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Abstract— In the framework of elastic shape analysis, a

shape is invariant to scaling, translation, rotation and repa-

rameterization. Since this framework does not yield a closed

form of geodesic between two shapes, iterative methods have

been proposed. In particular, path straightening methods have

been proposed and used for computing a geodesic that is

invariant to curve scaling and translation. Path straightening

can then be exploited within a coordinate-descent algorithm

that computes the best rotation and reparameterization of the

end point curves. In this paper, we propose a Riemannian quasi-

Newton method to compute a geodesic invariant to scaling,

translation, rotation and reparameterization and show that it

is more efficient than the coordinate-descent/path-straightening

approach.

I. INTRODUCTION

Shape analysis of curves is important in various area such
as computer vision, medical diagnostics, and bioinformatics.
The basic idea is to obtain a boundary curve of an object in a
2D image or contours of a 3D object and analyse those curves
to characterize the original object. The research on shape
analysis is rich and various ideas have been proposed, e.g.,
point-based methods, domain-based shape representations
and parameterized curve representations. One of the earliest
can be traced to Kendall [Ken84], in which the represen-
tation of a shape uses landmarks. However, the choices of
landmarks is subjective and may significantly influence the
analysis of the original objects. For example, Figure 1 shows
the geodesics given by two different landmarks. As a matter
of fact, the represented points of the bottom figure in Figure
1 is chosen by using the elastic shape analysis. Specifically,
unlike the landmarks approach, the elastic shape analysis also
takes reparameterization of curves into account.
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Fig. 1. Geodesics without and with reparameterization are given by the
frameworks of landmark-based Kendall’s shape analysis [Ken84], [DM98]
and elastic shape analysis [SKJJ11] respectively.

Many frameworks for elastic shape analysis have been
proposed. Younes [You98] first introduced this kind of
framework for general 2D curves. Younes et al. [YMSM08]
studied on elastic analysis of closed curves using complex
representations of 2D coordinates of curves. Srivastava et al.
[SKJJ11] further defined a novel mathematical framework
called the square root velocity functions (SRVFs), which
include curves in Euclidean spaces of any dimension.

Elastic shape analysis draws more and more attention due
to its superior theoretical results and effectiveness. The price
for the better effectiveness is the relatively expensive in com-
puting various objects, e.g., geodesic, mean. In this paper,
the framework of SRVF defined in [SKJJ11] is considered.
The advantage of SRVF framework is that it converts the
complicate Riemannian metric into the standard L2 metric
and preserve the isometry of rotation and reparameterization
group action. This allows to define the shape space in a
relative simple way. In [HGSA14], a closed form of distance
approximation for closed curves, which is invariant to curve
scaling and translation, is used and a Riemannian approach
is proposed to improve the efficiency and effectiveness for
further removing rotation and reparameterization. In this
paper, we explore the same idea of [HGSA14] and improve
the efficiency in the computation of removing the rotation
and reparameterization without using distance approxima-
tion. Also unlike the approach in [HGSA14], a geodesic can
be obtained.

Two commonly used methods of computing the geodesic
in elastic shape space are shooting method [KSMJ04]
and path straightening method [LS85] [KS06] [JKSJ07]
[SKJJ11]. The path straightening method has the advantage
that all the iterates of paths connect the two points while the
shooting method does not. In this paper, we focus on the
path straightening method.



This paper is organized as follows. Section II presents the
SRVF framework. Section III gives the previous approach
of the path straightening methods. Section IV defines the
Riemannian approach and finally the experiments is demon-
strated in Section V.

II. SRVF FRAMEWORK

A shape or curve in Rn is denoted by a parameterized
function �(t) : D ! Rn, where D is [0, 1] for open
curves and D is the unit circle S1 for closed curves. The
representation of a shape starts from its square root velocity
(SRV) function,

q(t) =

(

�̇(t)p
||�̇(t)||2

, if ||�̇(t)||2 6= 0;

0, if ||�̇(t)||2 = 0.

where k·k2 denote the 2-norm. The curve � can be recovered
by �(t) =

R t

0
q(s)||q(s)||2ds if �(0) is 0. Note translation

is removed since �̇ is used. Further more, rescaling can be
removed by restricting curves to be of unit length. Since
the length of �(t) is

R

D k�̇(t)k2dt =
R

D kq(t)k
2
2dt, the

resulting space, called the preshape space ln, for open curves
is denoted as

lon =

⇢

q 2 L2([0, 1],Rn)|
Z 1

0

||q(t)||22dt = 1

�

,

and for closed curves is denoted as

lcn = {q 2 L2(S1,Rn)|
Z

S1
||q(t)||22dt = 1,

Z

S1
q(t)||q(t)||2dt = 0}

where
R 1

S q(t)||q(t)||2dt = 0 stresses the closure con-
dition and the super script o and c denotes open or
closed curves respectively. Statements without a super-
script apply to both open and closed curves. A more
intuitive way to denote the preshape space lcn is {q 2
L2(S1,Rn)|

