2-stratifold spines of closed 3-manifolds

J. C. Gómez-Larrañaga∗ F. González-Acuña†
Wolfgang Heil‡

Abstract

2-stratifolds are a generalization of 2-manifolds in that there are disjoint simple closed branch curves. We obtain a list of all closed 3-manifolds that have a 2-stratifold as a spine. 1 2

1 Introduction

2-stratifolds form a special class of 2-dimensional stratified spaces. A (closed with empty 0-stratum) 2-stratifold is a compact connected 2-dimensional cell complex X that contains a 1-dimensional subcomplex $X^{(1)}$, consisting of branch curves, such that $X - X^{(1)}$ is a (not necessarily connected) 2-manifold. The exact definition is given in section 2. X can be constructed from a disjoint union $X^{(1)}$ of circles and compact 2-manifolds W^2 by attaching each component of ∂W^2 to $X^{(1)}$ via a covering map $\psi : \partial W^2 \rightarrow X^{(1)}$, with $\psi^{-1}(x) > 2$ for $x \in X^{(1)}$. A slightly more general class of 2-dimensional stratified spaces, called multibranched surfaces and which have been defined and studied in [11], is obtained by allowing boundary curves, i.e. considering

∗Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto. México. jcarlos@cimat.mx
†Instituto de Matemáticas, UNAM, 62210 Cuernavaca, Morelos, México and Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto. México. fico@math.unam.mx
‡Department of Mathematics, Florida State University, Tallahasee, FL 32306, USA. heil@math.fsu.edu

1AMS classification numbers: 57N10, 57M20, 57M05
2Key words and phrases: 2-stratifolds, spines of 3-manifolds
a covering map $\psi : \partial W' \to X^{(1)}$, where $\partial W'$ is a sub collection of the components of ∂W^2.

2-stratifolds arise as the nerve of certain decompositions of 3-manifolds into pieces where they determine whether the \mathcal{G}-category of the 3-manifold is 2 or 3 ([4]). They are related to foams, which include special spines of 3-dimensional manifolds and which have been studied by Khovanov [8] and Carter [3]. Simple 2-dimensional stratified spaces arise in Topological Data Analysis [2], [9].

Matsuzaki and Ozawa [11] show that 2-stratifolds can be embedded in \mathbb{R}^4. Furthermore they show that they can be embedded into some orientable closed 3-manifold if and only if their branch curves satisfy a certain regularity condition. However, the embeddings are not π_1-injective, i.e. the induced homomorphism of fundamental groups is not injective. In fact, there are many 2-stratifolds whose fundamental group is not isomorphic to a subgroup of a 3-manifold group; for example there are infinitely many 2-stratifolds with (Baumslag-Solitar) non-Hopfian fundamental groups. These can not be embedded as π_1-injective subcomplexes into 3-manifolds since 3-manifold groups are residually finite. On the other hand, every 2-manifold embeds π_1-injectively in some (Haken) 3-manifold. Since subgroups of 3-manifold groups are 3-manifold groups, the following question arises:

Question 1. Which 3-manifolds M have fundamental groups isomorphic to the fundamental group of a 2-stratifold?

The fundamental group of a closed 2-manifold S is isomorphic to the fundamental group of a closed 3-manifold M if and only if S is the 2-sphere or projective plane and M is S^3 or P^3, respectively. Since S^2 is not a spine of S^3, the only closed 3-manifold with a (closed) 2-manifold spine is P^3. This motivates the next question:

Question 2. Which closed 3-manifolds M have spines that are 2-stratifolds?

The main results of this paper are Theorem 1 which answers question 1 for closed 3-manifolds and Theorem 2, which answers question 2 by showing that a closed 3-manifold M has a 2-stratifold spine if and only if M is a connected sum of lens spaces, S^2-bundles over S^1, and $P^2 \times S^1$'s.

2 2-stratifolds and their graphs.

