(a+ b,c) + g+(a,c)

f+(a,b,c)− f+(b,a,c) + f+(b,c,a) = −g+(a,c) + g+(a,b+ c)− g+(a,b)

g+(a,b) + g+(b,a) = 0 .

14.2 Remarks.
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1. The last group of equations (14.1e) is closed and it is the condition for the pair (f+, g+) to be an Eilenberg
Mac Lane cocycle. Thus (f+, g+) represents a class in H4(K(A,2),M) or H5(K(A,3),M), depending on
whether the last term is included.

2. The block (14.1d) can be re-written as follows. Let λa and ρa denote the left and right multiplications
by a ∈ A. Also, write af+ and f+ a for the action of a ∈ A on the values of f+. Same for g+. Then we can
rewrite the block as

ρ∗df+ − f+ d = −α1(−,−;d) ◦∂3

λ∗af+ − af+ = α2(a;−,−) ◦∂3

ρ∗cg+ − g+ c = −α1(−,−;c) ◦∂2

λ∗ag+ − ag+ = α2(a;−,−) ◦∂2

The block (14.1d) expresses the invariance of the class of (f+, g+) under left and right multiplication in
A.

3. Equation (14.1a) has the familiar form of a Hochschild cocycle. (As it might be expected, it arises
from the associativity constraint on the exterior monoidal structure ofR , as it will be shown below.)
The behavior of f with respect to the additivity, i.e. its failure to be multilinear, is expressed by the
equation block (14.1b).

4. As it will be explained below, the meaning of the somewhat obscure relation (14.1c), is that it expresses
the compatibility (interchange law) between the partial composition laws of the exterior monoidal
structure ofR .

It is well known that H5(K(A,3)) ' A/2A and that H5(K(A,3),M) 'Hom(A/2A,M) 'Hom(A,2M) [EM54,
§23; see also Dug14, §7.3]. The former isomorphism is given by a 7→ [a |2 a], the latter sends the class
of [(f+, g+)] to the (linear) map a 7→ g+(a,a). In fact, dropping the last of equations (14.1e), the same
assignment gives a quadratic map from A to M. (Recall that q : A→M is quadratic if q(na) = n2q(a) for all
n ∈ Z, and if the associated symmetric function ∆q(a,b) = q(a+ b) − q(a) − q(b), a,b ∈ A, is bilinear.) Thus
H5(K(A,3),M) ' Hom(Γ2(A),M), where Γ2(A) is the Whitehead functor, i.e. the degree four component of
the divided power algebra Γ•(A) over A.

Recall that m ∈M is central if am =ma for all a ∈ A. Let MA be the A-module of central elements of M.
Assume that ξ represents a class in H3(Hom(B̄2,•(A),M)), that is, the pair (f+, g+) satisfies, as part of the full
set ξ = (f ,α1,α2, f+, g+), equations (14.1d) and (14.1e), except the last one. We have the following observation.

14.3 Proposition. Let A be unital. We have an isomorphism

H3(Hom(B̄2,•(A),M)) 'H3(Hom(B̄3,•(A),M)) 'HML3(A,M).

Moreover, the map HML3(A,M)→Hom(A,2M) [Mac58, §11] factors through 2M
A 'HomA(A,2MA).

Proof. Let q be the map a 7→ g+(a,a). The last two equations of (14.1d) imply that q is an A-bimodule
homomorphism. As such, it is determined by a central element in M. This proves the first isomorphism.
The second follows from [Mac58].

14.4 Remark. Because the complexes B2,•(A) and B2,• are equal below degree 3, their cohomologies coincide
for n ≤ 2. Combined with [Bre99, §6], we have that the statement of Proposition 14.3 holds in general when
H• is interpreted as hypercohomology.

The following variant of the previous constructions will be useful below. Given a 5-tuple ξ as above,
consider the map βξ : B2,4(A)2→M given by (the subscript 2 refers to the elements in B2,4(A) with n = 2):

βξ (~u1,u2�) =


g+(ab,ac) + g+(ac,ab) ~u1,u2� = ~[a], [b |2 c]�,
g+(ac,bc) + g+(bc,ac) ~u1,u2� = ~[a |2 b], [c]�,
0 all other cases.
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Further, we define βξ to be zero on the other components of B2,4(A). Consider the twisted cocycle equation
condition:

(14.2) Dξ B δξ + βξ = 0.

This replaces the last two equations in the block (14.1d) with

(14.3)
−g+(bc,ac)− g+(a,b)c = −α1(a,b;c) +α1(b,a;c)

−g+(ac,ab)− ag+(b,c) = α2(a;b,c)−α2(a;c,b)

and it still drops the last one from (14.1e). Observe that for i = 3 equation (14.2) is vacuously equal to the
set (14.1).

14.5 Remark. Note that replacing ξ with ξ ′ = ξ + δν has the effect of adding to g+ the alternation of a
map h+ : A ×A→ M, so that βξ does not depend on the particular choice of g+ within its class modulo
coboundaries. Hence we get a well defined class of solutions of equation (14.2) modulo adding coboundaries.

14.6 Definition. Let us denote by H̃3
2 (A,M) the hypercohomology group of classes satisfying (14.2) in degree

three, relative to A (cf. Remark 14.4).

There is an evident map HML3(A,M)→ H̃3
2 (A,M), which, at least in the cases we like to consider, is an

isomorphism. Indeed we have

14.7 Lemma. Let A be unital. Then (14.2) and (14.1) are equivalent. Therefore H̃3
2 (A,M) 'HML3(A,M).

Proof. Choosing a or c = 1 in (14.3) shows that the last equation in in (14.1e) holds. (Again, use Remark 14.4
for the general situation.)

14.4 Decomposition ofR

For convenience of notation, let us write [∂ : R1→ R0] ≡ [∂ : R→Λ]. Recall that since we denote the interior
monoidal structure ofR additively, we do the same for R and Λ in the presentation.

