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Abstract

In this paper, we study the vanishing Darcy number limit of the nonlinear Darcy-Brinkman-
Oberbeck-Boussinesq system (DBOB). This singular perturbation problem involves singular
structures both in time and in space giving rise to initial layers, boundary layers and initial-
boundary layers. We construct an approximate solution to the DBOB system by the method
of multiple scale expansions. The convergence with optimal convergence rates in certain
Sobolev norms is established rigorously via the energy method.
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1. Introduction

In this article, we study a singular perturbation problem arising from the convection phe-
nomena in porous media which are relevant to a variety of science and engineering problems
[45]. On the physical side, the set-up of the problem is similar to the Rayleigh-Bénard
convection in porous media. We consider a d-dimensional channel Ω̃ = (0, 2πh)d−1 × (0, h),
d = 2, 3, periodic in the x- or x- and y-directions, bounded by two parallel planes in the z
direction and saturated with fluids. The bottom plate is kept at temperature T2 and the
top plate is kept at temperature T1 with T2 > T1. The governing equations are the following
Darcy-Brinkman-Oberbeck-Boussinesq system in the non-dimensional form [45, 31]:

γa
(
∂v
∂t

+ (v · ∇)v
)

+ v − D̃a∆v +∇p = RaD kT,

div v = 0,
∂T
∂t

+ v · ∇T = ∆T,
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where k is the unit normal vector directed upward (the positive z direction), v is the non-
dimensional seepage velocity, p is the modified non-dimensional kinematic pressure, T is the
non-dimensional temperature. Here γa = Da

Pr
is the inverse of the Prandtl-Darcy number

with Da the Darcy number and Pr the Prandtl number; D̃a = λDa is the Brinkman-Darcy
number with λ the ratio of effective viscosity to viscosity; RaD is the Rayleigh-Darcy number.
We refer the interested readers to [45, 31] for the detailed definitions of these dimensionless
parameters.

We note that the classical Darcy number Da is defined as the ratio of permeability
over the cross-sectional area of the porous media. Thus, the Darcy number is relatively
small in many physically interesting settings. In this work, we consider the vanishing Darcy
number limit of the DBOB system and the validity of the resulting simplified model. For
the convenience of the mathematical analysis, we rewrite the Darcy-Brinkman-Oberbeck-
Boussinesq system (DBOB) in a 2D periodic channel Ω = [0, 1]× [0, 1] as follows

ε
(
∂vε

∂t
+ (vε · ∇)vε

)
+ vε − ελ∆vε +∇pε = RaDkT

ε,
∂T ε

∂t
+ vε · ∇T ε = ∆T ε,

div vε = 0,
vε|t=0 = v0, T ε|t=0 = T0,
vε|z=0,1 = 0, T ε|z=0 = 1, T ε|z=1 = 0,
vε, pε, T ε are periodic in x-direction,

(1.1)

where we use (x, z)-coordinates, ε is the small dimensionless parameter in our problem.
vε = (vε1, v

ε
2) is the velocity field, pε is the pressure, and T ε is the temperature. We point

out that most of our analysis is valid in three dimensions, though we restrict ourselves to
the two dimensions in the present work.

Formally setting ε to zero in the DBOB system (1.1), we arrive at the following Darcy-
Oberbeck-Boussinesq system (DOB), see for instance [9]:

v0 +∇p0 = RaD kT 0, div v0 = 0,
∂T 0

∂t
+ v0 · ∇T 0 = ∆T 0,

v0
2

∣∣
z=0,1

= 0, T 0
∣∣
z=0

= 1, T 0
∣∣
z=1

= 0.

T 0
∣∣
t=0

= T0

(1.2)

Periodicity in the horizontal directions is assumed again. The system (1.2) is much simplified
than the original DBOB system (1.1), and it is a commonly adopted model for heat transfer
in porous media. Of particular physical interests in the context of porous media are the
pressure distribution (or hydraulic head) and the rate of vertical heat transport (or Nusselt
number). We note that these quantities are defined in terms of the uniform norm of the
pressure and H1 norm of the temperature, cf. [9, 45, 67, 75] and references therein.

Our aim in this article is to show the validity of the simplified DOB model (1.2) as an
approximation of the DBOB system (1.1) in the vanishing Darcy number limit ε→ 0. Note
that the initial condition and no-slip boundary condition for the velocity fields are dropped
in the DOB system (1.1). The discrepancy in initial and boundary conditions between the
system (1.1) and (1.2) leads to the emergence of temporal and spatial singular structures
in the solutions. As a result, we have to study a singular perturbation problem involving
both an initial layer (multiple time scales) and a boundary layer (and hence multiple spatial
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scales). On the one hand, the boundary layer analysis of the DBOB system is very similar
to that of the classical boundary layer problem for incompressible viscous fluids at small
viscosity [52, 46, 56, 60, 61]. Indeed, following the original work of Prandtl [48], we derive
a Prandtl type equation for this DBOB model which indicates the existence of a boundary
layer of thickness proportional to

√
ε in the velocity field and no boundary layer in the

temperature field or pressure field (in the leading order). On the other hand, the problem
involves an initial layer as well. In this connection, a similar problem has been studied by
the third author in the context of Rayleigh-Bénard convection [64, 65, 66], see also [47].
As we show below, the presence of both the boundary layer and the initial layer will incur
another singular structure of corner layer type (initial-boundary layer) for the velocity near
the intersection of t = 0 and the physical boundary. The study of the initial-boundary layer
in the context of volume-averaged Navier-Stokes equation (i.e. without the temperature
field) is completed in [22]. The inclusion of the heat convection process further complicates
the analysis. Indeed, the leading order initial layer, boundary layer and initial boundary layer
in the velocity fields introduce temporal and spatial singular structures in the temperature
field through the convection mechanism. Though the singular structures in the temperature
appears as low order terms, they have to be included in the asymptotic analysis for a robust
convergence analysis.

Another singular perturbation problem related to the Darcy-Brinkman-Oberbeck-Boussinesq
system is studied in [31] where the single vanishing Darcy number limit is considered by first
neglecting the nonlinear advection in the velocity equation (i.e., γa = 0). As a result, the au-
thors prove the existence of boundary layer in the velocity field but no leading order boundary
layer for pressure and temperature field. There is an abundant literature on boundary layer
associated with incompressible flows and the related question of vanishing viscosity (see for
instance [3, 7, 50, 51, 12, 44, 17, 27, 49, 24, 25, 10, 32, 74, 35, 4, 5, 36, 34, 71, 1, 72, 26, 58,
59, 55, 57, 63, 28, 11, 29, 23, 30, 23, 30, 42, 6, 18, 16, 63, 43, 40, 39, 14, 15, 69, 70] among
many others) among many others). We will refrain from surveying the literature here, but
emphasize that the boundary layer problem associated with the Navier-Stokes equation is
still open and that there is a need to develop tools and methods to tackle it, despite that
much progress has been made in recent years [20, 2, 41, 8, 13, 38].

The definitions of all of our function spaces reflect the fact that we are working in a
domain that is periodic in the horizontal direction(s). Thus, for instance, Hm = Hm

per(Ω), m
a nonnegative integer, is the Sobolev space consisting of all functions on Ω whose derivatives
up to order m are square integrable and whose derivatives up to order m− 1 are periodic in
the horizontal direction(s), with the usual norm. Equivalently, we can view such functions
as being defined on Rd−1 × (0, 1) with period 2π in the horizontal direction(s). Similarly,
H1

0,per(Ω) is the subspace of functions in H1
per(Ω) that vanish on z = 0, 1. We will use the

classical function spaces of fluid mechanics,

H = H(Ω) =
{
v ∈ (L2

per(Ω))d : div v = 0,v · n = 0 on z = 0, 1
}
,

V = V (Ω) =
{
v ∈ (H1

0,per(Ω))d : div v = 0
}
,

where n denotes the unit outer normal to ∂Ω. We put the L2-norm on H and the H1-norm
on V . Because of the Poincaré’s inequality, we can equivalently use ||u||V = ||∇u||L2 . We
follow the convention that || · || is the L2-norm. We seek pressure in L2

0(Ω), the subspace
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of L2(Ω) with mean zero. Since the parameter λ does not enter the analysis in an essential
way, we will set λ = 1 from now on.

For the system (1.1), we work with weak solutions whose existence can be proved in
a similar fashion as the classical theory of Navier-Stokes equation, cf. [53, 54]. The well-
posedness of the system (1.2) can be found in [37] and references therein. The main result
in this paper is summarized in the following theorem.

Theorem 1.1. Assume v0 ∈ V ∩Hm(Ω) and T0 ∈ Hm(Ω) with m ≥ 5. Then there exists an
approximate solution (ṽapp, T 0, p0) to the DBOB system (1.1) such that the following optimal
convergence rates hold

||vε − ṽapp||L∞(0,T,L2(Ω)) ≤ Cε
1
2 , (1.3a)

||vε − ṽapp||L∞(0,T,H1(Ω)) ≤ Cε
1
4 , (1.3b)

||vε − ṽapp||L∞(0,T,L∞(Ω)) ≤ Cε
1
2 , (1.3c)

||T ε − T 0||L∞(0,T,L∞(Ω)) ≤ Cε
1
2 , (1.3d)

||T ε − T 0||L∞(0,T,H1(Ω)) ≤ Cε
1
2 , (1.3e)

||∂(T ε−T 0)
∂t

||L2(0,T ;L2(Ω)) ≤ Cε
1
2 , (1.3f)

||pε − p0||L∞(0,T ;L∞(Ω)) ≤ Cε
1
2 , (1.3g)

||∇(pε − p0)||L∞(0,T ;L2(Ω)) ≤ Cε
1
2 . (1.3h)

Here C is a generic constant independent of ε; ṽapp is defined as the sum of the solution to
the DOB system (1.2), an explicit initial layer, an explicit boundary layer and an initial-
boundary layer (see (2.27)); p0 and T 0 are the pressure and temperature fields to the DOB
system (1.2).

As we will show below, the boundary layer thickness is of the order of ε
1
2 and the thickness

of the initial layer is of the order of ε. The convergence rate estimates in Theorem 1.1 then
reveal the singular structures of the solution {vε, pε, T ε} in the sense of asymptotic expansion:
(1.3a) proves existence of an initial layer (initial layer is of O(1) in L∞(L2)); both (1.3b)
and (1.3c) show the presence of an initial layer, a boundary layer and an initial-boundary
layer (boundary layer and initial-boundary layer are of O(ε−α), α > 0 in L∞(H1) and of
O(1) in L∞(L∞)); (1.3e) (1.3d) demonstrates that there are no spatial nor temporal singular

structures of leading order in the temperature field; (1.3e) rules out the presence of order ε
1
2

boundary layer or initial-boundary layer in T ε; (1.3f) likewise says the order ε
1
2 initial layer

do not exist in T ε; (1.3g) shows that pressure has no singular structure to the leading order;
finally (1.3h) verifies that the first order boundary layer of pressure does not exist either.