In this section we review the definitions of a 2-stratifold X and its associated graph G_X given in [5].
A (closed) 2-stratifold is a compact 2-dimensional cell complex X that contains a 1-dimensional subcomplex $X^{(1)}$, such that $X - X^{(1)}$ is a 2-manifold ($X^{(1)}$ and $X - X^{(1)}$ need not be connected). A component $C \approx S^1$ of X^1 has a regular neighborhood $N(C) = N_\pi(C)$ that is homeomorphic to $(Y \times [0,1])/(y,1) \sim (h(y),0)$, where Y is the closed cone on the discrete space $\{1, 2, ..., d\}$ (for $d \geq 3$) and $h : Y \to Y$ is a homeomorphism whose restriction to $\{1, 2, ..., d\}$ is the permutation $\pi : \{1, 2, ..., d\} \to \{1, 2, ..., d\}$. The space $N_\pi(C)$ depends only on the conjugacy class of $\pi \in S_d$ and therefore is determined by a partition of d. A component of $\partial N_\pi(C)$ corresponds then to a summand of the partition determined by π. Here the neighborhoods $N(C)$ are chosen sufficiently small so that for disjoint components C and C' of X^1, $N(C)$ is disjoint from $N(C')$.

We construct an associated bicolored graph $G = G_X$ of $X = X_G$ by letting the white vertices w of G_X be the components W of $M := X - \cup j N(C_j)$ where C_j runs over the components of X^1; the black vertices b_j are the C_j's. An edge e is a component S of ∂M; it joins a white vertex w corresponding to W with a black vertex b corresponding to C_j if $S = W \cap N(C_j)$. The number of boundary components of W is the number of adjacent edges of W.

G_X embeds naturally as a retract into X_G.

We label the white vertices w with the genus g of W; here we use Neumann’s [14] convention of assigning negative genus g to nonorientable surfaces; for example the genus g of the projective plane or the Moebius band is -1, the genus of the Klein bottle is -2. We orient all components C_j and S of $X^{(1)}$ and ∂W, resp., and assign a label m to an edge e, where $|m|$ is the summand of the partition π corresponding to the component $S \subset \partial N_\pi(C)$; the sign of m is determined by the orientation of C_j and S. In terms of attaching maps, m is the degree of the covering map $\psi : S \to C_j$ for the corresponding components of ∂W and $X^{(1)}$.

(Note that the partition π of a black vertex is determined by the labels of its adjacent edges).
3 Structure of $\pi_1(X_G)$

In this section we obtain a natural presentation for the fundamental group of a 2-stratifld X_G with associated bicolored graph $G = G_X$ and describe $\pi_1(X_G)$ as the fundamental group of a graph of groups \mathcal{G} with the same underlying graph G.

For a given white vertex w, the compact 2-manifold W has conveniently oriented boundary curves s_1, \ldots, s_p such that

\[(*) \quad \pi_1(W) = \langle s_1, \ldots, s_p, y_1, \ldots, y_n : s_1 \cdots s_p \cdot q = 1 \rangle\]

where $q = [y_1, y_2] \cdots [y_{2g-1}, y_{2g}]$, if W is orientable of genus g and $n = 2g$, $q = y_1^2 \cdots y_n^2$, if W is non-orientable of genus $-n$.

Let \mathcal{B} be the set of black vertices, \mathcal{W} the set of white vertices and choose a fixed maximal tree T of G. Choose orientations of the black vertices and of all boundary components of M such that all labels of edges in T are positive.

Then $\pi_1(X_G)$ has a natural presentation with

- generators: $\{b\}_{b \in \mathcal{B}}$
 - $\{s_1, \ldots, s_p, y_1, \ldots, y_n\}$, one set for each $w \in \mathcal{W}$, as in $(*)$
 - $\{t_i\}$, one t_i for each edge $c_i \in G - T$ between w and b
- and relations: $s_1 \cdots s_p \cdot q = 1$, one for each $w \in \mathcal{W}$, as in $(*)$
 - $b^m = s_i$, for each edge $s_i \in T$ between w and b with label $m \geq 1$
 - $t_i^{-1}s_it_i = b^m_i$, for each edge $s_i \in G - T$ between w and b with label $m_i \in \mathbb{Z}$.

