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Abstract. We consider polynomials expressing the cohomology classes of subvarieties of
products of projective spaces, and limits of positive real multiples of such polynomials.
We study the relation between these covolume polynomials and Lorentzian polynomials.
While these are distinct notions, we prove that, like Lorentzian polynomials, covolume
polynomials have M-convex support and generalize the notion of log-concave sequences. In
fact, we prove that covolume polynomials are ‘sectional log-concave’, that is, the coefficients
of suitable restrictions of these polynomials form log-concave sequences.

We observe that Chern classes of globally generated bundles give rise to covolume
polynomials, and use this fact to prove that certain polynomials associated with Segre
classes of subschemes of products of projective spaces are covolume polynomials. We
conjecture that the same polynomials may be Lorentzian after a standard normalization
operation.

Finally, we obtain a combinatorial application of a particular case of our Segre class
result. We prove that the adjoint polynomial of a convex polyhedral cone contained in
the nonnegative orthant, and sharing a face with it, is a covolume polynomials. This
implies that these adjoint polynomials are M-convex and sectional log-concave, and in fact
Lorentzian after a suitable change of variables.

1. Introduction

This paper consists of three parts. In the first part we consider ‘covolume polynomials’,
that is, limits of positive multiples of polynomials whose coefficients are multidegrees of
(irreducible) subvarieties of products of projective spaces. We are interested in studying co-
volume polynomials from the point of view of Lorentzian polynomials. Petter Brändén and
June Huh defined and extensively studied Lorentzian polynomials in [BH20]. An equivalent
notion, completely log-concave polynomials, was introduced at the same time by Nima Anari,
Kuikui Liu, Shayan Oveis Gharan and Cynthia Vinzant ([ALGV18, AGV21]). Lorentzian
polynomials generalize the notion of (ultra) log-concavity, in the sense that a homogeneous
polynomial in two variables is Lorentzian if and only if its coefficients are nonnegative and
form an ultra log-concave sequence with no internal zeros. In fact, the restriction of every
Lorentzian polynomial to a plane spanned by two nonnegative vectors satisfies this ultra-log-
concave property. Brändén and Huh prove that ‘volume polynomials’ of projective varieties
are necessarily Lorentzian ([BH20, Theorem 4.6]). The covolume polynomials studied in
this note (or, rather, their normalizations in the sense of Brändén and Huh, see [BH20,
Corollary 3.7]) are in a sense a dual notion to volume polynomials. While they are not
necessarily Lorentzian, we prove that they share several properties of note with Lorentzian
polynomials. Some of these properties are due to their connection with volume polynomi-
als; others are a consequence of Olivier Debarre’s beautiful extension of the Fulton-Hansen
connectedness theorem ([Deb96]).
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Covolume polynomials provide an alternative generalization of log-concavity, which we
call ‘sectional log-concavity’ (Definition 2.5). Briefly, a homogeneous polynomial is sectional
log-concave if and only if the coefficients of its restrictions to planes spanned by vectors with
nonnegative components form a log-concave sequence with no internal zeros. (In the same
sense, Lorentzian polynomials are ‘sectional ultra-log-concave’.) Among other properties,
we prove (Corollary 2.15):

Theorem I. Covolume polynomials are sectional log-concave.

In particular, the normalization of a covolume polynomial in two variables is neces-
sarily Lorentzian. In higher dimension, the relation between covolume polynomials and
Lorentzian polynomials is subtler. Examples show that covolume polynomials are not nec-
essarily Lorentzian, even after normalization (Example 2.7), and Lorentzian polynomials are
not necessarily covolume polynomials (Example 2.10). To each covolume polynomial there
is associated a Lorentzian polynomial (Proposition 2.8), and it follows that the support of
a covolume polynomial is M-convex in the sense of discrete convex analysis [Mur03], i.e.,
a ‘polymatroid’ (Corollary 2.11). In analogy with the behavior of Lorentzian polynomials,
we prove that if f(t) is a covolume polynomial, then so is f(At) for any matrix A with
nonnegative entries (Theorem 2.12). Sectional log-concavity is a corollary of this result,
which has other convenient consequences, such as the fact that the product of two covol-
ume polynomials is a covolume polynomials. Lorentzian polynomials are similarly preserved
by nonnegative changes of variables, by [BH20, Theorem 2.10].