We follow the classical Prandtl-type approach in establishing Theorem 1.1, cf. [62, 68,
21, 31]. Specifically, we derive the Prandtl-type effective equations for the velocity correctors
in the region of initial layer, boundary layer and corner layer, respectively, that approximate
vε−v0. Since the singular structures in the temperature field emerge only in the high order
expansion, we employ simplified effective equations for temperature that contain singular
structures, see sec. 2.2 for details. The high order expansion seems essential for proving
the convergence theorem, in particular for establishing optimal convergence rates. A natural
candidate for the approximate solution is the sum of the solution to the DOB system (1.2)
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and the correctors. The analysis of the initial boundary layer problem then consists of the
study of the Prandtl-type equations, and proof of convergence of the approximate solution
to the solution of the DBOB system (1.1). The key to our success here is a mild nonlinear
term in the sense that the convection term vε · ∇vε has a small coefficient ε. Because
of this, the Prandtl type equations for the boundary layer and initial-boundary layer (to
the leading order) are all linear though the DBOB model (1.1) itself is nonlinear. This is
similar to the case of boundary layer for the incompressible Navier-Stokes flows with non-
characteristic boundary conditions [61, 60] as well as secondly boundary layer associated
with the Navier-Stokes equations under Navier-type slip boundary conditions [71, 69, 70, 25].
The main difficulty for us is the existence of an initial-boundary layer which necessitates the
simultaneous treatment of multiple scales in space and in time.

The paper is organized as follows. In section 2, we construct two approximate solutions to
the DBOD system in view of the asymptotic analysis given in the Appendix. The equations
satisfied by the approximate solution are derived along with estimates of extra forcing terms.
In section 3, we prove the main convergence results through a series of steps. Some concluding
remarks are given in Section 4. We include the detailed asymptotic analysis of the DBOB
system in an appendix.

2. The Construction of Approximate Solutions

In this section, we construct an approximate solution to the DBOB system by taking
into account the asymptotic analysis given in the appendix. We note that the leading order
boundary layer functions near the boundary z = 0 of the velocity fields do not vanish at
the other boundary z = 1. Likewise, the boundary layer functions at z = 1 are not zero
at the boundary z = 0. Although the differences are exponentially small, we explore a
truncation technique to ensure the overall boundary layer profile satisfies the respective
boundary conditions exactly. To maintain the divergence free condition, The truncation is
done at the stream function level so as to maintain the divergence-free condition. Such a
truncation procedure is common in the study of boundary layer problems for incompressible
flow, cf. [56, 60, 61, 31, 22] for instance.

We start by recalling that the leading order outer solution satisfies the following system

vO,0 +∇pO,0 = RaDkT
O,0,

∂TO,0

∂t
+ vO,0 · ∇TO,0 = ∆TO,0,

div vO,0 = 0,

vO,02

∣∣
z=0,1

= 0, TO,0
∣∣
z=0

= 1, TO,0
∣∣
z=1

= 0,

TO,0
∣∣
t=0

= T0.

(2.1)

Here the capital letter O is appended to the variables in the DOB system (1.2) so signify
the outer expansion. We point out that periodic boundary conditions are assumed in the x
direction wherever is necessary. The leading order initial layer satisfies ε

∂vI,0

∂t
+ vI,0 = 0,

vI |t=0 = v0(x, z)− vO,0(0, x, z).

(2.2)
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It follows that

vI,0 =
(
v0(x, z)− vO,0(0, x, z)

)
e−

t
ε , (2.3)

where one may recall that v0 is the initial condition in the original DBOB system. Notice
that div vI,0 = 0.

For the sake of convenience, the following notations will be assumed throughout

a(t, x) = vO,01 (t, x, 0), b(t, x) = vO,01 (t, x, 1), c(x) = vO,01 (0, x, 0),

d(x) = vO,01 (0, x, 1), e(x) = vO,01 (0, x, 1), Ω∞ = {(x, Z)|x ∈ [0, 1], Z ∈ (0,∞)}. (2.4)

In addition, we shall adopt the stretched variables τ = t
ε

and Z = z√
ε
. The layer functions

at respective boundaries will be denoted differently via subscripts at B and C, e.g. vB0,0

indicates the leading order (zeroth order) boundary layer for velocity at z = 0. We introduce
a cut-off function ρ0 ∈ C∞[0, 1] supported near z = 0 such that

ρ0 = 1, z ∈ [0,
1

4
],

ρ0 = 0, z ∈ [
1

2
, 1].

(2.5)

Similarly, one can define the cut-off function ρ1 supported near z = 1.

2.1. The truncation of the velocity fields

We note that the leading order boundary layers vB0,0 and initial-boundary layers vC0,0

satisfy the same equations as those in the case of Navier-Stokes equations studied in [22] (cf.
Eqs. 3.6 and 3.16, respectively). Thus, the truncated boundary layers and initial-boundary
layers are exactly the same. For completeness, we reproduce the truncation procedure for
the boundary layer vB0,0 and give the equations satisfied by the truncated profiles. The
interested readers are referred to [22] for details.

The leading order boundary layer at z = 0 for the velocity fields vB0,0 can be found
explicitly

vB0,0
1 = −a(t, x)e

− z√
ε , vB0,0

2 =
√
ε
∂a

∂x
(1− e−

z√
ε ). (2.6)

In view of the solution formula (2.6), we define the truncated stream function

ψB0,0 =
√
εa(t, x)

(
1− e−z/

√
ε
)
ρ0(z).

Then the truncated boundary layer profile at z = 0 is given by

ṽB0,0
1 := −∂ψB0,0

∂z
= −ae−Zρ−

√
εa(1− e−Z)ρ′0,

ṽB0,0
2 := ∂ψB0,0

∂x
=
√
ε∂a
∂x

(1− e−Z)ρ0.
(2.7)

One can obtain the truncated boundary layer profile ṽB1,0 at z = 1 in a similar fashion.
We then define an overall truncated boundary layer ṽB0 as

ṽB,0 = ṽB0,0 + ṽB1,0, (2.8)
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It follows that the truncated boundary layer ṽB,0 satisfy
ṽB,0 − ε∆ṽB,0 = fB,

∇ · ṽB,0 = 0,

ṽB,0
∣∣
z=0,1

= −v0
∣∣
z=0,1

.

(2.9)

where fB = fB0,0 + fB1,0 with fB0,0 = (fB0,0
1 , fB0,0

2 ) defined as follows

fB0,0
1 = ε

3
2 ∆(aρ′0)(1− e−

z√
ε ) + ε

(
∂2a
∂x2
ρ0 + 3aρ′′0

)
e
− z√

ε

−2
√
εae
− z√

ερ′0 −
√
εaρ′0, (2.10a)

fB0,0
2 = −ε 3

2 ∆(∂a
∂x
ρ0)(1− e−

z√
ε )− 2ε∂a

∂x
e
− z√

ερ′0 +
√
ε∂a
∂x
ρ0. (2.10b)

It is readily seen that the forcing terms have the estimate

||∂jxfB||L∞(0,T ;L2(Ω)) ≤ Cε
1
2 , j = 0, 1. (2.11)

The stream function for the initial-boundary layer at z = 0 is ψC0,0 = ψ0
1 + ψ0

2 with

ψ0
1 = −

√
εc(x)e−τ

{
1√
4πτ

∫ +∞

0

(1− e−Z0)
(
e−

(Z−Z0)
2

4τ + e−
(Z+Z0)

2

4τ

)
dZ0

−2

∫ τ

0

1√
4πs

e−
Z2

4s ds

}
, (2.12)

ψ0
2 = 2

√
εc(x)e−τ

{
1

2
− eτ√

π

∫ +∞

√
τ

e−z
2

dz −
∫ τ

0

1√
4πs

ds

}
. (2.13)

Note that ψ1 → 0 as Z → +∞ and ψ2 is of initial layer type with exponential decay in time.
The modified initial-boundary layer is given by

ṽC0,0
1 = vC,01 ρ0(z)− ψC0,0ρ′0(z),

ṽC0,0
2 = vC0,0

2 ρ0(z).
(2.14)

Define

ṽC,0 = ṽC0,0 + ṽC1,0. (2.15)

One can verify that the truncated initial-boundary layer ṽC,0 satisfy

ε
∂ṽC,0

∂t
+ ṽC,0 − ε∆ṽC,0 = fC , t ∈ (0, T ), (x, z) ∈ Ω,

∇ · ṽC,0 = 0,

ṽC,0
∣∣
t=0

= −ṽB,0
∣∣
t=0
,

ṽC,0
∣∣
z=0,1

= −vI,0
∣∣
z=0,1

,

(2.16)
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where fC = fC0,0
1 + fC1,0

2 , and fC0,0
1 = (fC0,0

1 , fC0,0
2 ) with

fC0,0
1 = −f 0ρ′0 − 2ε

∂vC0,0
1

∂z
ρ′0 − 3εvC0,0

1 ρ′′0

+ εψC0,0ρ′′′0 − ε
∂2vC0,0

1

∂x2
ρ0 + ε

∂vC0,0
2

∂x
ρ′0, (2.17a)

fC0,0
2 =

∂f 0

∂x
ρ0 +

√
ε
(
2
∂vC0,0

1

∂x
ρ′0 − v

C0,0
2 ρ′′0 −

∂2vC0,0
2

∂x2
ρ0

)
. (2.17b)

Here

f 0(τ, x) = −2
√
εc(x)√
π

∫ +∞

√
τ

e−z
2

dz = −2
√
εc(x)e−τ√

4πτ

∫ +∞

0

e−
z2

4τ
−z dz. (2.18)

The forcing term has the following estimate

||∂jxfC ||L∞(0,T ;L2(Ω)) ≤ Cε
1
2 j = 0, 1, (2.19)

||∂jxfC ||L2(0,T ;L2(Ω)) ≤ Cε j = 0, 1, (2.20)

|f 0(τ, x)| ≤
√
ε|c(x)|e−τ . (2.21)

The basic estimates for vB0,0,vC0,0 and ṽB,0, ṽC,0 are gathered in Lemma 2.1, cf. [22] for
details of the proof.

Lemma 2.1. Assume v0 ∈ V ∩H4(Ω) and T0 ∈ H4(Ω). The following estimates hold

||ṽB,0||L∞(0,T ;L∞(Ω)) ≤ C, ||ṽB,0||L∞(0,T ;L2(Ω)) ≤ Cε
1
4 , ||ṽB,0||L∞(0,T ;H1(Ω)) ≤ Cε−

1
4 , (2.22)

||ṽC,0||L∞(0,T ;L∞(Ω)) ≤ C, ||ṽC,0||L∞(0,T ;L2(Ω)) ≤ Cε
1
4 , ||ṽC,0||L∞(0,T ;H1(Ω)) ≤ Cε−

1
4 , (2.23)

||vC0,0
2 , ṽ2

C0,0||L2(0,T ;L2(Ω)) ≤ Cε, ||ψC0,0, ψ0
1, ψ

0
2||L2(0,T ;L2(Ω)) ≤ Cε. (2.24)

In addition, vB0,0
1 and vC0,0

1 enjoy exponential decay

|vB0,0
1 | ≤ |a(t, x)|e−

z√
ε , |vC0,0

1 | ≤ |c(x)|e−
t
2ε
− z√

2ε , (2.25)

Finally, the second component of the velocity has the following estimates

||∂zvB0,0
2 , ∂zv

C0,0
2 || ≤ Cε

1
4 , ||∂zzvB0,0

2 , ∂zzv
C0,0
2 || ≤ Cε−

1
4 . (2.26)

Remark 2.1. The point-wise estimates for vB0,0
2 and vC0,0

2 can be derived in view of estimates
(2.25) and the divergence-free condition.