As an example we show in Figure 1 (the graph of) a 2-stratifld X_G with $\pi_1(X_G) = \mathcal{F}$, an F-group as in Proposition (III)5.3 of [10], with presentation

\[(\mathcal{F}) \quad \mathcal{F} = \langle c_1, \ldots, c_p, y_1, \ldots, y_n : c_1^{m_1} \cdots c_p^{m_p}, c_1 \cdots c_p \cdot q = 1 \rangle\]

where $p, n \geq 0$, all $m_i > 1$ and $q = [y_1, y_2] \cdots [y_{2g-1}, y_{2g}]$ or $q = y_1^2 \cdots y_n^2$.

Here we have denoted the generators corresponding to the black vertices by c_i, rather than b_i, to indicate that the finite order elements correspond to attaching disks along the boundary curves of W.

4
The fundamental group of X_G is best described as the fundamental group of a graph of groups [6].

If $\pi_1(X_G)$ has no elements of finite order, then $\pi_1(X_G)$ is the fundamental group of a graph of groups G, with underlying graph G, the groups of white vertices are the fundamental groups of the W's, the groups of the black vertices and edges are (infinite) cyclic.

Elements of finite order occur when a generator b of a black vertex has finite order $o(b) \geq 1$. In this case we attach 2-cells d_b and d_e to C_b, the circle corresponding to b, as follows: d_b is attached by a map of degree $o(b)$. If e is an edge joining b to w with label m, attach d_e with degree $o(c) = o(b)/o(b, m)$. Letting $\hat{X}_b = N(C_b) \cup d_b \cup (\cup d_e)$, where e runs over the edges having b as an endpoint, $\hat{X}_w = W \cup (\cup d_e)$, where e runs over the edges incident to w, and $\hat{X}_e = (\hat{X}_b \cap \hat{X}_w)$, for an edge e joining b to w, we obtain a graph of CW-complexes that determines a graph of groups G with the same underlying graph as G_X.

The vertex groups are $G_b = \pi_1(\hat{X}_b)$ and $G_w = \pi_1(\hat{X}_w)$, the edge groups are $G_e = \pi_1(\hat{X}_e)$, the monomorphisms $\delta : G_e \to G_b$ (resp. $G_e \to G_w$ are induced by inclusion. Then (see for example [15],[16]) $\pi_1 G \cong \pi_1 X$.

Note that the groups G_b of the black vertices and the groups G_e of the edges are cyclic. For a white vertex w with edges e_1, \ldots, e_p labelled $m_1, \ldots m_p$ with associated vertex space $X_w = W \cup_{i=1}^p d_{e_i}$ we obtain

$G_w = \langle c_1, \ldots, c_p, y_1, \ldots, y_n : c_1 \cdots c_p \cdot q = 1, c_1^{k_1} = \cdots = c_p^{k_p} = 1 \rangle$

where q is as in (F), $1 \leq r \leq p$ and $k_i \geq 1$.

If all $k_i \geq 2$ and $r = p$ then G_w is an F-group ([10] p. 126-127), otherwise
it is a free product of cyclic groups.

4 Necessary Conditions

In this section we show that a 2-stratifold group that is a closed 3-manifold group is a free product of cyclic or $\mathbb{Z} \times \mathbb{Z}_2$ groups.

First consider an F-group F as in (F).

Proposition 1. ([10] Proposition (III)7.4) Let H be a subgroup of an F-group. If H has finite index then H is an F-group. If H has infinite index then H is a free product of cyclic groups.

Proposition 2. ([10] p.132) (a) F is finite non-cyclic if and only if $n = 0, p = 3$ and $(m_1, m_2, m_3) = (2, 2, m)$ ($m \geq 2$) (the dihedral group of order $2m$) or $(m_1, m_2, m_3) = (2, 3, k)$ for $k = 3, 4$ or 5 (the tetrahedral, octahedral, dodecahedral groups). In each case, c_1 is a non-central element of order 2.