For a point a ∈ A, we let Λa = a∗Λ be the fiber. For any multi-extension En in the weak ring-like structure
of R→Λ denote by Ea1,...,an the pullback of E to Λa1

× · · · ×Λan , where a1, . . . , an ∈ A.
There is an obvious morphism Λa1

× · · · ×Λan →Λa1+···+an covering the n-fold iteration of +: A×A→ A.
If we assume a choice for a point xa ∈ Λa has been made for all points a ∈ A, i.e. we have a section x of
q : Λ→ A, then xa+xb (the image of (xa,xb) under Λa×Λb→Λa+b) and xa+b will in general be different. This
gives rise to σ : A×A→ R by way of

xa+b = xa + xb +∂σa,b.

In fact the objects Xa B π(xa) of R provide a decomposition of the sequence M →R → A, where R is
considered as a gerbe over A [Bre94, §7]. Note that the above corresponds to the morphism

σa,b : Xa+b −→ Xa +Xb

of (R,Λ)-torsors. Therefore we have the classical fact that the difference between the two possible compar-
isons between Xa +Xb +Xc and Xa+b+c, and the application of equations (1.2) to xa, xb, and xc determines a
pair (f+, g+) satisfying the cocycle equations (14.1e) above, hence a class in H4(K(A,2),M) or H5(K(A,3),M)
[see, e.g. JS93; Bre99]. For future reference, the relevant relations are [cf. Bre94]:

(14.4)
σb,c + σa,b+c − f+(a,b,c) = σa,b

xc + σa+b,c,

−g+(a,b) + σa,b = {xa,xb}+ σb,a.

(There is an obvious generalization to n variables, but the classical situation is sufficient to describe the
decomposition with respect to the “+” operation ofR .)
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For the multiplication, i.e. the exterior monoidal structure, the reasoning at the end of sect. 12 implies
we have instead

(14.5)

Ea1,...,an

Λa1
× · · · ×Λan Λa1...an

p

��



��

covering the multiplication in A. Using the choice of a section of the fibers Λa as above, we have the
isomorphism of (R,Λ)-torsors

(14.6) ea1,...,an : Ea1,...,an
∼−→ Xa1···an = (R,xa1···an )

which follows from (14.5) and again the end of sect. 12. We can assume this isomorphism is realized by the
choice of a point ea1,...,an ∈ Ea1,...,an such that (ea1,...,an ) = xa1···an .

We can write the morphism (12.1) with respect to this choice of local data. According to the proof of
Theorem 10.1, let a1,1, . . . , a1,m1

, . . . , an,1, . . . , an,mn ∈ A. For i = 1, . . . ,n define bi = ai,1 · · ·ai,mi . Consider the
points ei = eai,1,...,ai,mi ∈ Eai,1,...,ai,mi and eb1,...,bn ∈ Eb1,...,bn . Then [e1, . . . , en, eb1,...,bn ] is a point of the composition
En(Em1

, . . . ,Emn ) overΛa1,1
×· · ·×Λan,an , and ([e1, . . . , en, eb1...,bn ]) = (eb1,...,bn ) = b1 · · ·bn. In other words, we have

an isomorphism of (R,Λ)-torsors

En(Em1
, . . . ,Emn )a1,1,...,an,mn

∼−→ (R,xb1···bn ).

On the other hand, since Em1+···+mn covers the multiplication (a1,1, . . . , an,mn )→ a1,1 · · ·an,mn = b1 · · ·bn, we have
another isomorphism (

Em1+···+mn

)
a1,1,...,an,mn

∼−→ (R,xb1···bn )

determined by a chosen section of Em1+···+mn . Thus, the morphism (12.1) amounts to an automorphism

(14.7) fn;m1,...,mn(a1,1, . . . , an,mn ) : (R,xb1···bn )
∼−→ (R,xb1···bn ),

which, using standard facts about (R,Λ)-torsors, we identify with an element of M.

14.5 Cocycle computations

We compute the full class determined byR from the multi-extension structure of the presentation R→
Λ→R and prove that it satisfies the full set of equations (14.1).

14.5.1 Setup

First, consider the following (not necessarily commutative) diagrams of (R,Λ)-torsor morphisms

Ea,c ∧Eb,c //

��

Exa+xb ,xc
// Ea+b,c

��

(R,xac)∧ (R,xbc) (R,xac + xbc)
σ−1
ac,bc
// (R,x(a+b)c)

(14.8a)

and

Ea,b ∧Ea,c //

��

Exa,xb+xc
// Ea,b+c

��

(R,xab)∧ (R,xac) (R,xab + xac)
σ−1
ab,ac
// (R,xa(b+c))

(14.8b)
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arising from the two partial product laws of E = E2. The vertical arrows are the identification (14.6). Both
diagrams in (14.8) can be construed as defining an automorphism of their respective lower right corners,
which can be identified with an element of M: let them be −α1(a,b;c) and α2(a;b,c) respectively.

On the one hand the top rows can be written as

(14.9) ea,c ∧ eb,c 7→ ea+b,c g1(a,b;c), ea,b ∧ ea,c 7→ ea,b+c g2(a;b;c),

by invoking (3.5). On the other hand, following the bottom part, we have

ea,c ∧ eb,c 7→ σ−1
ac,bc, ea,b ∧ ea,c 7→ σ−1

ab,ac.

Comparing the two we get the relations

(14.10) −α1(a,b;c) = g1(a,b;c) + σac,bc, α2(a;b,c) = g2(a;b,c) + σab,ac.