Now we define an approximate solution (ṽapp, p̃app, T̃ app) to the DBOB system (1.1) as

ṽapp = vO,0 + vI,0 + ṽB,0 + ṽC,0, (2.27a)

p̃app = pO,0, (2.27b)

T̃ app = TO,0. (2.27c)
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We recall that vO,0, pO,0, TO,0 are the outer solutions, vI,0 is the leading order initial layer
function, ṽB,0 and ṽC,0 are the truncated boundary layer and initial-boundary layer of leading
order, respectively. We remark that a convergence result (e.g. in L∞L2 norm) can be
obtained for (ṽapp, p̃app, T̃ app) by following the energy method in [22] and [31]. However,
the convergence rates would not be optimal, since the truncation procedure incurs extra
error of order ε

1
2 into the system, cf. the last term in Eq. (2.10a) and the first term in

Eq. (2.17a). Moreover, the convergence in physically interesting norms (e.g. L∞H1 and
L∞L∞) is difficult to establish by directly working with the approximate solution (2.27).
These obstacles motivate us to construct another approximate solution by including higher
order terms in the asymptotic expansion.

The equations satisfied by the first order terms (O(
√
ε)) are given as follows, incorporating

errors from the truncation of the leading order profiles.

• First order outer solution (vO,1, pO,1, TO,1)
vO,1 +∇pO,1 = fO +RaDT

O,1k,
∂TO,1

∂t
+ vO,0 · ∇TO,1 = ∆TO,1 − fT ,

div vO,1 = 0,
TO,1(0, x, z) = 0,
vO,1 · n|z=0,1 = 0, TO,1(t, x, z)|z=0,1 = 0,

(2.28)

where

fO =

(
ρ′0a+ ρ′1b,−

∂a

∂x
ρ0 −

∂b

∂x
ρ1

)
, (2.29)

fT = (vO,11 − aρ′0 − bρ′1)∂xT
O,0 + (vO,12 +

∂a

∂x
ρ0 +

∂b

∂x
ρ1)∂zT

O,0. (2.30)

We note that lim
Z→∞

ṽB,02√
ε

= ∂a
∂x
ρ0, cf. Eq. (2.7). The readers are referred to Eq. (2.4) for

the definitions of the functions a, b, c, d.

• First order initial layer vI,1{
∂vI,1

∂τ
+ vI,1 = f I ,

vI,1(0, x, z) = −vO,1(0, x, z),
(2.31)

where f I =

(
− (ρ′0f

0 + ρ′1f
1), (ρ0

∂f0

∂x
+ ρ1

∂f1

∂x
)

)
. One may recall the definition of f 0

from Eq. (2.18). f 1 is the counterpart of f 0 at z = 1 (replacing c(x) with e(x)). We
note that ∇ · f I = 0. It follows readily from the ODE (2.31) that ∇ · vI,1 = 0. We
remark, however, that vI,12 |z=0,1 6= 0.

• First order boundary layer vB0,1 at z = 0
vB0,1

1 − ∂ZZvB0,1
1 = 0, Z ∈ (0,∞),

∂xv
B0,1
1 + 1√

ε
∂Zv

B0,1
2 = 0, Z ∈ (0,∞),

vB0,1
1 (t, x, 0) = −vO,11 (t, x, 0), vB0,1

2 (t, x, 0) = 0,

vB0,1
1 (t, x, Z)→ 0, Z →∞.

(2.32)
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• First order initial-boundary layer vC0,1 at z = 0

∂v
C0,1
1

∂τ
+ vC0,1

1 − ∂ZZvC0,1
1 = 0, Z ∈ (0,∞),

∂xv
C0,1
1 + 1√

ε
∂Zv

C0,1
2 = 0, Z ∈ (0,∞),

vC0,1
1 (0, x, Z) = −vB0,1

1 (0, x, Z),

vC0,1
1 (τ, x, 0) = −vI,11 (τ, x, 0), vC0,1

2 (t, x, 0) = −vI,12 (τ, x, 0),

vC0,1
1 (t, x, Z)→ 0, Z →∞.

(2.33)

Note that we intentionally neglect the terms in the right-hand side of Eq. (4.12) and
Eq. (4.13) in deriving the first order boundary layer system (2.32) and first order initial-
boundary layer system (2.33), respectively. In the sequel, we will show that these terms can
be controlled by Cε in the L∞(L2) norm. In doing so, we see that the first order boundary
layer and initial boundary layer satisfy the same type of equations as their leading order
counterparts. Thus, the truncation procedure and the estimates of the truncated profiles
would be similar to the case of leading order expansion. Hereafter, we denote by ṽB,1 and
ṽC,1 the first order truncated boundary layer and initial-boundary layer, respectively. The
estimates given in Lemma 2.1 are valid for ṽB,1 and ṽC,1, as well. Moreover, thanks to the
estimate (2.21), one finds that vI,1 has exponential decay in time.

2.2. Singular structures in the temperature field

We recall that the temporal and spatial singular structures in the velocity fields introduce
singular structures to the temperature filed via advection mechanism. Formally, the singular
structures in the temperature field start to appear in the order ε expansion. We modify the
expansions according to the truncation in the velocity fields. Since our aim is to establish
a convergence result, we will omit the detailed asymptotic analysis for each expansion. We
will rather focus on the estimates of the functions in the original variable.

• Initial layer in the second order (O(ε)) expansion

{
∂T I,2

∂τ
= −[vI,01 − (ρ′0ψ

0
2 + ρ′1ψ

1
2)]∂T

O,0

∂x
− [vI,02 + ρ0

∂ψ0
2

∂x
+ ρ1

∂ψ1
2

∂x
)]∂T

O,0

∂z
,

T I,2|τ=0 = 0.
(2.34)

Here ψ0
2 is defined in Eq. (2.13), and ψ1

2 is the counterpart of ψ0
2 at z = 1 with c(x)

replaced by e(x). We note that the forcing terms enjoy exponential decay in time, cf.
Eq. (2.3) and Eq. (2.13). We remark that a formal expansion of the forcing term
would reveal the appearance of initial layers of O(ε) contained in T I,2.

• Boundary layer at z = 0 in the second order (O(ε)) expansion{
ε∂

2TB0,2

∂z2
= (ṽB0,0

1 +
√
εaρ′0)∂xT

O,0 + (ṽB0,0
2 −

√
ε∂a
∂x
ρ0)∂zT

O,0,
TB,2|z=0,1 = 0.

(2.35)

The modification of the terms in the right-hand side is due to the fact that the non-
boundary layer type functions are already taken care of in the first order outer expan-
sion, cf. Eq. (2.28). Note that the equation is written in the original variable. To be
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precise, TB0,2 contains functions of boundary layer type if one formally performs an
asymptotic analysis of Eq. (2.35). Indeed, the boundary layer in TB0,2 appears in the
order O(

√
ε) expansion.

• Initial-boundary layer at z = 0 in the second order (O(ε)) expansion ε(∂T
C0,2

∂t
− ∂2TC0,2

∂z2
) = −vC0,0

1 ρ0∂xT
O,0 − ψ0

1ρ
′
0∂xT

O,0 − ∂ψ0
1

∂x
ρ0∂zT

O,0,
TC,2(0, x, z) = −TB0,2(0, x, z),
TC,2(t, x, 0) = −T I,2(t, x, 0), TC,2(t, x, 1) = 0.

(2.36)

As the functions of pure initial layer type in ṽC0,0 are included in the Eq. (2.34), the
forcing terms in Eq. (2.36) have exponential decay both in time and in space in terms
of the stretched variables τ, Z.

The modified boundary layer Eq. (2.35) and modified initial-boundary layer Eq. (2.36)
are both written in original variable. The boundary conditions are imposed such that no
truncation is needed in defining the overall boundary layer T̃B,2 and initial-boundary layer
T̃C,2, i.e.,

T̃B,2 = TB0,2 + TB1,2, T̃C,2 = TC0,2 + TC1,2, (2.37)

where TB1,2 and TC1,2 are the modified boundary layer and modified initial-boundary layer
for temperature at z = 1, respectively. One can readily check that T I,2 + T̃B,2 + T̃C,2 satisfies
homogeneous initial and boundary conditions.

In an entirely similar fashion, one can derive the equations satisfied by the third order
expansion T I,3, T̃B,3 and T̃C,3 that balance the ε

1
2 terms in the temperature equation. The

interested readers are referred to Eq. (4.19)–(4.20) for the original expansion. We gather
the basic estimates for the temperature in the following lemma.

Lemma 2.2. Assume v0 ∈ V ∩H4(Ω) and T0 ∈ H4(Ω). The following estimates hold

||T I,2||L∞(0,T ;L∞(Ω)) ≤ C, ||∇T I,3||L∞(0,T ;L∞(Ω)) ≤ C, (2.38)

||T̃B,2||L∞(0,T ;L∞(Ω)) ≤ C, ||∇T̃B,2||L∞(0,T ;L∞(Ω)) ≤ C, (2.39)

||T̃C,2||L∞(0,T ;L∞(Ω)) ≤ C, ||T̃C,2||L∞(0,T ;H1(Ω)) ≤ C, (2.40)

||T̃B,3||L∞(0,T ;L∞(Ω)) ≤ Cε−
1
2 , ||T̃B,3||L∞(0,T ;H1(Ω)) ≤ Cε−

1
2 , (2.41)

||T̃C,3||L∞(0,T ;L∞(Ω)) ≤ Cε−
1
2 , ||T̃C,3||L∞(0,T ;H1(Ω)) ≤ Cε−

1
2 . (2.42)

Remark 2.2. Since there are no singular structures in the x variable, the derivatives of
the layer functions in the x direction will satisfy the same estimates as the layer functions
themselves, provided that the functions are as regular as needed.

Proof. Thanks to the exponential decay in time for the forcing terms in Eq. (2.34) (i.e. e−
t
ε ),

one readily obtains the estimate (2.38). In view of the definition of T̃B,2 and T̃C,2 from Eqs.
(2.37), we only need to work on TB0,2 and TC0,2.