R 1

0
||q(t)||22dt = 1,

R 1

0
q(t)||q(t)||2dt = 0} and

the closure condition means the difference between �(0) and
�(1) is zero since

R 1

0
q(t)||q(t)||2dt = �(1) � �(0). It can

be seen that lcn is a submanifold of lon. The metrics of the
spaces are endowed from L2, i.e., hv1, v2iL2 =

R 1

0
vT1 v2dt

for v1, v2 2 L2([0, 1],Rn).
In order to remove the rotation and reparameterization, we

consider the rotation group

SO(n) =
�

O 2 Rn⇥n|OTO = In, det(O) = 1
 

and the reparameterization group

� = {� : D! D|� is orientation-preserving,
smooth bijections.}.

The actions of SO(n) and � on the SRV of a curve � are:

SO(n)⇥ ln ! ln : (O, q)! Oq,

ln ⇥ �! ln : (q, �)! (q � �)
p

�̇

and it is known that the two group actions are isometric with
respect to the L2 metric. It follows that the orbit of the group
actions is defined by

[q] =
n

O(q � �)
p

�̇|(�, O) 2 �⇥ SO(n)
o

and the the shape space is defined as:

Ln = ln/�⇥ SO(n) = {[q]|q 2 ln},

where [q] denotes the closure of [q] with respect to L2. The
motivation of the closure can be found in, e.g., [SKJJ11] or
[HGSA14].

Since Ln is a quotient manifold of ln and they have
the same metric, a geodesic in Ln can be represented by
any geodesic in ln that is perpendicular to any orbit that it
intersects, and the distance between [q0] and [q1] 2 Ln is
given by

dLn([q0], [q1]) = inf
(�,O)2�⇥SO(n)

dln(q0, O(q1 � �)
p

�̇).

III. PATH STRAIGHTENING METHOD

A. Path-Straightening Method in Preshape Space lcn
The preshape space of open curves is a unit sphere and its

geodesic is well known. In this paper, we focus on computing
a geodesic of closed curves. Throughout this paper, the use
of word “geodesic” means a path with a constant velocity.

Let P denote all the curves in lcn. Let the set of paths
connecting two curves q0, q1 in lcn be

Pq1,q2 = {↵ : [0, 1]! lcn|↵(0) = q0,↵(1) = q1}

We start off from an arbitrary path ↵(⌧) in Pq1,q2 , and iterate
until reaching a critical point of the energy function

E : Pq1,q2 ! R : ↵ 7! 1

2

Z 1

0

h↵̇(⌧), ↵̇(⌧)i d⌧.

It has been shown in [SKJJ11, Lemma 4] that any critical of
E is a geodesic of lcn.

A gradient method is proposed in [SKJJ11], in which the
search direction is along the negative gradient and a fixed
step size is used.

Consider a path � 2P and a vector field v 2 T� P . The
covariant derivative of v along � is the vector field obtained
by projecting dv

d⌧ (⌧) onto the tangent space of T�(⌧) l
c
n for all

⌧ . A vector field z 2 T� P is called a covariant integral of
v along � if the covariant derivative of z is v, i.e., Dz

d⌧ = v.
Let u denote the covariant integral of d↵

d⌧ with zero initial
value at ⌧ = 0. The gradient of E is given by w(⌧) =
u(⌧)�⌧ ũ(⌧), where ũ is the vector field obtained by parallel
translating u(1) backwards along ↵, i.e., ũ(1) = u(1) and
Dũ
d⌧ (⌧) = 0 for all ⌧ 2 [0, 1].

Algorithm 1 outlines the path straightening method for
computing geodesic in lcn of [SKJJ11].

The initial path ↵ between q0 and q1 is obtained by
projecting the path ↵o, the geodesic between q0 and q1 in lon,
onto the lcn (see details in [SKJJ11, Item 1]). This usually
offers good initial iterate and Algorithm 1 converges after
only a few iterations to reach a tight stopping criterion, e.g.,
R 1

0
kw(⌧)k2L2d⌧  10�10.



Algorithm 1 Path Straightening Method
Input: Two curves �0 and �1, and a step size t > 0

1: Compute the representations q0 and q1 in lcn.
2: Initialize a path ↵ between q0 and q1 in lcn.
3: Compute the velocity vector field d↵(⌧)

d⌧ along the path
↵.

4: Compute the covariant integral of d↵(⌧)
d⌧ , denoted by u

5: Compute the backward parallel transport of the vector
u(1) along ↵, denoted by ũ

6: Compute the full gradient vector field of the energy E
along the path ↵, denoted by w, using w(⌧) = u(⌧) �
⌧ ũ(⌧).