(b) F is finite cyclic if and only if $n = 0, p \leq 2$ (the 2-sphere orbifold with at most two cone points) or $n = 1, p \leq 1$ (the projective plane orbifold with at most one cone point).

Lemma 1. F is not a non-trivial free product.

Proof. If $F = A \ast B$ with A, B non-trivial, then A and B have infinite index and so, by Proposition 1, A, B and F are free products of cyclic groups. However, F is not such a group since it contains a subgroup isomorphic to the fundamental group of an orientable closed surface of genus ≥ 1 (see the remark after Proposition (III)7.12 in [10]).

The following remark is easy to see.

Remark 1. If $F \neq \mathbb{Z}_2$ then F has no elements of finite order if and only if F is a surface group.

Lemma 2. If M is an orientable (not necessarily closed or compact) 3-manifold with $\pi_1(M) \cong F$ then $\pi_1(M)$ is cyclic or a surface group.

Proof. We may assume that ∂M contains no 2-spheres. By Scott’s Core Theorem we may assume that M is compact and by Lemma 1 that M is irreducible.
If $\pi_1(M)$ is infinite then M is aspherical (see e.g. [1]). It follows that $\pi_1(M)$ is torsion-free and from Remark 1 that $\pi_1(M)$ is a surface group.

If $\pi_1(M)$ is finite then M is closed. If $\pi_1(M)$ is also non-cyclic then by Proposition 2, $\pi_1(M)$ contains a non-central element of order 2. This can not happen by Milnor [13].

We now consider a 2-stratifold X_G with $\pi_1(X_G) = \pi(G)$ as in section 3.

Up to conjugacy, the only elements of finite order of $\pi_1(X_G)$ are contained in the vertex groups; they correspond to black vertices of finite order and elements of white vertices w whose corresponding group in G is finite. The latter are described in Proposition 2. It is also shown in [10] (proof of Proposition (III)7.12) that in an infinite F-group the only elements of finite order are the obvious ones, namely conjugates of powers of c_1, \ldots, c_p.

For a group H, denote by QH be the quotient group of H modulo the smallest subgroup of H containing all elements of finite order of H.

Let w be a white vertex in G_X. We say that w is a white hole, if w has label -1, all of its (black) neighbors have finite order and at most one of its neighbors has order > 1.

If G_X has more than one vertex, note that $Q\pi_1(X_G)$ is obtained from $\pi_1(X_G)$ by killing the open stars of all the black vertices representing elements of finite order ≥ 1 of $\pi_1(X_G)$ and deleting the white holes. In the example of Figure 1, when genus $g = -1$ (and so $n = 1$), $Q\pi_1(X_G) = \mathbb{Z}_2$. (Note that the white vertex of genus -1 is not a white hole if $p \geq 2, m_i > 1$).

Proposition 3. If $Q(\pi_1(X_G))$ has no elements of order 2, then $H_3(Q\pi_1(X_G)) = 0$.

Proof. Let G' be the labelled subgraph of G_X obtained by deleting the open stars of all black vertices representing elements of finite order of $\pi_1(X_G)$ and all white holes. ($\pi_1(X_0) = 1$ by definition). Let C be a component of G'. Then $Q\pi(X_G) = L * (\pi(X_C))$, the free product of a free group L with the free product of the $\pi(X_C)$ where C runs over the components of G'.

If C consists of only one (white) vertex, then X_C is a closed 2-manifold, different from P^2, since by assumption $Q(\pi_1(X_G))$ has no elements of order 2. We may ignore the C's consisting of spheres, since they do not contribute to $Q\pi(X_G)$. (A nonseparating 2-sphere only changes the rank of L). In
all other cases X_C is the total space of a bicolored graph of spaces with white vertex spaces 2-manifolds with boundary, edge spaces circles, and black vertex spaces homotopy equivalent to circles.