11



Recall the definition of ṽB0,0 from Eqs. (2.7). One sees that the two typical terms in the

right-hand side of Eq. (2.35) are aρ0e
− z√

ε∂xT
O,0 and ε

1
2
∂a
∂x
ρ0e
− z√

ε∂zT
O,0. It follows that

∂TB0,2

∂z
= C(t, x) +

a

ε

∫ z

0

ρ0(l)e
− l√

ε∂xT
O,0dl +

∂xa√
ε

∫ z

0

ρ0(l)e
− l√

ε∂zT
O,0dl, (2.43)

where the function C(t, x) can be found by imposing the boundary conditions after integrat-
ing the above equations

C(t, x) =
a

ε

∫ 1

0

∫ z

0

ρ0(l)e
− l√

ε∂xT
O,0dldz +

∂xa√
ε

∫ 1

0

∫ z

0

ρ0(l)e
− l√

ε∂zT
O,0dldz. (2.44)

The last term in Eq. (2.43) is bounded by C||∂xa∂zTO,0||L∞(0,T ;L∞(Ω)) by utilizing the expo-
nential decay in z. For the second term in Eq. (2.43), we note that ∂xT

O,0|z=0 = 0. One
has, by Hardy’s inequality

|a
ε

∫ z

0

ρ0(l)e
− l√

ε∂xT
O,0dl| ≤ ||aρ0||L∞(0,T ;L∞(Ω))

∫ z

0

l

ε
e
− l√

ε |∂xT
O,0

l
|dl

≤ ||aρ0∂xzT
O,0||L∞(0,T ;L∞(Ω))

∫ z

0

l

ε
e
− l√

εdl

≤ C||aρ0∂xzT
O,0||L∞(0,T ;L∞(Ω)).

The function C(t, x) in Eq. (2.44) has similar estimate. The estimates (2.39) follow imme-
diately.

For the estimates of TC0,2, we first recall the definition of ṽC,0 from Eqs. (2.14) and the
definitions of ψ0

1 and ψ0
2 from Eqs. (2.12) and (2.13), respectively. We introduce an auxiliary

function A(t, x, z) = T I,2(t, x, 0)(z − 1). In view of Eq. (2.34), one finds that

ε
∂A

∂t
= −∂ψ

0
2

∂x
∂zT

O,0|z=0(z − 1).

where one has utilized the conditions ∂xT
O,0|z=0 = 0 and vI,02 |z=0 = 0. It is clear that the

difference T d = TC0,2 − A would satisfy{
∂T d

∂t
− ∂zzT d = 1

ε
fd,

T d|t=0 = −TB0,2(0, x, z), T d|z=0,1 = 0.
(2.45)

where

fd = −vC0,0
1 ρ0∂xT

O,0 − ψ0
1ρ
′
0∂xT

O,0 − ∂ψ0
1

∂x
ρ0∂zT

O,0 − ∂ψ0
2

∂x
∂zT

O,0|z=0(z − 1). (2.46)

One may apply the standard energy method to Eq. (2.45), i.e. testing the equation with
T d and ∂tT

d respectively. In view of the estimate (2.45), one only needs to control the first
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term in Eq. (2.46). One has∣∣∣∣ ∫ T

0

∫ 1

0

1

ε2
(vC0,0

1 )2ρ2
0(∂xT

O,0)2dzdt

∣∣∣∣
≤ ||cρ0||2L∞(L∞(Ω))

∫ T

0

∫ 1

0

1

ε2
e
− t
ε
−
√
2z√
ε (∂xT

O,0)2dzdt thanks to the estimate (2.25)

= ||cρ0||2L∞(0,T ;L∞(Ω))

∫ T

0

∫ 1

0

1

ε
e−

t
ε
z2

ε
e
−
√
2z√
ε (∂xT

O,0/z)2dzdt

≤ ||cρ0∂xzT
O,0||2L∞(0,T ;L∞(Ω))

∫ T

0

(
1

ε
e−

t
ε )dt

∫ 1

0

z2

ε
e
−
√
2z√
ε dz thanks to Hardy’s inequality

≤ ||cρ0∂xzT
O,0||2L∞(0,T ;L∞(Ω))ε

1
2 .

One can then derive the second estimate in (2.40), by virtue of estimate (2.39). In fact,

the estimate derived is
∫ 1

0
|∂TC0,2

∂z
|2dz ≤ C with a constant C, as the equation (2.45) is a

heat equation involving spatial derivatives only in the z direction. Then the first estimate
in (2.40) follows from the 1D Sobolev embedding. We point out that the uniform estimate
can also be derived by the anisotropic Sobolev embedding, cf. [22].

The estimates (2.42) are easy to derive by energy methods, cf. Eq. (4.19)–(4.20). This
concludes our proof. �

Remark 2.3. We note that the estimates (2.39)– (2.42) are by no means optimal in terms
of the parameter ε. For instance, the estimates (2.39) imply that the boundary layer for
temperature TB0,0 would be of order

√
ε. An asymptotic expansion of the forcing terms in

Eq. (2.35) will confirm this conclusion. We also remark that the estimates (2.41) and (2.42)

are sufficient for the convergence analysis below, as TB0,3 and TC0,3 appear as order ε
3
2 in

the definition of the approximate solution, cf. the definition (2.47).

2.3. The approximate solution

We define another approximate solution (vapp, papp, T app) as follows

vapp = vO,0 + vI,0 + ṽB,0 + ṽC,0 +
√
ε(vO,1 + vI,1 + ṽB,1 + ṽC,1), (2.47a)

papp = pO,0 +
√
εpO,1, (2.47b)

T app = TO,0 +
√
εTO,1 + ε(T I,2 + T̃B,2 + T̃C,2) + ε

3
2 (T I,3 + T̃B,3 + T̃C,3). (2.47c)

By direct calculation, one can verify that the approximate solution (vapp, papp, T app) sat-
isfies the following system



ε
(
∂vapp

∂t
+ (vapp · ∇)vapp

)
+ vapp − ελ∆vapp +∇papp = RaDkT

app + f err,
∂Tapp

∂t
+ vapp · ∇T app = ∆T app + gerr,

div vapp = 0,
vapp|t=0 = v0, T app|t=0 = T0,
vapp|z=0,1 = 0, T app|z=0 = 1, T app|z=1 = 0,
vapp, papp, T app are periodic in x-direction.

(2.48)
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The error functions take the form

f err = ε
(∂vO,0
∂t

+
∂ṽB,0

∂t

)
+ ε(vapp · ∇)vapp − ε

(
∆vO,0 + ∆vI,0

)
+ ε

3
2

(∂vO,1
∂t

+
∂ṽB,1

∂t

)
− ε

3
2

(
∆vO,1 + ∆vI,1

)
+ f̃B + f̃C

−RaDk
[
ε(T I,2 + T̃B,2 + T̃C,2) + ε

3
2 (T I,3 + T̃B,3 + T̃C,3)

]
, (2.49)

gerr = −ε(∂T̃
B,2

∂t
+ vapp · ∇T I,2 + ∆T I,2)− ε

3
2

(∂T̃B,3
∂t

+ vapp · ∇(T I,3 + T̃B,3 + T̃C,3) + ∆T I,3
)

− ε(vO,1 + vI,1 + ṽB,1 + ṽC,1) · ∇TO,1 − ε
3
2 (vO,1 + vI,1 + ṽB,1 + ṽC,1) · ∇(T̃B,2 + T̃C,2)

− ε(∂xxT̃B,2 + ∂xxT̃
C,2)− ε

3
2 (∂xxT̃

B,3 + ∂xxT̃
C,3). (2.50)

Here f̃B and f̃C have similar terms as fB and fC except those O(
√
ε) terms. The explicit

formulation of f̃B = f̃B,0 + f̃B,1 is illustrated as follows, cf. [22]:

f̃B,01 =ε
3
2 ∆(aρ′0)(1− e−

z√
ε ) + ε

(∂2a

∂x2
ρ0 + 3aρ′′

)
e
− z√

ε

− 2
√
εae
− z√

ερ′0 − ε
3
2 ∆uO1 + ε2∆(āρ′0)(1− e−

z√
ε )

+ ε
3
2

(∂2ā

∂x2
ρ0 + 3āρ′′0

)
e
− z√

ε − 2εāe
− z√

ερ′0 − εāρ′0,

f̃B,02 =− ε
3
2 ∆(

∂a

∂x
ρ0)(1− e−

z√
ε )− 2ε

∂a

∂x
e
− z√

ερ′0 − ε
3
2 ∆uO2

− ε2∆(
∂ā

∂x
ρ0)(1− e−

z√
ε )− 2ε

3
2
∂ā

∂x
e
− z√

ερ′0 + ε
∂ā

∂x
ρ0,

with ā = vO,11 (t, x, 0).
For the error terms f err and gerr, we have the following estimates.

Lemma 2.3. Assume v0 ∈ V ∩H4(Ω) and T0 ∈ H4(Ω). The following estimates hold

||∂jxf err||L∞(0,T ;L2(Ω)) ≤ Cε, ||∂jxgerr||L∞(0,T ;L2(Ω)) ≤ Cε, j = 0, 1, (2.52)

||∇ · f err||L∞(0,T ;L2(Ω)) ≤ Cε
3
4 , ||f err2 ||L∞(0,T ;H1(Ω)) ≤ Cε

3
4 , (2.53)

where the constant C is independent of ε.

Proof. For the estimates (2.52), in view of the estimates from Lemma 2.1 and Lemma 2.2,

one only needs control typical terms like −2
√
εae
− z√

ερ′0 in f̃B and ε(ṽapp · ∇)ṽapp. These
are essentially done in our previous work [22]. Parts of the argument are given below for
completeness. First of all, by the definition of the cut-off function, one has

|| − 2
√
εae
− z√

ερ′0||2L2 ≤ Cε

∫ 1
2

1
4

e
− 2z√

ερ′0
2
dz

≤ Cε2
∫ 1

2

1
4

z2

ε
e
− 2z√

ερ′0
2
dz

≤ Cε
5
2 ||Ze−Z ||2L2(0,∞)

≤ Cε
5
2 . (2.54)
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For the estimate of ε(vapp · ∇)vapp, we only need to control terms like vO,02
∂ṽB,01

∂z
or vI,02

∂ṽ
C0,0
1

∂z
.

Since v0
2

∣∣
z=0,1

= 0 , a direct application of Hardy’s inequality yields

||vO,02

∂ṽB,01

∂z
||L2 ≤ ||vO,02

∂ṽB0,0
1

∂z
||L2 + ||vO,02

∂ṽB1,0
1

∂z
||L2

≤ ||∂zvO,02 ||L∞
(
||z∂ṽ

B0,0
1

∂z
||L2 + ||(1− z)

∂ṽB1,0
1

∂z
||L2

)
≤ Cε

1
4 ||Ze−Z ||L2(0,∞). (2.55)

For the estimates (2.53), in light of the divergence-free conditions, special care needs to
be taken for ∂zv

app
1 ∂xv

app
2 and vapp2 ∂zzv

app
2 . According to the inequalities (2.26), these two

terms are bounded above by Cε−
1
4 . This concludes the proof.