7: Update ↵ along the vector field tw. If
R 1

0
kw(⌧)k2L2d⌧

is small, then stop. Else, goto Step 3.

B. Removing Orientations and Reparameterizations

In order to obtain a geodesic in shape space Ln, we need to
minimize the cost function H(O, �) = dlcn(q0, O(q1 ��)

p
�̇)

over the product of manifolds SO(n) and �. The algorithm in
[SKJJ11] solves this optimization by alternately optimizing
between SO(n) and �. This requires the computation of the
gradient with respect to O and �.

To this end, consider the cost function dlcn(q0, q̃1) with
respect to q̃1. Let ↵ denote the geodesic between q0 and
q̃1 in lcn. It is known from [SKJJ11] that the gradient of
dlcn(q0, q̃1) is ⌘ = ↵̇(1)/k↵̇(1)k. It follows that the gradient
with respect to O is

gradO H(O, �) = PO

✓

Z

D
⌘
p

�̇(q2 � �)T ds
◆

(III.1)

where PO(M) = (M �OMTO)/2.
Note that � is an infinite dimensional manifold. The

gradient with respect to � is approximated by

grad� H(O, �) ⇡
k
X

i

bi DH(O, �)[bi], (III.2)

where {bi}1i=1 is a basis of the tangent space of �, the
tangent space of � is T� � = L2(S1,R), k is the number
of the elements in the basis and DH(O, �)[bi] denotes the
directional derivative of H(O, �) along direction bi. It can
be shown that

DH(O, �)[bi] =

⌧

⌘, O

✓

p

�̇q̇1(�)bi +
1

2
p
�̇
ḃiq1(�)

◆�

L2

.

The suggested basis {bi} is an orthonormal basis of the
tangent space of � under the Palais metric hv1, v2iP =

v1(0)v2(0) +
R 1

0
v̇1(⌧)v̇2(⌧)d⌧ , i.e.,

{1, sin(nt)
n⇡

,
cos(nt)� 1

n⇡
, n = 1, 2, . . .}. (III.3)

The algorithm of removing rotation and reparameterization
is stated in Algorithm 2.

Note that in [SKJJ11] the substitution of l =
p
�̇ is

used in H . It follows that the cost function is defined on
SO(n) and the first quadrant of the unit sphere L = {l 2

Algorithm 2 Removing rotation and reparameterization
Input: Two curves �0 and �1, and step sizes t1, t2 > 0

1: Set �̃1 to be �1, O0 = I , �0 = �id, and k = 0.
2: Compute the representations q0 of �0 and q1 of �̃1.
3: Compute the geodesic ↵ between q0 and q1 in lcn using

Algorithm 1.
4: Update the rotation by Ok+1 =

Ok exp(t1 gradI H(I, �id)), where gradI H(I, �id)
is (III.1).

5: Update the reparameterization by �k+1 = �k � (�id +
t2 grad�id

H(I, �id)), where grad�id
H(I, �id) is (III.2).

Note that t2 should be small enough such that �k+1 is
nondecreasing.

6: Update �̃1  Ok+1�1 ��k+1 and set q1 to be the SRVF
of �̃1

7: If some stopping criterion is satisfied, then stop. Else,
k  k + 1 and goto Step 2.

L2([0, 1],R)|klkL2=1}. It is pointed out that using the basis
(III.3) essentially yields the same method in [SKJJ11, Section
4.4] without the extra substitution step.

IV. A RIEMANNIAN APPROACH

The path straightening method in the shape space can
be characterized as a steepest descent method with a fixed
step size. It is well-known that steepest descent method
suffers from slow convergent rate, see e.g., [NW06]. In
this paper, we apply a faster algorithm, a limited-memory
version of Riemannian BFGS method (LRBFGS), which is
introduced in [HGA14] and shown to outperform many other
start-of-the-art Riemannian algorithms for many large scaled
problems, e.g., [NW06], [HGSA14], [HGZ15].

Since it is observed that Algorithm 2 dominates the
computational time in the sense that it needs large number of
iterations, we only use LRBFGS to improve the performance
of removing rotation and reparameterization.

For the closed curves, the reparameterization � can be
characterized as

�c = [0, 1]⇥ �o

and its action is therefore lcn ⇥ �c ! lcn : ((q,m), �)) !
(q(t + m mod 1) � � mod 1))

p
�̇, where �o is the repa-

rameterization group for open curves, i.e.,

�o =
�

� : [0, 1]! [0, 1]|� is a diffeomorphism
 

.