Thus every vertex and edge space of X_C is aspherical (with free fundamental group) of dimension ≤ 2. By Proposition 3.6 (ii) of [15], X_C is aspherical. It follows that $Q\pi_1(X_G)$ has (co)homological dimension ≤ 2 and so $H_3(Q\pi_1(X_G)) = 0$.

The assumption that $Q(\pi_1(X_G))$ has no elements of finite order is satisfied if $\pi_1(X_G)$ is a 3-manifold group: We claim that $Q\pi_1(M)$ is torsion free if M is a closed orientable 3-manifold.

For let $M = M_1 \# \ldots \# M_k$ be its prime decomposition. If M_i is irreducible with infinite fundamental group, then M_i is aspherical and so $\pi_1(M_i)$ is torsion free; if M_i has finite fundamental group, then $Q\pi_1(M_i) = 1$. Now the claim follows since $Q\pi_1(M) = Q\pi_1(M_1) \star \cdots \star Q\pi_1(M_k)$.

Lemma 3. Let M be a closed orientable 3-manifold with prime decomposition $M = M_1 \# \ldots \# M_k$. If $\pi_1(M) \cong \pi_1(X_G)$, then each $\pi_1(M_i)$ is infinite cyclic or finite.

Proof. If there is some M_i with $\pi_1(M_i) \neq \mathbb{Z}$, then M_i is irreducible. If $\pi_1(M_i)$ is infinite then M_i is aspherical and hence $H_3(Q\pi_1(M_i)) = H_3(\pi_1(M_i)) = H_3(M_i) \neq 0$. Since $Q\pi_1(M) = Q\pi_1(M_1) \star \cdots \star Q\pi_1(M_k)$ it follows that $H_3(Q\pi_1(M)) \neq 0$, which contradicts Proposition 3.

Lemma 4. Let M be a closed 3-manifold and suppose $\pi_1(M) = \pi_1(X_G)$. Then any finite subgroup H of $\pi_1(M)$ is cyclic.

Proof. $\pi_1(X_G) \cong \pi_1(G)$ where G is a graph of groups in which the groups of black vertices are cyclic and the groups of white vertices are F-groups or free products of finitely many cyclic groups. The finite group H is non-splittable (i.e. not a non-trivial HHN extension or free product with amalgamation). By Corollary 3.8 and the Remark after Theorem 3.7 of [15], H is a cyclic group or isomorphic to a subgroup of an F-group. If H is not cyclic, then (since H is not a non-trivial free product of cyclic groups), H is itself an F-group by Proposition 1. Since H is a 3-manifold group it follows from Lemma 2 that this case can not occur.

Corollary 1. Let M be a closed orientable 3-manifold. If $\pi_1(M) \cong \pi_1(X_G)$, then $\pi_1(M)$ is a free product of cyclic groups.
Proof. This follows from Lemmas 3 and 4.

Theorem 1. Let M be a closed 3-manifold. If $\pi_1(M) \cong \pi_1(X_G)$, then $\pi_1(M)$ is a free product of groups, where each factor is cyclic or $\mathbb{Z} \times \mathbb{Z}_2$.

Proof. If M is orientable this is Corollary 1 (with each factor cyclic). Thus assume M is non-orientable and let $p : \tilde{M} \to M$ be the 2-fold orientable cover of M. Then $\pi_1(\tilde{M}) = \pi_1(X_{\tilde{G}})$ for the 2-stratifolds $X_{\tilde{G}}$, which is the 2-fold cover of X_G corresponding to the orientation subgroup of $\pi_1(M)$. Hence $\pi_1(\tilde{M})$ is a free product of cyclic groups.

Let $M = \tilde{M}_1 \# \ldots \# \tilde{M}_k$ be a prime decomposition of $M = M_1 \cup \ldots \cup M_k$. If M_i is orientable, then M_i lifts to two homeomorphic copies $\tilde{M}_{i1}, \tilde{M}_{i2}$ of M_i, with each \tilde{M}_{ij} a factor of the prime decomposition of \tilde{M} and it follows that $\pi_1(M_i)$ is cyclic.