�

3. Error Estimates

Define the error functions

verr = vε − vapp, perr = pε − papp, T err = T ε − T app,

then combining (1.1) and (2.48) we get

ε
(
∂verr

∂t
+ (verr · ∇)verr + (verr · ∇)vapp + (vapp · ∇)verr

)
+verr − ε∆verr +∇perr = RaDkT

err − f err,
∂T err

∂t
+ verr · ∇T err + vapp · ∇T err + verr · ∇T app

= ∆T err − gerr,
div verr = 0,
verr|t=0 = 0, T err|t=0 = 0,
verr|z=0,1 = 0, T err|z=0 = 0, T err|z=1 = 0,
verr, perr, T err are periodic in x-direction.

(3.1)

Theorem 3.1. Assume v0 ∈ V ∩Hm(Ω) and T0 ∈ Hm(Ω) with m ≥ 5 and that they satisfy
certain compatibility conditions. Then the following convergence rates hold for small ε

||verr||L∞(0,T ;L2(Ω)) ≤ Cε, (3.2a)

||verr||L∞(0,T ;H1(Ω)) ≤ Cε
1
2 , (3.2b)

||verr||L∞(0,T ;L∞(Ω)) ≤ Cε
3
4 , (3.2c)

||T err||L∞(0,T ;L2(Ω)) ≤ Cε, (3.2d)

||T err||L∞(0,T ;H1(Ω)) ≤ Cε, (3.2e)

||T err||L∞(0,T ;L∞(Ω)) ≤ Cε, (3.2f)

||∂T err
∂t
||L2(0,T ;L2(Ω)) ≤ Cε, (3.2g)

||∇perr||L∞(0,T ;L2(Ω)) ≤ Cε, (3.2h)

||perr||L∞(0,T ;L∞(Ω)) ≤ Cε
3
4 , (3.2i)
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where C is a generic constant independent of ε and perr is the average of perr over Ω.

In view of the estimates given in Lemma 2.1 and Lemma 2.2, one obtains

‖
√
ε(vO,1 + vI,1 + ṽB,1 + ṽC,1)‖L∞(0,T ;L2(Ω)) ≤ Cε

1
2 ,

‖
√
ε(vO,1 + vI,1 + ṽB,1 + ṽC,1)‖L∞(0,T ;H1(Ω)) ≤ Cε

1
4 ,

‖
√
ε(vO,1 + vI,1 + ṽB,1 + ṽC,1)‖L∞(0,T ;L∞(Ω)) ≤ Cε

1
2 ,

‖
√
εpO,1‖L∞(0,T ;L∞(Ω)) ≤ Cε

1
2 ,

‖
√
εTO,1 + ε(T I,2 + T̃B,2 + T̃C,2) + ε

3
2 (T I,3 + T̃B,3 + T̃C,3)‖L∞(0,T ;L2(Ω)) ≤ Cε

1
2 ,

‖
√
εTO,1 + ε(T I,2 + T̃B,2 + T̃C,2) + ε

3
2 (T I,3 + T̃B,3 + T̃C,3)‖L∞(0,T ;H1(Ω)) ≤ Cε

1
2 ,

‖
√
εTO,1 + ε(T I,2 + T̃B,2 + T̃C,2) + ε

3
2 (T I,3 + T̃B,3 + T̃C,3)‖L∞(0,T ;L∞(Ω)) ≤ Cε

1
2 .

One can immediately derive Theorem 1.1 as a corollary of Theorem 3.1.

Corollary 3.1. The assumptions are the same as in Theorem 3.1. Recall the definition of
ṽapp from Eq. (2.27). Then we have the following convergence estimates

||vε − ṽapp||L∞(0,T,L2(Ω)) ≤ Cε
1
2 , (3.3a)

||vε − ṽapp||L∞(0,T,H1(Ω)) ≤ Cε
1
4 , (3.3b)

||vε − ṽapp||L∞(0,T,L∞(Ω)) ≤ Cε
1
2 , (3.3c)

||T ε − TO,0||L∞(0,T,L∞(Ω)) ≤ Cε
1
2 , (3.3d)

||T ε − TO,0||L∞(0,T,H1(Ω)) ≤ Cε
1
2 , (3.3e)

||∂(T ε−TO,0)
∂t

||L2(0,T ;L2(Ω)) ≤ Cε
1
2 , (3.3f)

||∇(pε − pO,0)||L∞(0,T ;L2(Ω)) ≤ Cε
1
2 , (3.3g)

||pε − pO,0||L∞(0,T ;L∞(Ω)) ≤ Cε
1
2 , (3.3h)

where C is a generic constant independent of ε; ṽapp is defined as the sum of the solution
to the DOB system (1.2), an explicit initial layer, an explicit boundary layer and an initial-
boundary layer (see (2.27)); p0 and T 0 are the pressure and temperature fields to the VDDB
system (1.2).

To prove Theorem 3.1, we firstly give the following two lemmas.

Lemma 3.1. (Inequality for the trilinear form[54][19][22]) let b(u,v,w) be the trilinear form
on V × V × V defined by

b(u,v,w) =

∫
Ω

(u · ∇)v ·wdx.

Then b has the following propertites

b(u,v,v) = 0, b(u,v,w) = −b(u,w,v),

|b(u,v,w)| ≤ C‖u‖
1
2

L2‖∇u‖
1
2

L2‖∇v‖L2‖w‖
1
2

L2‖∇w‖
1
2

L2 ,

|b(u,v,w)| ≤ C‖u‖
1
2

L2‖∇u‖
1
2

L2‖∇v‖
1
2

L2‖∆v‖
1
2

L2‖w‖L2 , provided

(u,v,w) ∈ V × (V ∩H2(Ω))× V.
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Lemma 3.2. (Anisotropic Sobolev embedding[31][56][73][22]) There exists a positive con-
stant C such that for any u ∈ H1

0,per(Ω)

‖u‖L∞(Ω) ≤ C
(
‖u‖

1
2

L2(Ω)‖∂zu‖
1
2

L2(Ω) + ‖∂xu‖
1
2

L2(Ω)‖∂zu‖
1
2

L2(Ω) + ‖u‖
1
2

L2(Ω)‖∂x∂zu‖
1
2

L2(Ω)

)
,

where one or both sides of the inequality could be infinite.

Now we prove the Theorem 3.1 in six steps.

Proof.

3.1. L∞(L2) estimate of verr and T err

Multiplying the velocity error equations in (3.1) by verr and integrating over Ω lead to,
for small ε,

ε

2

d

dt

∫
Ω

|verr|2 +

∫
Ω

|verr|2 + ε

∫
Ω

|∇verr|2

= ε

∫
Ω

(
(verr · ∇)verr

)
· vapp +RaD

∫
Ω

k · verrT err −
∫

Ω

f err · verr

≤ Cε‖vapp‖2
L∞(0,T ;L∞(Ω))

∫
Ω

|verr|2 +
1

8

∫
Ω

|verr|2 + 2(RaD)2

∫
Ω

|T err|2

+
ε

2

∫
Ω

|∇verr|2 +
1

8

∫
Ω

|verr|2 + 2

∫
Ω

|f err|2

≤ 3

8

∫
Ω

|verr|2 +
ε

2

∫
Ω

|∇verr|2 + 2(RaD)2

∫
Ω

|T err|2 + 2

∫
Ω

|f err|2. (3.4)

Here and in what follows the uniform estimate ‖vapp‖L∞(0,T ;L∞(Ω)) follows from Lemma 2.1.
Multiplying the temperature error equations in (3.1) by T err and integrating over Ω lead

to

1

2

d

dt

∫
Ω

|T err|2 +

∫
Ω

|∇T err|2

= −
∫

Ω

(verr · ∇TO,0)T err +

∫
Ω

(verr · ∇T err)(T app − TO,0)−
∫

Ω

gerr · T err

≤ 1

16

∫
Ω

|verr|2 + C‖∇TO,0‖2
L∞(0,T ;L∞(Ω))

∫
Ω

|T err|2 + C||T app − TO,0||2L∞(0,T ;L∞(Ω))

∫
Ω

|verr|2

+
1

2

∫
Ω

|∇T err|2 +
1

4

∫
Ω

|T err|2 +

∫
Ω

|gerr|2

≤ 1

8

∫
Ω

|verr|2 + C

∫
Ω

|T err|2 +
1

2

∫
Ω

|∇T err|2 +

∫
Ω

|gerr|2, (3.5)

where the estimate ||T app−TO,0||2L∞(0,T ;L∞(Ω)) ≤ Cε follows from Lemma 2.2. See Eq. (2.47)
for the definition of T app.
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Combining (3.4) and (3.5), one concludes that there holds for small ε

ε

2

d

dt

∫
Ω

|verr|2 +
1

2

∫
Ω

|verr|2 +
ε

2

∫
Ω

|∇verr|2 +
1

2

d

dt

∫
Ω

|T err|2 +
1

2

∫
Ω

|∇T err|2

≤ C

∫
Ω

|T err|2 + 2

∫
Ω

|f err|2 +

∫
Ω

|gerr|2, (3.6)

upon which the application of Gronwall’s inequality leads to for any t ∈ [0, T ]∫
Ω

(
ε|verr|2 + |T err|2

)
(t) +

∫ t

0

∫
Ω

(
ε|∇verr|2 + |∇T err|2

)
≤ Cε2.

Consequently, one has

‖verr‖L∞(0,T ;L2(Ω)) ≤ Cε
1
2 , ‖T err‖L∞(0,T ;L2(Ω)) ≤ Cε, (3.7)

‖∇verr‖L2(0,T ;L2(Ω)) ≤ Cε
1
2 , ‖∇T err‖L2(0,T ;L2(Ω)) ≤ Cε. (3.8)

The error estimates of velocity can be improved. Substituting (3.7) into (3.4) leads to for
small ε

ε
d

dt

∫
Ω

|verr|2 +

∫
Ω

|verr|2 ≤ Cε2.

Let E0(t) = ‖verr‖2
L2(Ω), then we have

E ′0(t) +
1

ε
E0(t) ≤ Cε⇒ d

dt
(e

t
εE0(t)) ≤ Cεe

t
ε

⇒ E0(t) ≤ Cεe−
t
ε

∫ t

0

e
τ
ε dτ = Cε2(1− e−

t
ε ).

Consequently one has

‖verr‖L∞(0,T ;L2(Ω)) ≤ Cε. (3.9)

The estimates (3.2a) and (3.2d) in Theorem 3.1 are hence established.

Remark 3.1. Without including higher order expansions in the construction of approximate
solution (i.e., ṽapp, pO,0, TO,0), the error in the forcing terms (f err, gerr) is of order

√
ε. The

same energy method would still give the estimate (3.3a) in the Corollary 3.1. However, the
error estimates in H1 norm and uniform norm will not be optimal, cf. the arguments below
(see also [31]).