14.5.2 The relations (14.1d)

Consider the diagrams:

Exa+b+xc ,xd

σa+b,c
// Ea+b+c,d

��

Exa+xb+xc ,xd

σ
xc
a,b

OO

σb,c

��

Exa+xb+c ,xd σa,b+c
// Ea+b+c,d

Exa,xb+c+xd

σb+c,d
// Ea,b+c+d

��

Exa,xb+xc+xd

σ
xd
b,c

OO

σc,d

��

Exa,xb+xc+d σb,c+d
// Ea,b+c+d

(14.11a)

and

Exa+xb ,xc
σa,b

// Ea+b,c

Exb+xa,xc

η1

OO

σb,a
// Ea+b,c

OO
Exa,xb+xc

σb,c
// Ea,b+c

Exa,xc+xb

η2

OO

σc,b
// Ea,b+c

OO

(14.11b)

Both diagrams (14.11) are parts of more extended ones, giving rise to relations linking f+ and g+ to the other
quantities comprising a 5-tuple satisfying relations (14.1) as follows.

First observe that by applying Lemma 13.3, the right vertical give the automorphisms corresponding to
f+(a,b,c)d (resp. af+(b,c,d)) for (14.11a), and g+(a,b)c (resp. ag+(b,c)) for (14.11b).

Then from (14.8) and (14.11a) form the obvious associativity diagrams for the morphisms Ea,d ∧Eb,d ∧
Ec,d → Ea+b+c,d and Ea,b ∧Ea,c ∧Ea,d → Ea,b+c+d . Using the cocycle decomposition (3.6) (and Lemma 13.3 for
the right vertical arrows of (14.11)) we arrive at:

(14.12)
g1(a+ b,c;d) + g1(a,b;d)xcd = g1(a,b+ c;d) + g1(b,c;d) + f+(a,b,c)d,

g2(a;b+ c,d) + g2(a;b,c)xad = g2(a;b,c+ d) + g2(a;c,d) + af+(b,c,d),

(The difference with equations (3.6a) and (3.6c) arises because the top rows of (14.8), contrary to the actual
partial multiplication morphisms, lack associativity.) Using (14.10), (14.12), and the first of (14.4), we obtain
the first two of the cocycle relations (14.1d).

The commutativity diagrams obtained from (14.11b) and (14.8) can be analyzed in an analogous manner,
utilizing the second of (14.4). However, we do not directly obtain the other two equations in the block (14.1d);
instead, we arrive at their “flipped” counterpart (14.3).
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14.5.3 The interchange relation (14.1c)

We check the compatibility law (1.5) after pulling back to Λa ×Λb ×Λc ×Λd . Use the diagram

(14.13)

(Ea,c ∧Eb,c)∧ (Ea,d ∧Eb,d) //

��

**

(Ea,c ∧Ea,d)∧ (Eb,c ∧Eb,d)

tt

��

Exa+xb ,xc ∧Exa+xb ,xd
tt ''

I Exa,xc+xd ∧Exb ,xc+xd
ww **

Ea+b,c ∧Ea+b,d
**

))

II Exa+xb ,xc+xd

ww ''

II Ea,c+d ∧Eb,c+d
tt

uu

Exa+b ,xc+xd

""

III Exa+xb ,xc+d

||

Ea+b,c+d

where the triangles commute by definition of the morphisms determined by the top rows of (14.8); the
pentagon (marked I) commutes by the compatibility law; the squares II and the square III are obviously
commutative by functoriality (an explicit calculation uses Proposition 3.2 and the equations (6.3)). Thus the
diagram commutes, and we can use the cocycle equation (3.7) directly, written additively, which gives:

g2(a+ b;c,d) + g1(a,b;c)x(a+b)d + g1(a,b;d) = g1(a,b;c+ d) + g2(a;c,d)xb(c+d) + g2(b;c,d)− {xbc,xad}xbd .

Inserting equations (14.10) and using (14.4) finally gives the third block (14.1c) of the cocycle relation (14.1).

14.5.4 The relations (14.1b) and (14.1a)

We specialize the expression (14.7) for the morphism (12.1) to the tuples (2;2,1) and (2;1,2). The morphism
µ given by (C.1) corresponds to the element

f (a,b,c) = −f(2;1,2)(a,b,c) + f(2;2,1)(a,b,c) ∈M.

More precisely, using the isomorphism with (R,xabc) as a reference trivialization, we can identify f (a,b,c)
with an automorphism of E3 pulled back to Λa×Λb ×Λc, hence with a section of M over it. Explicitly, locally
on Λa ×Λb ×Λc, we have the morphism of (R,Λ)-torsors

(14.14) µa,b,c : E2(E2, I)a,b,c −→ E2(I,E2)a,b,c,

which, using the composition of multi-extensions given in section 10, we can write as

(14.15) µ([ea,b,0c, eab,c]) = [0a, eb,c, ea,bc]− f (a,b,c),

where [ea,b, eab,c] ∈ E2(E2, I)a,b,c and [eb,c, ea,bc] ∈ E2(I,E2)a,b,c. (Recall the additivity in the notation; we extend
it to the action of R on torsors. The brackets denote the class under the action of R. The identity map is
represented by the trivial butterfly, and here 0a represents the unit section of the underlying trivial torsor
Λ×R at the point xa, say.) We have ([ea,b, eab,c]) = ([eb,c, ea,bc]) = xabc, so we can see directly that f (a,b,c) ∈M.

As an isomorphism of tri-extensions, µ is a homomorphism for each of the three partial laws. Writing
these conditions for (14.14), we must compute the maps along the following diagram

E2(E2, I)a,c,d ∧R E2(E2, I)b,c,d
×1 //

µ∧µ
��

E2(E2, I)xa+xb ,xc ,xd
σa,b
//

µ

��

E2(E2, I)a+b,c,d

µ

��

E2(I,E2)a,c,d ∧R E2(E2, I)b,c,d ×1
// E2(I,E2)xa+xb ,xc ,xd σa,b

// E2(I,E2)a+b,c,d

and the other two expressing the compatibility (or lack thereof) with the second and third partial laws.
Because there are some new elements compared to the calculations which have appeared thus far, we sketch
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some of the details. In particular, to compute the two horizontal maps in the second square above we
need the explicit form of the trivializations s1 for both tri-extensions. Similarly for the other two diagrams.
According to the last part of section 10, the form of s2,11 for E2(E2, I) is:

s2,11 (r,xc,xd) = [s1(r,xc),0xd ,1xd ], r = σa,b,

where 0xd denotes the unit section of Λ × R computed at xd ∈ Λ, and 1xd denotes the unit section of
E2|{0}×Λ 'Λ×R similarly computed at xd . Thus, the map denoted by σa,b in the top row is given by

e 7−→ e ×1 s1(σa,b,xc,xd).