If \tilde{M}_i is non-orientable and P^2-irreducible, then M_i lifts to \tilde{M}_i, where \tilde{M}_i is irreducible. Then $\pi_1(\tilde{M}_i)$, being a factor of the free product decomposition of $\pi_1(\tilde{M})$, is finite cyclic, which can not occur since $\pi_1(M_i)$ is infinite.

If \tilde{M}_i is non-orientable irreducible, contains P^2s, but is not $P^2 \times S^1$, then by Proposition (2.2) of [17], M_i splits along two-sided P^2’s into 3-manifolds $\tilde{N}_1, \ldots, \tilde{N}_m$ such that the fundamental group of the lifts \tilde{N}_i is indecomposable, torsion free and not isomorphic to \mathbb{Z}. Since $\pi_1(\tilde{N}_i)$ is a factor of the free product decomposition of $\pi_1(\tilde{M})$, this can not happen.

Therefore each non-orientable M_i is either the S^2-bundle over S^1 or $P^2 \times S^1$, which proves the Theorem.

5 Realizations of spines.

Recall that a subpolyhedron P of a 3-manifold M is a spine of M, if $M - \text{Int}(B^3)$ collapses to P, where B^3 is a 3-ball in M.

An equivalent definition is that $M - P$ is homeomorphic to an open 3-ball (Theorem 1.1.7 of [12]).

We first construct 2-stratifolds spines of lens spaces (different from S^3), the non-orientable S^2-bundle over S^1, and $P^2 \times S^1$.

Example 1. Lens space $L(0, 1) = S^3$.

9
S^3 does not have a 2-stratifold spine. Otherwise such a spine X would be a deformation retract of the 3-ball and therefore contractible. However there are no contractible 2-stratifolds [5].

Example 2. Lens spaces $L(p, q)$ with $q \neq 0, 1$.

Let r be the rotation of the disk D^2 about its center c with angle $2\pi p/q$, let $1 \in S^1 \subset D^2$ and let $x_i = r^{i-1}(1), i = 1, \ldots, q$. Let $Y \subset D^2$ be the cone of $\{x_1, \ldots, x_q\}$ with cone point c. Embed $Y \times I/(x_i, 0) \sim (x_{i+1}, 1)$ into the solid torus $V = D^2 \times I/(x, 0) \sim (r(x), 1)$. The punctured lens space $L(p, q)$ is obtained from V by attaching a 2-handle $D \times I$ with ∂D attached to the boundary curve of $(Y \times I)/\sim$. Then $L(p, q)$ deformation retracts to $(Y \times I)/\sim \cup D$, which is the 2-stratifold with one white vertex of genus 0, one black vertex, and one edge with label q.

Example 3. Lens space $L(1, 0) = S^2 \times S^1$ and non-orientable S^2-bundle over S^1.

Consider $S^2 \vee S^1$, the non-orientable S^2-bundle over S^1, as as the quotient space $q(S^2 \times I)$ under the quotient map $q : S^2 \times I \to S^2 \times S^1$ that identifies $(x, 0)$ with $(x, 1), x \in S^2$.

Let $D_0 \subset S^2 \times \{0\}$ be a disk and B_1 be the 3-ball $D_0 \times I \subset S^2 \times I$, let D_1 be the disk $B_1 \cap S^2 \times \{1\}$, let A be the annulus $\partial B_1 - (\text{Int}(D_0) \cup \text{Int}(D_1))$, and let B_2 be the ball $S^2 \times I - \text{Int}(B_1)$, see Figure 2.

![Figure 2: $S^2 \vee S^1 - \text{Int}(B_2) \searrow S^1 \vee S^1 \cup D^2$](image.png)

Then $S^2 \times I - \text{Int}(B_2) = S^2 \times \{0\} \cup B_1 \cup S^2 \times \{1\}$ and $S^2 \vee S^1 - \text{Int}(B_2) = q(S^2 \times I - \text{Int}(B_2)) = S^2 \cup q(B_1)$, where $S^2 = q(S^2 \times \{0\}) = q(S^2 \times \{1\})$. Collapsing the ball $q(B_1)$ across the free face $q(D_1)$ onto $q(A) \cup q(D_0)$ we obtain
a collapse of $S^2 \times S^1 - \text{Int}(B_2)$ onto $(S^2 - \text{Int}(q(D_1))) \cup q(A)$, which is a Kleinbottle with a disk attached. This is a 2-stratifold X_G with graph G_X in Figure 3(a). (The white vertices have genus 0).