3.2. L∞(L∞) estimate of the second component of velocity error verr2

Applying the operator ∂x to the system (3.1) one has
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

ε

(
∂(∂xverr)

∂t
+ (∂xv

err · ∇)verr + (verr · ∇)∂xv
err + (∂xv

err · ∇)vapp

+(verr · ∇)∂xv
app + (∂xv

app · ∇)verr + (vapp · ∇)∂xv
err

)
+∂xv

err − ε∆∂xverr +∇∂xperr = RaDk∂xT
err − ∂xf err,

∂(∂xT err)
∂t

+ ∂xv
err · ∇T err + verr · ∇∂xT err + ∂xv

app · ∇T err + vapp · ∇∂xT err
+∂xv

err · ∇T app + verr · ∇∂xT app = ∆∂xT
err − ∂xgerr,

div ∂xv
err = 0,

∂xv
err|t=0 = 0, ∂xT

err|t=0 = 0,
∂xv

err|z=0,1 = 0, ∂xT
err|z=0 = 0, ∂xT

err|z=1 = 0,
∂xv

err, ∂xp
err, ∂xT

err are periodic in x-direction.

(3.10)

Multiplying the velocity error equations in (3.10) by ∂xv
err and integrating over Ω lead

to

ε

2

d

dt

∫
Ω

|∂xverr|2 +

∫
Ω

|∂xverr|2 + ε

∫
Ω

|∇∂xverr|2

= −ε
∫

Ω

(
(∂xv

err · ∇)verr
)
∂xv

err + ε

∫
Ω

(
(∂xv

err · ∇)∂xv
err
)
vapp

+ ε

∫
Ω

(
(verr · ∇)∂xv

err
)
∂xv

app − ε
∫

Ω

(
(∂xv

app · ∇)verr
)
∂xv

err

+RaD

∫
Ω

k · ∂xverr∂xT err −
∫

Ω

∂xf
err · ∂xverr. (3.11)

We control the right-hand side of Eq. (3.11) as follows.

−ε
∫

Ω

(
(∂xv

err · ∇)verr
)
∂xv

err ≤ Cε‖verr‖
1
2

L2(Ω)‖∂xv
err‖

1
2

L2(Ω)‖∇v
err‖

1
2

L2(Ω)‖∇∂xv
err‖

3
2

L2(Ω)

≤ Cε2‖∂xverr‖2
L2(Ω)‖∇verr‖2

L2(Ω) +
1

8
ε‖∇∂xverr‖2

L2(Ω),

ε

∫
Ω

(
(∂xv

err · ∇)∂xv
err
)
vapp ≤ Cε‖∂xverr‖L2(Ω)‖∇∂xverr‖L2(Ω)‖vapp‖L∞(0,T ;L∞(Ω))

≤ Cε‖∂xverr‖2
L2(Ω) +

1

8
ε‖∇∂xverr‖2

L2(Ω)

≤ 1

4
‖∂xverr‖2

L2(Ω) +
1

8
ε‖∇∂xverr‖2

L2(Ω)

ε

∫
Ω

(
(verr · ∇)∂xv

err
)
∂xv

app ≤ Cε‖verr‖2
L∞(0,T ;L2(Ω))‖∂xvapp‖2

L∞(0,T ;L∞(Ω)) +
1

10
ε‖∇∂xverr‖2

L2(Ω)

≤ Cε3 +
1

8
ε‖∇∂xverr‖2

L2(Ω),
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ε

∫
Ω

(
(∂xv

app · ∇)verr
)
∂xv

err = −ε
∫

Ω

(
(∂xv

app · ∇)∂xv
err
)
verr

≤ Cε‖verr‖2
L∞(0,T ;L2(Ω))‖∂xvapp‖2

L∞(0,T ;L∞(Ω)) +
1

10
ε‖∇∂xverr‖2

L2(Ω)

≤ Cε3 +
1

8
ε‖∇∂xverr‖2

L2(Ω),

RaD

∫
Ω

k · ∂xverr∂xT err −
∫

Ω

∂xf
err · ∂xverr ≤

1

4
‖∂xverr‖2

L2(Ω) + C‖∂xT err‖2
L2(Ω) + Cε2.

Here the uniform estimate ‖∂xvapp‖L∞(0,T ;L∞(Ω)) follows from Lemma 2.1 and Remark 2.2.
The Eq. (3.11) then becomes

ε

2

d

dt

∫
Ω

|∂xverr|2 +
1

2

∫
Ω

|∂xverr|2 +
1

2
ε

∫
Ω

|∇∂xverr|2

≤ Cε2‖∂xverr‖2
L2(Ω)‖∇verr‖2

L2(Ω) + C‖∂xT err‖2
L2(Ω) + Cε2 + Cε3. (3.12)

In view of the estimates (3.8), one has by Gronwall’s inequality that

‖∂xverr‖L∞(0,T ;L2(Ω)) ≤ Cε
1
2 , ‖∇∂xverr‖L2(0,T ;L2(Ω)) ≤ Cε

1
2 .

Testing the temperature error equation in (3.10) by ∂xT
err gives

1

2

d

dt

∫
Ω

|∂xT err|2 +

∫
Ω

|∇∂xT err|2

= −
∫

Ω

(∂xv
err · ∇T err)∂xT err −

∫
Ω

(∂xv
app · ∇T err)∂xT err

−
∫

Ω

(∂xv
err · ∇T app)∂xT err −

∫
Ω

(verr · ∇∂xT app)∂xT err

−
∫

Ω

∂xg
err∂xT

err. (3.13)

We estimate the right-side of of Eq. (3.13) as follows.

−
∫

Ω

(∂xv
err · ∇T err)∂xT err =

∫
Ω

(∂xv
err · ∇∂xT err)T err

≤ ‖∂xverr‖
1
2

L2(Ω)‖∇∂xv
err‖

1
2

L2(Ω)‖∇∂xT
err‖L2(Ω)‖T err‖

1
2

L2(Ω)‖∇T
err‖

1
2

L2(Ω)

≤ C‖∂xverr‖2
L2(Ω)‖∇∂xverr‖2

L2(Ω) +
1

4
‖∇∂xT err‖2

L2(Ω) + ‖T err‖2
L2(Ω)‖∇T err‖2

L2(Ω)

≤ Cε‖∇∂xverr‖2
L2(Ω) +

1

4
‖∇∂xT err‖2

L2(Ω) + Cε2‖∇T err‖2
L2(Ω),

and

−
∫

Ω

(∂xv
app · ∇T err)∂xT err =

∫
Ω

(∂xv
app · ∇∂xT err)T err

≤ ‖∂xvapp‖L∞(0,T ;L∞(Ω))‖∇∂xT err‖L2(Ω)‖T err‖L∞(0,T ;L2(Ω))

≤ C‖∂xvapp‖2
L∞(0,T ;L∞(Ω))‖T err‖2

L∞(0,T ;L2(Ω)) +
1

8
‖∇∂xT err‖2

L2(Ω)

≤ Cε2 +
1

8
‖∇∂xT err‖2

L2(Ω).
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Similarly, one has

−
∫

Ω

(∂xv
err · ∇T app)∂xT err −

∫
Ω

(verr · ∇∂xT app)∂xT err

=

∫
Ω

(∂xv
err · ∇∂xT err)(T app − TO,0)−

∫
Ω

(∂xv
err · ∇TO,0)∂xT

err

+

∫
Ω

(∂xv
err · ∇∂xT err)∂x(T app − TO,0)−

∫
Ω

(verr · ∇∂xTO,0)∂xT
err

≤ 1

2
‖∂xverr‖2

L2(Ω) +
1

8
‖∇∂xT err‖2

L2(Ω) + C‖∂xT err‖2
L2(Ω) + Cε2 + Cε3.

Here we use the estimate ||∂x(T app− TO,0)||2L∞(0,T ;L∞(Ω)) ≤ Cε from Lemma 2.2 and Remark
2.2. Finally,

−
∫

Ω

∂xg
err∂xT

err ≤ 2‖∂xT err‖2
L2(Ω) + 2‖∂xgerr‖2

L∞(0,T ;L2(Ω)) ≤ 2‖∂xT err‖2
L2(Ω) + Cε2.

Collecting the above estimate of the right-side of Eq. (3.13) into Eq. (3.13) we have for
small ε

1

2

d

dt

∫
Ω

|∂xT err|2 +
1

2

∫
Ω

|∇∂xT err|2 ≤ C‖∂xT err‖2
L2(Ω) +

1

2
‖∂xverr‖2

L2(Ω)

+ ε‖∇∂xverr‖2
L2(Ω) + Cε2‖∇T err‖2

L2(Ω) + Cε2, (3.14)

Combine inequality (3.12) and (3.14) and apply Gronwall’s inequality leads to

||∂xT err||L∞(0,T ;L2(Ω)) ≤ Cε, ||∇∂xT err||L2(0,T ;L2(Ω)) ≤ Cε. (3.15)

Thanks to the estimate (3.15), the estimate on ∂xv
err derived from inequality (3.12) can be

improved as

‖∂xverr‖L∞(0,T ;L2(Ω)) ≤ Cε, ‖∇∂xverr‖L2(0,T ;L2(Ω)) ≤ Cε. (3.16)

Indeed, a bootstrapping argument could yield that

‖∂jxverr‖L∞(0,T ;L2(Ω)) ≤ Cε,

for any integer j > 0 permitted by the regularity of the data. Hereafter, we assume j ≥ 3.
In light of the divergence-free condition, one obtains

||∂zverr2 ||L∞(0,T ;L2(Ω)) ≤ Cε, ||∂xzverr2 ||L∞(0,T ;L2(Ω)) ≤ Cε, ||∂xxzverr2 ||L∞(0,T ;L2(Ω)) ≤ Cε.

It follows from the Anisotropic Sobolev embedding Lemma that

‖verr2 ‖L∞(0,T ;L∞(Ω)) ≤ Cε, ‖∂xverr2 ‖L∞(0,T ;L∞(Ω)) ≤ Cε. (3.17)
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3.3. L∞(H1) estimates of verr

Multiplying the velocity error equations in (3.1) by −∆verr and integrating over Ω lead
to

ε

2

d

dt

∫
Ω

|∇verr|2 +

∫
Ω

|∇verr|2 + ε

∫
Ω

|∆verr|2

= ε

∫
Ω

(
(verr · ∇)verr

)
∆verr + ε

∫
Ω

(
(verr · ∇)vapp

)
∆verr

+ ε

∫
Ω

(
(vapp · ∇)verr

)
∆verr −RaD

∫
Ω

∆verr2 T err +

∫
Ω

f err∆verr. (3.18)

The right-hand side of Eq. (3.18) can be controlled as follows.