Similarly, for the analogous map in the bottom row we must use the expression

s1,21 (r,xc,xd) = [0∂r , ec,d , s1(r,xc)], r = σa,b,

with a similar interpretation of the notation.
Thus, the upper path to the lower right corner gives

µ
(
[ea,c, eac,d]×1 [eb,c, ebc,d]×1 [s1(σa,b,xc),0d ,1xd ]

)
= µ[ea,c ×1 eb,c ×1 s1(σa,b,xc),0d , eac,d ×1 ebc,d]

= µ[ea+b,c + g1(a,b;c),0d , eac,d ×1 ebc,d]

= µ[ea+b,c,0d , eac,d ×1 ebc,d ×1 s1(−g1(a,b;c),xd)]

= µ[ea+b,c,0d , eac,d ×1 ebc,d ×1 s1(σac,bc +α1(a,b;c),xd)]

= µ[ea+b,c,0d , eac+bc,d] + g1(ac,bc,d)−α1(a,b;c)d

= [0a+b, ec,d , ea+b,cd] + g1(ac,bc;d)− f (a+ b,c,d)−α1(a,b;c)d

where in the next to last we have used (6.3), the first of (14.9), and Lemma 13.3; to obtain the last we have
used (14.15).

On the other hand, the lower path to the lower right corner gives, with similar calculations

µ[ea,c, eac,d]×1 µ[eb,c, ebc,d]×1 [0∂σa,b , ec,d , s1(σa,b,xcd)] = [0a+b, ec,d , ea+b,cd] + g1(a,b;cd)− f (a,c,d)− f (b,c,d).

Comparing the two expressions and using (14.10) yield the first equation of block (14.1b). The others are
obtained via identical means.

The last equation (14.1a) becomes now the easiest to obtain, as a condition satisfied by the automorphism
µ upon considering the five possible pullbacks to the quadri-extension E4, as per the pentagon diagram (C.2).
We leave the details to the reader.

14.6 The class of a ring-like stack

Assembling the steps in sect. 14.5, we have the following

14.8 Proposition. Let R be a (weakly) ring-like stack with π0(R ) = A and π1(R ) = M. A decomposition of
R determines a twisted cocycle ξ = ξR satisfying (14.2) with the same A-bimodule structure. An equivalence
R →R ′ gives rise to two twisted cocycles ξR and ξR ′ differing by a coboundary, hence equivalence classes are in
one-to-one correspondence with elements of H̃3

2 (A,M).

Proof. The first statement is a consequence of the preceding calculations. The statement about the equiva-
lence follows from the definition of morphism of pseudo-monoid and the fact that the structure is preserved
across pseudo-functors between multi-bicategories (cf. B.3 and B.4), in particular between 12.5

Since the only difference between all these complexes occurs in degrees 3 and 4, the statements carry
over to the hypercohomology situation.

Let us use the notation [R ] for the class determined by R . Thus of [R ] = [ξR ]. As we have seen, a
consequence of Proposition 14.3 and Lemma 14.7 is that in the unital case the classes in H̃3

2 (A,M) lift to
HML3(A,M).
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14.9 Corollary. LetR be as above, with in addition a unit object for the exterior monoidal structure. Then A is
unital and there exists an equivalenceR

∼→R ′ where the underlying categorical group structure ofR ′ is braided
symmetric. Hence [R ] = [R ′] ∈HML3(A,M).

We briefly address the question of recovering R (up to equivalence) from [R ]. Consider a class
[ξ] ∈ H̃3

2 (A,M). A portion of ξ will represent a class in H4(K(A,2),M), possibly lifting into the stable
range. Let ξ+ denote this projection. Standard techniques [Bre94, §7.6–7] allow to reconstruct a braided
(possibly symmetric) stackR =Rξ from ξ+, equipped with $ : R → A fitting into the standard short exact
sequence M →R → A, with M = Tors(M). Briefly, ξ+ determines a 2-gerbe over a simplicial model of
K(A,2) or K(A,3), suitably re-scaled so that the relevant class appears in degree three. R is obtained by
gluing trivial gerbes with band M→ 0 over A along ξ+. (We must supplement the cocycles in loc. cit. with
those parts pertaining to the braiding structure.) The class ofR is that of ξ+, and therefore it is equipped
with a decomposition (14.4).

14.10 Proposition. LetR , ξ, and ξ+ be as above. Let R→Λ→R be a presentation by a braided crossed module.
Then R→Λ carries a bi-extension whose class is ξ.

Proof (Sketch). The main point is to reverse the computation of the cohomology class, using the equations
for the cocycle ξ (either (14.1) or their twisted form (14.2)) to obtain a well-defined biextension E→Λ×Λ
providing (R,Λ) with a pseudo-monoid structure.

Starting with the implementation of (14.5), for all a,b ∈ A define Ea,b → Λa ×Λb as Ea,b = Λa ×Λb ×R
equipped with  : Ea,b → Λ given by 0R 7→ xab. From (14.10), given ξ and the decomposition (14.4), we
compute the nonabelian cocycles g1 and g2 we can use to define partial laws

×1 : Ea,c ∧R Eb,c −→ Ea+b,c , ×2 : Ea,b ∧R Ea,c −→ Ea,b+c ,

which are well defined by equations (14.12) and (14.13).
Note that, unless a = 0, the pullback of ∂ : R→ Λ along Λa→ Λ is trivial, whereas it is isomorphic to

Im∂ for a = 0. This ensures (again from equation (14.5) and choosing a normalized section x) the triviality
conditions required by Definition 6.1 to have a full-fledged butterfly are satisfied.