A similar construction, considering $S^2 \times S^1$ as the obvious quotient space of $q : S^2 \times I \rightarrow S^2 \times S^1$ and first isotoping the ball B_1 such that $D_0 \cap D_1 = \emptyset$, we obtain a collapse of $S^2 \times S^1 - \text{Int}(B_2)$ onto a torus with a disk attached. This is a 2-stratifold X_G with graph G_X in Figure 3(b).

Figure 3: 2-stratifold spines of punctured $S^2 \times S^1$ and $P^2 \times S^1$

Example 4. $P^2 \times S^1$.

For a one-sided simple closed curve c in P^2 and a point t_0 in S^1 let $X = P^2 \times \{t_0\} \cup c \times S^1 \subset P^2 \times S^1$. Observe that the boundary of a regular neighborhood N of X in $P^2 \times S^1$ is a 2-sphere. Since $P^2 \times S^1$ is irreducible, ∂N bounds a 3-ball B^3 and therefore $P^2 \times S^1 - \text{Int}(B^3) = N$, which collapses onto $X = X_G$, a 2-stratifold with graph in Figure 3(c).

Proposition 4. If the closed 3-manifold $M_i (i = 1, 2)$ has a 2-stratifold spine and M is a connected sum of M_1 and M_2, then M has a 2-stratifold spine.

Proof. Let K_i be a 2-stratifold spine of M_i. Let $K_1 \vee K_2$ be obtained by identifying, in the disjoint union of K_1 and K_2 a nonsingular point of K_1 with a nonsingular point of K_2. By Lemma 1 of [7], $K_1 \vee K_2$ is a spine of M. Though $K_1 \vee K_2$ is not a 2-stratifold, by performing the operation explained below (replacing the wedge point by a disk) we will change $K_1 \vee K_2$ to a 2-stratifold spine $K_1 \Delta K_2$.

A 3-ball neighborhood B^3 of the wedge point of $K_1 \vee K_2$ intersects $K_1 \vee K_2$ in the double cone shown in Fig.4. Replace, in $K_1 \vee K_2$, $K_1 \vee K_2 \cap B^3$ by $A \cup D$, as shown in Fig. 2, where $A = S^1 \times [0, 1]$ is an horizontal cylinder, $\partial A =$
\[(K_1 \lor K_2) \cap \partial B^3, D\] is a vertical 2-disk with \(A \cap D = \partial D = S^1 \times (1/2)\). The result is a 2-stratifold \(K_1 \Delta K_2\). There is a homeomorphism from \(B^3 - (A \cup D)\) onto \(B^3 - K_1 \lor K_2\) which is the identity on the boundary (roughly collapse \(D\) to a point) and so \(M - K_1 \Delta K_2\) is homeomorphic to \(M - K_1 \lor K_2\) which is homeomorphic to \(\mathbb{R}^3\).

Therefore \(K_1 \lor K_2\) is a 2-stratifold spine of \(M\).

\[
\begin{array}{c}
\text{Figure 4: } K_1 \Delta K_2
\end{array}
\]

Now Theorem 1 together with the examples and Proposition 4 yields our main Theorem. Here we do not consider \(S^3\) to be a lens space.

Theorem 2. A closed 3-manifold \(M\) has a 2-stratifold as a spine if and only if \(M\) is a connected sum of lens spaces, \(S^2\)-bundles over \(S^1\), and \(P^2 \times S^1\)'s.

Acknowledgments: J. C. Gómez-Larrañaga would like to thank LAISLA and the TDA project from CIMAT for financial support and IST Austria for their hospitality.

References