ε

∫
Ω

(
(verr · ∇)verr

)
∆verr = Cε‖verr‖

1
2

L2(Ω)‖∇v
err‖L2(Ω)‖∆verr‖

3
2

L2(Ω)

≤ Cε‖verr‖2
L∞L2‖∇verr‖4

L2(Ω) +
1

10
ε‖∆verr‖2

L2(Ω)

≤ Cε3‖∇verr‖4
L2(Ω) +

1

10
ε‖∆verr‖2

L2(Ω),

and, by (3.7), (3.17) and Lemma 2.1,

ε

∫
Ω

(
(verr · ∇)vapp

)
∆verr = ε

∫
Ω

(
verr1 ∂xv

app
)
∆verr + ε

∫
Ω

(
verr2 ∂zv

app
)
∆verr

≤ Cε‖verr‖2
L∞(0,T ;L2(Ω))‖∂xvapp‖2

L∞(0,T ;L∞(Ω))

+ Cε‖verr2 ‖2
L∞(0,T ;L∞(Ω))‖∇vapp‖2

L∞(0,T ;L2(Ω)) +
1

10
ε‖∆verr‖2

L2(Ω)

≤ Cε2 +
1

10
ε‖∆verr‖2

L2(Ω), (3.19)

and

ε

∫
Ω

(
(vapp · ∇)verr

)
∆verr ≤ Cε‖∇verr‖2

L2(Ω)‖vapp‖2
L∞(0,T ;L∞(Ω)) +

1

10
ε‖∆verr‖2

L2(Ω)

≤ Cε‖∇verr‖2
L2(Ω) +

1

10
ε‖∆verr‖2

L2(Ω),

and

−RaD
∫

Ω

∆verr2 T err ≤ ε

10
‖∆verr‖2

L2(Ω) +
C

ε
‖T err‖2

L2(Ω) ≤ Cε+
ε

10
‖∆verr‖2

L2(Ω),

and ∫
Ω

f err∆verr ≤ ‖f err‖L2(Ω)‖∆verr‖L2(Ω) ≤ Cε−1‖f err‖2
L2(Ω) +

1

10
ε‖∆verr‖2

L2(Ω)

≤ Cε+
1

10
ε‖∆verr‖2

L2(Ω).
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Eq. (3.18) becomes, for small ε

ε

2

d

dt

∫
Ω

|∇verr|2 +
5

8

∫
Ω

|∇verr|2 +
ε

2

∫
Ω

|∆verr|2 ≤ Cε3‖∇verr‖4
L2(Ω) + Cε. (3.20)

It follows as usual that

‖∆verr‖L2(0,T ;L2(Ω)) ≤ C, ‖∇verr‖L∞(0,T ;L2(Ω)) ≤ Cε
1
2 . (3.21)

This completes the proof of the estimate (3.2b). We remark that the estimate (2.52) from
Lemma 2.3 is critical in deriving the inequality (3.21).

3.4. L∞(L∞) estimate of verr

For the estimate of ‖verr‖L∞(0,T ;L∞(Ω)), we only need to estimate ‖∂x∂zverr‖L∞(0,T ;L2(Ω))

in view of the anisotropic Sobolev embedding.
Multiplying the velocity error equations in (3.10) by −∆∂xv

err and integrating over Ω
lead to

ε

2

d

dt

∫
Ω

|∇∂xverr|2 +

∫
Ω

|∇∂xverr|2 + ε

∫
Ω

|∆∂xverr|2

= ε

∫
Ω

(
(∂xv

err · ∇)verr
)
∆∂xv

err + ε

∫
Ω

(
(verr · ∇)∂xv

err
)
∆∂xv

err

+ ε

∫
Ω

(
(∂xv

err · ∇)vapp
)
∆∂xv

err − ε
∫

Ω

(
(verr · ∇)∂xv

app
)
∆∂xv

err

− ε
∫

Ω

(
(∂xv

app · ∇)verr
)
∆∂xv

err − ε
∫

Ω

(
(vapp · ∇)∂xv

err
)
∆∂xv

err

−RaD
∫

Ω

k ·∆∂xverr∂xT err +

∫
Ω

∂xf
err ·∆∂xverr. (3.22)

With the estimate (3.21), the right-hand side of Eq. (3.22) can be controlled as following:

ε

∫
Ω

(
(∂xv

err · ∇)verr
)
∆∂xv

err

≤ Cε‖∇∂xverr‖
1
2

L2(Ω)‖∇v
err‖L2(Ω)‖∆verr‖

1
2

L2(Ω)‖∆∂xv
err‖L2(Ω)

≤ Cε‖∇verr‖2
L2(Ω) + Cε‖∇verr‖2

L2(Ω)‖∇∂xverr‖2
L2(Ω)‖∆verr‖2

L2(Ω) +
1

10
ε‖∆∂xverr‖2

L2(Ω)

≤ Cε2 + Cε2‖∇∂xverr‖2
L2(Ω)‖∆verr‖2

L2(Ω) +
1

10
ε‖∆∂xverr‖2

L2(Ω),

and

ε

∫
Ω

(
(verr · ∇)∂xv

err
)
∆∂xv

err

≤ Cε‖verr‖
1
2

L2(Ω)‖∇v
err‖

1
2

L2(Ω)‖∇∂xv
err‖

1
2

L2(Ω)‖∆∂xv
err‖

3
2

L2(Ω)

≤ Cε4‖∇∂xverr‖2
L2(Ω) +

1

10
ε‖∆∂xverr‖2

L2(Ω),
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and, with the help of the similar argument in (3.19),

ε

∫
Ω

(
(∂xv

err · ∇)vapp
)
∆∂xv

err − ε
∫

Ω

(
(verr · ∇)∂xv

app
)
∆∂xv

err

≤ Cε
3
2 + Cε2 +

1

20
ε‖∆∂xverr‖2

L2(Ω),

and

− ε
∫

Ω

(
(∂xv

app · ∇)verr
)
∆∂xv

err − ε
∫

Ω

(
(vapp · ∇)∂xv

err
)
∆∂xv

err

≤ Cε2 + Cε‖∇∂xverr‖2
L2(Ω) +

1

20
ε‖∆∂xverr‖2

L2(Ω),

and by (3.15)∫
Ω

∂xf
err∆∂xv

err −RaD
∫

Ω

k∆∂xv
err · ∂xT err ≤ Cε+

1

10
ε‖∆∂xverr‖2

L2(Ω).

The Eq. (3.22) can be written as

ε

2

d

dt

∫
Ω

|∇∂xverr|2 +
5

8

∫
Ω

|∇∂xverr|2 +
3

5
ε

∫
Ω

|∆∂xverr|2

≤ Cε+ Cε2‖∆verr‖2
L2(Ω) · ‖∇∂xverr‖2

L2(Ω), (3.23)

which leads to

‖∇∂xverr‖L∞(0,T ;L2(Ω)) ≤ Cε
1
2 , ‖∆∂xverr‖L2(0,T ;L2(Ω)) ≤ C. (3.24)

In light of anasotropic Sobolev embedding, the estimates (3.7), (3.9), (3.26), (3.21) and
(3.24), we obtain

‖verr‖L∞(0,T ;L∞(Ω)) ≤ C

(
‖verr‖

1
2

L∞(0,T ;L2(Ω))‖∂zv
err‖

1
2

L∞(0,T ;L2(Ω))

+ ‖∂xverr‖
1
2

L∞(0,T ;L2(Ω))‖∂zv
err‖

1
2

L∞(0,T ;L2(Ω))

+ ‖verr‖
1
2

L∞(0,T ;L2(Ω))‖∂x∂zv
err‖

1
2

L∞(0,T ;L2(Ω))

)
≤ Cε

3
4 , (3.25)

This proves the estimate (3.2c).

3.5. L∞(H1) and L∞(L∞) estimates of T err

By the uniform estimates of velocity (3.17) and (3.25), one can easily establish the fol-
lowing estimate of T err

‖∇T err‖L∞(0,T ;L2(Ω)) ≤ Cε, (3.26)

‖∆T err‖L2(0,T ;L2(Ω)) ≤ Cε, (3.27)

‖∇∂xT err‖L∞(0,T ;L2(Ω)) ≤ Cε. (3.28)
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In view of the anisotropic Sobolev embedding, one gets

‖T err‖L∞(0,T ;L∞(Ω)) ≤ C

(
‖T err‖

1
2

L∞(0,T ;L2(Ω))‖∂zT
err‖

1
2

L∞(0,T ;L2(Ω))

+ ‖∂xT err‖
1
2

L∞(0,T ;L2(Ω))‖∂zT
err‖

1
2

L∞(0,T ;L2(Ω))

+ ‖T err‖
1
2

L∞(0,T ;L2(Ω))‖∂x∂zT
err‖

1
2

L∞(0,T ;L2(Ω))

)
≤ Cε. (3.29)

Hence we arrive at (3.2f). Moreover, by applying (2.52), (3.2c), (3.2e) and (3.27) to the
second equation in (3.1), we easily find (3.2g).

3.6. L∞(L∞) estimate of perr

We note that one can not apply the anisotropic Sobolev embedding for the uniform
estimate of the pressure, due to the Neumnn boundary conditions. In order to estimate
‖perr‖L∞(0,T ;L∞(Ω)), we rewrite the velocity error equation in (3.1) as follows

ε∂v
err

∂t
− ε∆verr +∇perr = f̃ err,

div verr = 0,
verr|t=0 = 0, verr|z=0,1 = 0,
verr, perr are periodic in x-direction.

(3.30)

Here

f̃ err = −ε
(

(verr · ∇)verr + (verr · ∇)vapp + (vapp · ∇)verr
)

− verr +RaDkT
err − f err,

which satisfies ‖f̃ err‖L∞(0,T ;L2(Ω)) ≤ Cε. Applying the regularity theory of Stokes system [54]
to (3.30), we have

‖∇perr‖L∞(0,T ;L2(Ω)) ≤ Cε, ‖∆verr‖L∞(0,T ;L2(Ω)) ≤ C. (3.31)

Moreover, according to (3.10) we have
ε∂(∂xverr)

∂t
− ε∆∂xverr +∇∂xperr = herr,

div ∂xv
err = 0,

∂xv
err|t=0 = 0,

∂xv
err|z=0,1 = 0,

∂xv
err, ∂xp

err are periodic in x-direction.

(3.32)

where

herr = −ε
(

(∂xv
err · ∇)verr + (verr · ∇)∂xv

err + (∂xv
err · ∇)vapp

+ (verr · ∇)∂xv
app + (∂xv

app · ∇)verr + (vapp · ∇)∂xv
err

)
− ∂xverr +RaDk∂xT

err − ∂xf err.
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It is easy to deduce from (3.9), (3.21), (3.24) and (3.25) that ‖herr‖L∞(0,T ;L2(Ω)) ≤ Cε.
Applying the regularity theory of Stokes system [54] to (3.32), we have

‖∆∂xverr‖L∞(0,T ;L2(Ω)) ≤ C.

The divergence-free condition then implies

‖∆∂zverr2 ‖L∞(0,T ;L2(Ω)) ≤ C. (3.33)

Taking the divergence of the velocity error equation in (3.1), we get
∆perr = f̄ err,
∂zp

err|z=0,1 = (ε∆verr2 − f err2 )|z=0,1,
perr is periodic in x-direction.

(3.34)

Here

f̄ err = −ε
2∑

i,j=1

(
∂iv

err
j ∂jv

err
i + ∂iv

err
j ∂jv

app
i + ∂iv

app
j ∂jv

err
i

)
+RaD∂zT

err − divf err.

with verr = (verr1 , verr2 ), f err = (f err1 , f err2 ), ∂1 , ∂x and ∂2 , ∂z.
The first term in the summation can be estimated by the interpolation inequality and

regularity theory of Stokes system∥∥∥∥ 2∑
i,j=1

(
∂iv

err
j ∂jv

err
i

)∥∥∥∥
L∞(0,T ;L2(Ω))

≤ C‖∇verr‖2
L∞(0,T ;L4(Ω))

≤ C‖∇verr‖L∞(0,T ;L2(Ω))‖∆verr‖L∞(0,T ;L2(Ω))

≤ Cε
1
2 .