Finally, we use (14.14) and (14.15) to define µ : E2(E2, I)→ E2(I,E2); the identity

g1(ac,bc;d)− f (a+ b,c,d)−α1(a,b;c)d = g1(a,b;cd)− f (a,c,d)− f (b,c,d),

and its companions found above, together with (14.1a) and (14.1b), ensure E satisfies the required pentagonal
structure.

Part IV

A Multi-variable compositions

In this technical addendum we give a brief treatment of multivariable functor calculus in a bicategory.
Our approach is descriptive and explicit, and it is aimed at a definition of pseudo-monoid suitable for the
applications in the text to multi-additive functors and multi-linear butterflies (cf. sects. 9 and following).

We resort to multi categorical-based ideas, in fact we borrow some of kelly’s clubs formalism [see Kel72;
Kel74], which is convenient in the present context.11 We include permutations, even though this is slightly
more general than needed in the main part of the text. Permutations can be included at nearly no additional
cost, covering the symmetric monoidal case, which is what the formalism was originally designed to do. As
a result, the formalism can still be used to symmetrize the (external) monoidal structures described in the
text. Unlike [Kel72], we need our objects to inhabit a bicategory, as opposed to a 2-category, due to the fact
that crossed modules equipped with butterflies as morphisms form a genuine bicategory equivalent to the
2-category of group-like stacks.

11See also [Tho95] for further applications to (symmetric) monoidal categories.
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Henceforth, we shall fix an ambient groupoidal bicategory C of objects x,y, . . . Groupoidal means that
its HomC categories are all groupoids. We shall require that for all tuples (y1, . . . , yn;x) of objects of C
there exists a groupoid HomC(y1, . . . , yn;x) with compositions, formalized below, that follow the same pat-
tern as in multi-categories (see e.g. [Lei04]). The examples occurring in the main text are the groupoids
MExt(H1,•, . . . ,Hn,•;G•) and Hom(H1, . . . ,Hn;G ) introduced in sect. 9. We also want to have, on each
HomC(y1, . . . , yn;x), a permutation action compatible with the composition.

Thus, our first step is to let MC (M is for “multi”) be an extraordinary (bi-)multicategory with the same
objects as C.12 Explicitly, MC is given by:

• A class of objects x,y, . . . (those of C).

• For each tuple (y1, . . . , yn;x) of objects, a groupoid of arrows HomC(y1, . . . , yn;x). The cells are denoted

(y1, . . . , yn)
f

&&

g

88�� α x .

• For each object x, a functor ıx : 1 → HomC(x;x), where 1 is the singleton category. The resulting
distinguished object is the identity arrow idx : (x)→ x.

• Compositions functors

Hom(y1, . . . , yn;x)×Hom(z1,1, . . . , z1,m1
;y1)× · · · ×Hom(zn,1 . . . , zn,mn ;yn) −→Hom(z1,1, . . . , zn,mn ;x)

(f ;g1, . . . , gn) −→ f (g1, . . . , gn).

• Associativity data for the composition and the identities as in a bicategory.

• For each n and for each tuple (y1, . . . , yn;x), an action by Σn, that is, a functor

ξ∗ : HomC(yξ(1), . . . , yξ(n);x) −→HomC(y1, . . . , yn;x)

such that (ξη)∗ ' η∗ξ∗ and the composition functors are equivariant for this action.

The definition of pseudo- (or lax-)functor F : MC → MB between multi-bicategories is mutatis mutan-
dis the same as for bicategories. For the symmetric structure, we add the condition that the functors
Fy1,...,yn;x : HomMC(y1, . . . , yn;x)→HomMB(F(y1), . . . ,F(yn);F(x)) preserve the Σn-action, for all n.

We identify the bicategory C with the one obtained from MC by dropping all Hom-groupoids except
those of the form HomC(y;x).

Without the last requirement in the list defining MC, the data define what ought to be indeed called a
bi-multicategory. The last item intuitively affords for cells of the form

(A.1)

(y1, . . . , yn)

��

$$
x

(yξ(1), . . . yξ(n))

::
AI

A.1 Remark. The above diagram becomes precise if we use the global definition of MC in terms of spans of
categories [see Shu10; and CS10, for instance], namely as a diagram

C1

t

~~

s

!!

C0 TC0

12Without the extraordinary structure given by permutations, the name “bi-multicategory” appears in [Pis14] to denote the bicategory-
analog of a multicategory: a Cat-enriched multicategory with weakly associative composition. For enrichment over simplicial sets, see
also [Rob11], which also incorporates permutations.
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where C0 is a discrete category (corresponding to the class of objects ofC) and TC0 is the strict free symmetric
monoidal category on C0— its objects are finite sequences of elements of C0 with permutations as morphisms.
Thus an object of C1 is a multi-arrow in MC, and an arrow in C1 gives rise to a diagram like eq (A.1). To
recall the complete picture, the composition arises from the pullback diagram:

C1 oC1

{{ $$

C1

t

~~

s

##

TC1

Tt

{{

Ts

##

C0 TC0 TTC0
µC0

##

TC0

where µ : TT → T is structure of the strict symmetric monoidal monad. On the discrete category C0 it
“flattens” the lists of objects as:

((z1,1, . . . , z1,m1
), . . . , (zn,1, . . . , zn,mn )) −→ (z1,1, . . . , zn,mn )

whereas at the level of morphisms it is the standard map Σm1
× . . .Σmn ↪→ Σm1+···+mn of permutation groups

sending the tuple (ξ1, . . . ,ξn) to ξ1 + · · ·+ ξn. The summit of the diagram being defined by the pullback, the
composition amounts to a morphism � : C1 oC1→ C1. We shall refer to this map as the assembly map.13

We can recover the span version of MC starting from the item-by-item description given above by
applying the Grothendieck construction on the presheaf defined as follows. First, by calling C0 the class of
objects of MC, consider the category C0 ×TC0 as in Remark A.1. The only possible morphisms are of the
form ξ̃ : (y1, . . . , yn;x)→ (yξ(1), . . . , yξ(n);x) with ξ ∈ Σn. Then, the various HomC(y1, . . . , yn;x) define a presheaf
of groupoids on C0 × TC0 with pullback functors given by the various ξ∗. Let C1 be the Grothendieck
construction performed on this presheaf. As a result, we obtain a fibration C1 → C0 × TC0 for which a
morphism, by construction, has precisely the form in eq. (A.1). Moreover, composing the fibration with the
projections to C0 and TC0 gives a span as in Remark A.1.