Further setting l =
p
�̇, we obtain a cost function

f(O,m, l) = dlcn(q1, Olq2(

Z t

0

l2(s)ds+m mod 1)),

(IV.1)
where (O,m, l) 2 SO(n) ⇥ R ⇥ L. We define the
metric on the tangent space of SO(n) ⇥ R ⇥ L by
h(U1, b1, v1), (U2, b2, v2)i = trace(UT

1 U2) + b1b2 +
R 1

0
v1v2ds. The Riemannian gradient of f with respect to

this metric is given in Lemma 4.1 without proof.
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Fig. 2. Samples of curves from the MPEG-7 dataset. One sample per
cluster is illustrated.

Lemma 4.1: The Riemannian gradient of f(O,m, l) in
(IV.1) is

grad f(O,m, l) = (PO(A),

Z 1

0

y0ds, Pl(x� 2yl)),

where A denotes
R 1

0
⌘lqT2 (

R t

0
l2(s)ds + m mod 1)ds, x

denotes h⌘, O(q2(
R t

0
l2(s)ds + m mod 1))i2, y0 denotes

h⌘, O(lq02(
R t

0
l2(s)ds + m mod 1))i2, ⌘ is the same as in

(III.1) and Pl(v) = v � l
hv,liL2
hl,liL2

.
In order to apply the LRBFGS algorithm in [HGA14, Al-

gorithm 2], we also need a retraction and a vector transport.
The chosen pair is the well-known exponential mapping and
parallel translation for each component (see e.g., [AMS08]).
They are given here for completeness. The retraction is

R(O,m,l)(A, a, v) =
⇣

O exp(OTA),m+ a,

l cos(kvkL2) +
v

kvkL2

sin(kvkL2)
⌘

and the vector transport is

T(A,a,v)((B, b, w)) =
⇣

O exp(OTA/2)OTB exp(OTA/2),

b, w � 2hw, l̃iL2

||l + l̃||2L2

(l + l̃)
⌘

where A,B 2 TO SO(n), a, b 2 R, w, v 2 Tl L and l̃ =
l cos(kvkL2) + v

kvkL2
sin(kvkL2).

V. EXPERIMENTS

The MPEG-7 dataset [Uni] is chosen in the experiments
and it contains 70 clusters each of which has 20 shapes, i.e.,
1400 shapes in total. Figure 2 shows an example shape from
each cluster. Matlab function BWBOUNDARIES is used to
extract the boundary curves of the shapes and 100 uniformly-
space points are chosen to represent each shape. A path in
lcn is represented by 11 curves.

The tests are performed in Matlab R2014a on a 64 bit
Ubuntu system with 3.6GHz CPU (Intel (R) Core (TM) i7-
4790).

We compare the performance of LRBFGS, a Riemannian
steepest descent (RSD) algorithm based on the framework in
Section IV, and Algorithm 2 with multiple choices of step
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Fig. 3. Comparisons of algorithms with 50 iterations. The top figures shows
the average relationship between the computational time and the cost func-
tion values. The bottom figures the average relationship between the number
of iterations and the cost function values. The notation Alg.2:(t1, t2)
denotes the step sizes in Algorithm 2.

sizes t1 and t2 over many randomly chosen pairs of curves
from the data set. The initial rotation and reparameterization
for all algorithms are given by the approach in [HGSA14].
The average of computational times and the average of
the cost function values (distance) after each iteration is
computed and the results are shown in Figure 3.

Since the step sizes, t1 and t2 are fixed, the choice of
their values is important in Algorithm 2. If taken too small
then the convergence is slow. If taken too large then the cost
function may not decrease. It is shown in Figure 2 that the
average function values with t2 = 0.002 oscillate. This is
due to the fact that for that value of t2 Algorithm 2 does not
converge for some of the pairs of curves – the cost function
value oscillates and does not decrease. Note, however, that
all algorithms that converge for a particular pair of curves
converge to the same critical point. RSD and LRBFGS both
use an efficient line search algorithm to determine a step
size for each iteration that satisfies appropriate termination
criteria to guarantee convergence [Hua13] and are therefore
more robust than Algorithm 2.

RSD and Algorithm 2 have similar performance when the
latter converges. LRBFGS is clearly the best algorithm is
able to reach a lower cost function value within a much
smaller computational time.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider computing the geodesic in the
shape space of elastic curves. A Riemannian manifold opti-
mization approach is proposed as a replacement for the cur-
rent state-of-the-art coordinate-descent/path-straightening ap-



proach in [SKJJ11]. The Riemannian quasi-Newton method,
LRBFGS, is shown to be superior in both robustness and
computational efficiency.

In the future, we will test the quality of the distance
obtained by LRBFGS in the sense of superior clustering,
classification, and Karcher mean computations. The Rie-
mannian approach will be included in the C++ Riemannian
optimization library on http://www.math.fsu.edu/
ROPTLIB.
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