The other terms in the summation can be estimated easily, thanks to the divergence-free
condition, estimates (3.17), (3.21) and Lemma 2.1. One concludes by the inequalities (2.53)

and (3.26) that ||f̄ err||L∞(0,T ;L2(Ω)) ≤ Cε
3
4 .

The regularity theory of elliptic equations [33] implies that

‖perr‖L∞(0,T ;H2(Ω)) ≤ C
(
‖f̄ err‖L∞(0,T ;L2(Ω)) + ‖ε∆verr2 − f err2 ‖L∞(0,T ;H1(Ω))

)
≤ Cε

3
4 , (3.35)

where we have utilized the estimate (3.33) and (2.53). Recall also that we are restricting
perr ∈ L2

0(Ω) with zero mean. By the Sobolev embedding, one concludes that

‖perr‖L∞(0,T ;L∞(Ω)) ≤ Cε
3
4 .

The proof of Theorem 3.1 is now complete.

�
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4. Conclusion

In this article, we have provided a rigorous asymptotic analysis of the nonlinear Darcy-
Brinkman-Oberbeck-Boussinesq system in the vanishing Darcy number limit, which involves
boundary layer, initial layer and their interaction initial-boundary layer. The optimal conver-
gence rates in Sobolev norms including the physically interesting uniform norm are proved
rigorously via a cascade of careful energy estimates. We remark that the analysis of the
initial-boundary layer is novel, involving simultaneous two scale expansion in space and
in time. The rigorous convergence result demonstrates detailed singular structures in the
solution of the DBOB system. It further validates the applicability of the Darcy-Oberbeck-
Boussinesq model for heat transport phenomenon in porous media if we view the nonlinear
Darcy-Brinkman-Oberbeck-Boussinesq model as the “true” model.

The convergence results are derived under the zeroth order compatibility assumption
v0

∣∣
z=0,1

= 0. Additional singular structures will emerge without this compatibility condi-

tion. In [43, 16], the authors used semiclassical techniques and layer potentials to study the
boundary layer. This approach does not rely on the Prandtl theory and does not require any
type of compatibility conditions between the initial and boundary data. However, it yields
only convergence in L∞(Lp) with p ∈ [1,+∞] and does not provide any estimate on normal
gradients at the boundary.
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Appendix: Asymptotic Analysis

In this section we mainly consider the system near z = 0. For that we introduce the
stretched variables τ = t

ε
∈ (0,+∞) and Z = z√

ε
∈ (0,+∞). We formally assume the

solutions of the DBOB system have an asymptotic expansion of the form, taking the first
component of the velocity for instance

vε1 = vO1 (t, x, z) + vI1(τ, x, z) + vB1 (t, x, Z) + vC1 (τ, x, Z)

= vO,01 (t, x, z) +
√
εvO,11 (t, x, z) + · · ·

+ vI,01 (τ, x, z) +
√
εvI,11 (τ, x, z) + · · ·

+ vB,01 (t, x, Z) +
√
εvB,11 (t, x, Z) + · · ·

+ vC,01 (τ, x, Z) +
√
εvC,11 (τ, x, Z) + · · · , (4.1)

where the superscripts O, I,B,C denoting the outer term, initial layer, boundary layer and
initial-boundary layer near z = 0, respectively.

We use the matched asymptotic expansion method to get the equations in Ω satisfied
by the outer term, initial layer, boundary layer and initial-boundary layer. The following
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matching conditions are imposed: for all 0 ≤ k ≤ 1, 0 ≤ l ≤ 1, 0 ≤ m ≤ 1, 0 ≤ n ≤ 2, 1 ≤
i ≤ 2,

∂kτ ∂
l
x∂

m
z

(
vI , pI , T I

)
→ 0, ∂kτ ∂

l
x∂

n
Z

(
vC , pC , TC

)
→ 0, as τ → +∞, (4.2)

∂lx∂
n
Z

(
vB1 , p

B, TB
)
→ 0, ∂lx∂

i
Zv

B
2 → 0, as Z → +∞, (4.3)

∂kτ ∂
l
x∂

n
Z

(
vC1 , p

C , TC
)
→ 0, ∂kτ ∂

l
x∂

i
Zv

C
2 → 0, as Z → +∞. (4.4)

The equations near z = 1 can be established similarly with the stretched variables τ = t
ε
∈

(0,+∞) and Z = 1−z√
ε
∈ (−∞, 0).

4.1. Leading order equations O(1)

The leading order outer system:
vO,0 +∇pO,0 = RaDkT

O,0,
∂TO,0

∂t
+ vO,0 · ∇TO,0 = ∆TO,0,

div vO,0 = 0,
TO,0(0, x, z) = T0,
vO,0 · n|z=0,1 = 0, TO,0(t, x, 0) = 1, TO,0(t, x, 1) = 0.

(4.5)

The leading order initial layer system of velocity:

{
∂vI,0

∂τ
+ vI,0 = 0,

vI,0(0, x, z) = v0(x, z)− vO,0(0, x, z).
(4.6)

The leading order boundary layer system of velocity:
vB,01 − ∂ZZvB,01 = 0,

∂xv
B,0
1 + ∂Zv

B,0
2 = 0,

vB,01 (t, x, 0) = −vO,01 (t, x, 0), vB,02 (t, x, 0) = 0,

vB,01 (t, x, Z)→ 0, Z → +∞.

(4.7)

The leading order initial-boundary layer system of velocity:

∂vC,01

∂τ
+ vC,01 − ∂ZZvC,01 = 0,

∂xv
C,0
1 + ∂Zv

C,0
2 = 0,

vC,01 (0, x, Z) = −vB,01 (0, x, Z),

vC,01 (τ, x, 0) = −vI,01 (τ, x, 0), vC,02 (t, x, 0) = 0,

vB,01 (t, x, Z)→ 0, Z → +∞.

(4.8)

Here we impose that vB,02 (t, x, 0) = 0 and vC,02 (t, x, 0) = 0 since vO,0 and vI,0 satisfy no
penetration boundary condition.

We also have

pI,0 = pB,0 = pC,0 = 0, T I,0 = TB,0 = TC,0 = 0. (4.9)
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4.2. 1st-order equations O(
√
ε)

1st-order outer system:

vO,1 +∇pO,1 = k(RaDT
O,1 − lim

Z→+∞
vB,02 ),

∂TO,1

∂t
+ vO,0 · ∇TO,1 + vO,11 ∂xT

O,0 + (vO,12 + lim
Z→+∞

vB,02 )∂zT
O,0 = ∆TO,1,

div vO,1 = 0,
TO,1(0, x, z) = 0,
vO,1 · n|z=0,1 = 0, TO,1(t, x, 0) = 0, TO,1(t, x, 1) = 0.

(4.10)

1st-order initial layer system of velocity:



∂vI,1

∂τ
+ vI,1 = −k lim

Z→+∞
(vC,02 +

∂vC,02

∂τ
),

div vI,1 = 0,
vI,1 · n|z=0,1 = 0,

vI,11 (0, x, z) = −vO,11 (0, x, z),

vI,12 (0, x, z) = −vO,12 (0, x, z)− lim
Z→+∞

(vB,02 (0, x, Z) + vC,02 (0, x, Z)).

(4.11)

1st-order boundary layer system of velocity:


vB,11 − ∂ZZvB,11 = −vO,02 ∂Zv

B,0
1 ,

∂xv
B,1
1 + ∂Zv

B,1
2 = 0,

vB,11 (t, x, 0) = −vO,11 (t, x, 0), vB,12 (t, x, 0) = 0,

vB,11 (t, x, Z)→ 0, Z → +∞,

(4.12)

(iv) 1st-order initial-boundary layer system of velocity:



∂vC,11

∂τ
+ vC,11 − ∂ZZvC,11 = vI,02

(
∂Zv

B,0
1 + ∂Zv

C,0
1

)
+ vO,02 ∂Zv

C,0
1 ,

∂xv
C,1
1 + ∂Zv

C,1
2 = 0,

vC,11 (0, x, Z) = −vB,11 (0, x, Z),

vC,11 (τ, x, 0) = −vI,11 (τ, x, 0), vC,12 (t, x, 0) = 0,

vC,11 (t, x, Z)→ 0, Z → +∞.

(4.13)

In addition, one has

pI,1 = pB,1 = pC,1 = 0, T I,1 = TB,1 = TC,1 = 0. (4.14)

4.3. 2nd-order equations for the temperature O(ε)

Here we only derive the 2nd-order equations for (T I,2, TB,2, TC,2). This is sufficient for
our convergence analysis.
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The initial layer equation:{
∂T I,2

∂τ
+ vI,01 · ∂xTO,0 + vI,02 · ∂zTO,0 = 0,

T I,2(τ, x, z)→ 0, τ → +∞. (4.15)

The boundary layer equation:{
∂ZZT

B,2 = vB,01 · ∂xTO,0,
∂ZT

B,2(t, x, Z), TB,2(t, x, Z)→ 0, Z → +∞. (4.16)

The initial-boundary layer equation:
∂TC,2

∂τ
− ∂ZZTC,2 = −vC,01 · ∂xTO,0,

TC,2(0, x, Z) = −TB,2(0, x, Z),
TC,2(τ, x, 0) = −T I,2(τ, x, 0), TC,2(t, x, Z)→ 0, Z → +∞.

(4.17)

4.4. 3rd-order equations for the temperature O(ε3/2)

The initial layer equation:
∂T I,3

∂τ
+ vI,01 · ∂xTO,1 + vI,11 · ∂xTO,0 + vI,02 · ∂zTO,1

+(vI,12 + lim
Z→+∞

vC,02 ) · ∂zTO,0 = 0,

T I,3(τ, x, z)→ 0, τ → +∞.
(4.18)

The boundary layer equation:
∂ZZT

B,3 = vB,01 · ∂xTO,1 + vB,11 · ∂xTO,0 + vO,02 · ∂ZTB,2
+(vB,02 − lim

Z→+∞
vB,02 ) · ∂zTO,0,

∂ZT
B,3(t, x, Z), TB,3(t, x, Z)→ 0, Z → +∞.

(4.19)

The initial-boundary layer equation:
∂TC,3

∂τ
− ∂ZZTC,3 = −vC,01 · ∂xTO,1 − vC,11 · ∂xTO,0 − vO,02 · ∂ZTC,2

−vI,02 · ∂Z(TB,2 + TC,2)− (vC,02 − lim
Z→+∞

vC,02 ) · ∂zTO,0,
TC,3(0, x, Z) = −TB,3(0, x, Z),
TC,3(τ, x, 0) = −T I,3(τ, x, 0), TC,3(t, x, Z)→ 0, Z → +∞.

(4.20)
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