A.2 Definition (Kelly [Kel72; Kel74]). A Club is an extraordinary multicategory with one object.

We have T(1) = S, the skeletal category of finite sets with permutations as morphisms. (S can be
obtained as the core, i.e. the largest subgroupoid, of the Segal category Γ of finite sets.) As a result, the span
corresponding to a club k has the form

k −→ (1×S) ' k −→ S,

and so is an object of Cat/S (or actually Grpds/S in our case), as in Kelly’s original definition. It is easy to see
that the composite category k ok is a wreath product [see e.g. Ber07], hence the choice of the symbol.

Examples of clubs are:

• S itself, equipped with id: S→ S.

• The natural numbers identified with a discrete subcategory N of S.

In both cases k = S and k = N, the composition morphism k o k → k sends the object (n;m1, . . . ,mn) to
m1 + · · ·+mn.

13The choice of the symbol o will be explained below.
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A.3 Definition (Kelly [Kel72]). Let x,y be two objects of C. Let ıx and ıy be the inclusions of the singletons
on x and y into the class of objects of C. Then {y,x} denotes the category which is part of the span

{y,x}
t

}}

s

""

{x} T{y}

obtained by pulling back the span corresponding to MC along the functor (ıx,Tıy) : {x} ×T{y} → C0 ×TC0.

Observe that T{y} ' S = T(1), hence {y,x} is again a category over S. It is the category of all possible
multi-arrows from any n-tuple (y, . . . , y) (n-copies) to x, for arbitrary values of the natural number n.

General spans can be composed by a procedure identical to that outlined in Remark A.1. If C0← C1→
TD0 and D0←D1→ TE0 are two spans, the composite is again14

C1 oD1

{{ $$

C1

t

~~

s

##

TD1

Tt

zz

Ts

##

C0 TD0 TTE0
µC0

##

TE0

By applying this construction to objects x,y,z and the categories {y,x} and {z,y} we immediately obtain

A.4 Proposition (Kelly [Kel72]). There is an assembly map

{y,x} o {z,y} −→ {z,x},

sending the object (f ;g1, . . . , gn) to the composition f (g1, . . . , gn) and the morphism (α;β1, . . . ,βn) to (αξ ;β
η1
1 , . . . ,β

ηn
n ),

where ξ ∈ Σn, ηi ∈ Σmi are images of α, βi under the structure map to S.

Associativity for this composition is inherited from the ambient multicategory MC, hence, for objects
x,y,z,w of MC we have:

(A.2)

(
{y,x} o {z,y}

)
o {w,z} ass. //

�oid
��

{y,x} o
(
{z,y} o {w,z}

)
id o�
��

{z,x} o {w,z} // {w,x}

CK

{y,x} o {w,y}oo

As a corollary we have that for any object x, {x,x} is a (pseudo-)monoid for the assembly map, with identity
given by (id; ) (the empty string in the second slot).

B (Unbiased) Monoids and monoidal structures

We keep the notations and environment of section A. C is a bicategory identified with the underlying
bicategory of a bi-multicategory MC. We add another piece of notation: for an object x, let Mx = {x,x}.
Having observed that this is a monoid for the composition, a monoid object in C is defined in the expected
way. Recall that N is a club, as discussed in the previous section.

14Comparing with the span definition of MC, this explains why the bi-multicategory can also be defined as a monad in spans.

47



B.1 Definition. A (pseudo-)monoid in C is an object x of MC equipped with a lax monoidal functor
(t,θ) : N→Mx.

Thus, a (pseudo-)monoid structure on x amounts to that of a pseudo-algebra over the club N. Similarly,
a symmetric monoid would be a pseudo-algebra over the club S, instead.

Explicitly, the lax monoidal functor is given by a diagram

(B.1)

N oN �
//

tot
��

�	 θ

N

t
��

Mx oMx
�
// Mx

From it we have the coordinate expression for the natural transformation θ, which assigns to the object
(n;m1, . . . ,mn) ∈N oN the morphism

(B.2) θn;m1,...,mn : t(m1 + · · ·+mk) −→ t(n)(t(m1), . . . , t(mn))

in Mx. These data are subject to be compatible with the associativity conditions for the assembly maps of
both N and Mx, namely they must satisfy the following commutative diagram of natural transformations:

(B.3)

(Mx oMx) oMx
ass //

�oId

��

Mx o (Mx oMx)

Id o�

��

(N oN) oN

Zb
θot

(tot)ot

gg

�oId
��

ass // N o (N oN)
to(tot)

77

Id o�
��

N oN
�

//

�	 θtot
vv

N

t
��

N oN

tot
((

�
oo

Mx oMx
�

// Mx

��θ

Mx oMx
�

oo

=Etoθ

In (B.3) the top quadrangle and the small pentagon are strictly commutative. For the quadrangle, it follows
from the functoriality of the associator, whereas for the small pentagon the associativity morphism reads

((n;m1, . . . ,mn); l1, . . . , lk) 7−→ (n; (m1; l1, . . . ), . . . , (mn; . . . , lk)),

where k = m1 + · · ·+mn; both paths evaluate to h = l1 + · · ·+ lk = j1 + · · ·+ jn, where for i = 1, . . . ,n we have
ji = lmi−1+1 + · · · + lmi−1+mi . Lastly, the back face of the diagram, that is the large pentagon, is just (A.2)
specialized to the same object. Thus, the commutativity in diagram (B.3), when expressed in coordinates,
reads as follows:

(B.4)

t(k)(t(l1), . . . , t(lk))

��

t(h) //oo t(n)(t(j1), . . . , t(jn))

��

t(n)(t(m1), . . . , t(mn))(t(l1), . . . , t(lk)) // t(n)(t(m1)(t(l1), . . . ), . . . , t(mn)(. . . , t(lk))

B.2 Remark. By construction, the pseudo-monoid structure on x given by the club morphism t : N→Mx
possesses n-ary operations t(n) for arbitrary values of n. If x has an internal structure (namely objects, as
in the main text), then this implements a monoidal structure in “unbiased” form [see e.g. Lei04], with the
n-ary unprivileged operations of all degrees. In this case diagram (B.3) expresses the coherence condition in
unbiased form, namely, that the two possible ways to remove parentheses from an expression must coincide
as it is apparent from the coordinate version (B.4).

One can consider morphisms of monoids as follows. Let f : y→ x be a (unary) arrow. It determines two
functors

f∗{y,y} −→ {y,x} Tf ∗{x,x} −→ {y,x}
by post-composing with f or pre-composing with Tf , respectively.
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B.3 Definition. Let x,y be (pseudo-)monoids in C. A morphism of monoids is a pair (f : y→ x,λ) fitting
the diagram

N
ty
//

tx
��

�� λ

{y,y}

f∗
��

{x,x}
Tf ∗
// {y,x}

and compatible with the pseudo-algebra condition (B.1).

The compatibility between the above diagram and (B.1) means that in the coordinates of (B.2) we have

f ◦ ty(m1 + · · ·+mk)
f θy

//

λm1+···+mn
��

f ◦ (ty(n)(ty(m1), . . . , ty(mn)))
1
// (f ◦ ty(n))(ty(m1), . . . , ty(mn))

λn◦Id
��

tx(m1 + · · ·+mk) ◦Tf

θxTf
��

(tx(n) ◦Tf )(ty(m1), . . . , ty(mn))

2
��

(tx(n)(tx(m1), . . . , tx(mn))) ◦Tf
3
// tx(n)((tx(m1), . . . , tx(mn)) ◦Tf ) tx(n)(f ◦ ty(m1), . . . , f ◦ ty(mn))

Id◦λm1 ,...,mn

oo

where the numbered arrows result from associativity isomorphism for composition.
Pseudo-monoids behave in the expected manner with respect to pseudo-functors. Specifically, let

F : MC→MB be a pseudo-functor, which by virtue of our identification, we think of as coming from an
pseudo-functor F : C→B between bicategories. It is clear that for any objects x,y of C, F induces a functor

F(y);x : {y,x} −→ {F(y),F(x)}.

B.4 Definition. Let x be a pseudo-monoid in C. Then F(x) acquires the structure of a pseudo-monoid in B
by virtue of the composition:

N t //Mx
F• //MF(x),

with the full pseudo-monoid structure for MF(x) results from the composition

N oN tot //

�

��

Mx oMx
F•oF• //

�

��

MF(x) oMF(x)

�

��

N t // Mx
F• //

@Hθ

MF(x)

CKε

C Pentagons

Pentagon diagrams express the coherence condition in a monoidal category. This condition is replaced by a
diagram of the form (B.3) or (B.4) if the monoidal structure is given in unbiased form [Lei04]. The actual
pentagon can be recovered if these diagrams are specialized to arities equal to 4 and the monoidal category
comes from a monoid inhabiting a 2-category. This shows the equivalence of the biased and unbiased
definitions. A slight generalization of the pentagon occurs if the monoid inhabits a bicategory, and both
these situations arise in the main text. In addition, conditions arising from pentagons are cocycle conditions
in appropriate cohomology theories. It is useful to compute them once and for all in the general setting of a
monoid object in a bicategory.

To begin with, observe that by applying (B.1) and (B.2) to the objects (2;2,1) and (2;1,2) ∈N oN we obtain
morphisms θ2;2,1 : t(3)→ t(2)(t(2), t(1)), θ2;1,2 : t(3)→ t(2)(t(1), t(2)), and combining these two we obtain

(C.1) µ : t(2)(t(2), t(1)) −→ t(2)(t(1), t(2)).
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The pentagons (or the diagrams related to them) arise from the decomposition of the operation t(4), by way
of (B.4), down to terms only involving the binary and unary operations t(2) and t(1), respectively. We can
assume that the unary operation t(1) : x→ x coincides with the identity idx. These decompositions can be
encoded by working our way along the small pentagon in the diagram (B.3), so for instance one of them
corresponds to the sequences

((2;2,1);2,1,1) //

��

(2; (2;2,1),1)

��

(3;2,1,1) // 4 (2;3,1)oo

(We have simply written 1 in place of the more accurate but cumbersome expression (1;1).)
There are six distinct sequences including the one above. Their starting points, counted from the upper

left corner of the small pentagon in the diagram (B.3), are:

1. ((2;2,1);2,1,1),

2. ((2;2,1);1,2,1),

3. ((2;1,2);1,2,1),

4. ((2;1,2);1,1,2),

5. ((2;1,2);2,1,1),

6. ((2;2,1);1,1,2).

Let us also use the notations mi = t(i), i = 1, . . . ,4, with the special provision m1 = idx = id. With these,
applying (B.4) and (B.3), we obtain the diagram on page 51:
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(C.2)

m2(id(m2),m2(id, id)) // m2(id,m2)(m2, id, id)

m2(m2(id, id), id(m2))

��

5 m2(m2, id)(m2, id, id)

µ

ff

m2(m2,m2)

OO

gg

==

ss

m3(m2, id, id)oo

OO

88

m2(m2, id)(id, id,m2)

µ

��

6 1 m2(m2(m2, id), id)

]]

µ

��

m3(id, id,m2)

xx

ff

@@

m4

XX FF

//oo

�� ��

m2(m3, id)

88

&&

m2(id,m2)(id, id,m2) 4 2 m2(m2(id,m2), id)

��

m2(id,m3)

��

ww

m3(id,m2, id)

��

&&

m2(id,m2(id,m2))

^^

3 m2(m2, id)(id,m2, id)

µ

xx

m2(id,m2(m2, id)) //

µ

gg

m2(id,m2)(id,m2, id)
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The six petals correspond to the indicated sequences and are numbered accordingly. We have marked
the (magenta) arrows resulting from the morphism (C.1). Note that there are five of them. In particular:

• If MC is unital, the petals 5 and 6 collapse to the red arrows.

• If furthermore MC is in fact a 2-multicategory, i.e. the 2-categorical analog of a multicategory, so that
C itself is a genuine 2-category, the associativity morphisms at the tops of all petals reduce to identities.
As a result, the outer perimeter reduces to a standard pentagon

(C.3)

m2(m2,m2)

µ





m2(m2(m2, id), id)

µ

��

µ

kk

m4

WW

//

�� ��

m2(m3, id)

;;

##

m2(m2(id,m2), id)

µ

{{

m2(id,m3)

��

yy

m3(id,m2, id)

��

66

m2(id,m2(id,m2))

m2(id,m2(m2, id))

µ

ee

D Some lemmas on symmetric braidings

D.1 Lemma. Let (C,⊗, c) be a strictly associative braided monoidal category. The diagram

x⊗ y ⊗ z⊗w
1⊗cy,z⊗1

//

cx,y⊗cz,w
��

x⊗ z⊗ y ⊗w
cx⊗z,y⊗w

��

y ⊗ x⊗w⊗ z
1⊗cx,w⊗1

// y ⊗w⊗ x⊗ z

commutes if and only if the braiding c is symmetric.

Proof. The naturally occurring diagram relating cx⊗z,y⊗w to cx,y ⊗ cz,w is

x⊗ y ⊗ z⊗w oo
1⊗cz,y⊗1

cx,y⊗cz,w
��

x⊗ z⊗ y ⊗w
cx⊗z,y⊗w

��

y ⊗ x⊗w⊗ z
1⊗cx,w⊗1

// y ⊗w⊗ x⊗ z
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which is valid with respect to any braiding. This is equal to the diagram in the statement if and only if cy,z is
the inverse of cz,y .

D.2 Lemma. Let (C,⊗, c) be a strictly associative braided monoidal category. The following diagram

x⊗ y ⊗ z⊗u ⊗ v ⊗w
1⊗cyz,uv⊗1

//

cx,y⊗1⊗1⊗cv,w
��

x⊗u ⊗ v ⊗ y ⊗ z⊗w

cx.u⊗1⊗1⊗cz,w
��

y ⊗ x⊗ z⊗u ⊗w⊗ v

1⊗cxz,uw⊗1

��

u ⊗ x⊗ v ⊗ y ⊗w⊗ z

1⊗cxv,yw⊗1

��

y ⊗u ⊗w⊗ x⊗ z⊗ v
cy.u⊗1⊗1⊗cz,v

// u ⊗ y ⊗w⊗ x⊗ v ⊗ z

commutes if and only if the braiding c is symmetric.

Proof. Use Lemma D.1 to replace cyz,uv with cy,u ⊗ cz,v and similarly for cxz,uw and cxv,yw. This converts the
diagram in the statement into the following one

x⊗ y ⊗u ⊗ z⊗ v ⊗w
1⊗cy,u⊗cz,v⊗1

//

cx,y⊗1⊗1⊗cv,w
��

x⊗u ⊗ y ⊗ v ⊗ z⊗w

cx.u⊗1⊗1⊗cz,w
��

y ⊗ x⊗u ⊗ z⊗w⊗ v

1⊗cx,u⊗cz,w⊗1

��

u ⊗ x⊗ y ⊗ v ⊗w⊗ z

1⊗cx,y⊗cv,w⊗1

��

y ⊗u ⊗ x⊗w⊗ z⊗ v
cy.u⊗1⊗1⊗cz,v

// u ⊗ y ⊗ x⊗w⊗ v ⊗ z

which consists of two juxtaposed copies of the same kind of hexagon:

x⊗ y ⊗u
1⊗cy,u

//

cx,y⊗1

��

x⊗u ⊗ y

cx.u⊗1

��

y ⊗ x⊗u

1⊗cx,u
��

u ⊗ x⊗ y

1⊗cx,y
��

y ⊗u ⊗ x
cy.u⊗1

// u ⊗ y ⊗ x

The latter commutes in any braided monoidal (strictly associative) category. Thus in effect the statement of
the Lemma holds if and only if Lemma D.1 holds.

A permutative category is a symmetric monoidal category (C,⊗, c) in which associativity and unitality
hold strictly. Thus the diagrams in Lemmas D.1 and D.2 commute if and only if the category (C,⊗, c) is
permutative. On the other hand, the statements of Lemma D.1 and Lemma D.2 hold in general. Requiring
that C be strictly associative merely simplifies the diagrams and overall legibility. For example, in the
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general case the diagram in the statement of Lemma D.1 would need replacing with:

x⊗ (z⊗ (y ⊗w)) (x⊗ z)⊗ (y ⊗w)oo
cx⊗z,y⊗w

// (y ⊗w)⊗ (x⊗ z) // y ⊗ (w⊗ (x⊗ z))

x⊗ ((z⊗ y)⊗w)

OO

y ⊗ ((w⊗ x)⊗ z)

OO

x⊗ ((y ⊗ z)⊗w)

1⊗cy,z⊗1

OO

��

y ⊗ ((x⊗w)⊗ z)

1⊗cx,w⊗1

OO

��

x⊗ (y ⊗ (z⊗w)) (x⊗ y)⊗ (z⊗w)oo
cx,y⊗cz,w

// (y ⊗ x)⊗ (w⊗ z) // y ⊗ (x⊗ (w⊗ z))

with a similarly modified proof. A similar, but more complicated modifications apply to the diagram in the
proof of Lemma D.2.
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