The second part of the paper deals with Segre zeta functions of closed subschemes of
products of projective spaces. Segre classes are a key ingredient in Fulton-MacPherson
intersection theory. In previous work ([Alu17]) we constructed a univariate rational func-
tion ζI(t) encoding the information of the Segre class defined in projective spaces of arbi-
trarily large dimension by a set I of homogeneous polynomials. In this paper we extend
the construction to subschemes of products of projective spaces; if Z is a closed subscheme
of Pn1 × · · · × Pn` defined by a set I of multihomogeneous polynomials, the corresponding
‘Segre zeta function’ ζI(t1, . . . , t`) of Z may be defined as a power series in ` variables. We
point out (Theorem 3.2) that it is a rational function, with poles controlled by the mul-
tidegrees of elements of I. Thus, once a generating set is chosen, the interesting part of
the information of a Segre zeta function is its numerator. Constraints on the numerators of
Segre zeta functions yield nontrivial information on Segre classes, and this is our motivation
in studying them. Our main result in this part is:

Theorem II. With notation as above, the homogenization of the numerator of 1− ζI is a
covolume polynomial. If the projective normal cone of Z is irreducible, then the homoge-
nization of the numerator of ζI is a covolume polynomial.

See Theorems 3.5 and 3.6 for more complete statements. This implies that e.g., the
numerator of 1−ζI is sectional log-concave and M-convex in the natural sense. In particular,
the coefficients of the numerator of 1 − ζI(t) in the univariate case (that is, the case of
subschemes of Pn studied in [Alu17]) necessarily form a log-concave sequence of nonnegative
integers with no internal zeros.

Analogous consequences hold for the numerator of ζI , under an irreducibility hypothesis
on the normal cone. Some such hypothesis is necessary: examples show that the numer-
ator of the Segre zeta function is not M-convex or sectional log-concave in general (Ex-
ample 3.12), implying that its homogenization is not necessarily a covolume or Lorentzian
polynomial. Whether the irreducibility hypothesis stated in Theorem II can be significantly
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weakened is an interesting question. Brandon Story ([Sto23]) has verified that in the uni-
variate case, i.e., for ` = 1, the coefficients of the numerator of the Segre zeta function form
a log-concave sequence without internal zeros for several families of subschemes Z ⊆ Pn1 ,
including many cases of reducible subschemes.

The situation with 1− ζI , whose numerator is a covolume polynomial by Theorem II, is
also intriguing. Experimental evidence suggests the following.

Conjecture. Let Z be a closed subscheme of Pn1 × · · · ×Pn`, and I a generating set for its
ideal. Then the normalization of the homogenization of the numerator of 1 − ζI(t0, . . . , t`)
is Lorentzian.

Since there are covolume polynomials whose normalization is not Lorentzian, this conjec-
ture does not follow formally from our result; if true, it appears to be a novel and unexpected
phenomenon. The reader could compare this conjecture with Conjecture 15 in [HMMS22],
to the effect that Schubert polynomials are expected to have Lorentzian normalization.
Schubert polynomials also are covolume polynomials (Example 2.4); this fact alone does
not explain why their normalizations should be Lorentzian.

This may be a good place to quote Karim Adiprasito, June Huh, and Eric Katz ([AHK17]):
“We believe that behind any log-concave sequence that appears in nature there is. . . a ‘Hodge
structure’ responsible for the log-concavity.” We wonder whether the (sectional) log-concavity
of the numerator of 1− ζI may signal the presence of a new structure in the sense meant in
this reference. These polynomials (and their normalizations) are not directly expressed as
volume polynomials of projective varieties.

Theorem II follows from a general statement that may have different applications. Let
X be an irreducible variety, q : X → Pn1 × · · · × Pn` a proper map, and let R be a globally
generated vector bundle on X. We can write

q∗(c(R) ∩ [X]) =
∑

0≤ij≤nj

ai1...i`h
i1
1 · · ·h

i`
` ∩ [Pn1 × · · · × Pn` ] ,

where hj is the pull-back of the hyperplane class from the j-th factor of the product. Let

P (t1, . . . , t`) =
∑
ik≤sk

ai1...i`t
i1
1 · · · t

i`
` .

Proposition. The homogenization of P (t1, . . . , t`) is a covolume polynomial.

(See Proposition 3.9.) In particular, this polynomial must be M-convex and sectional
log-concave. For example, the degrees of the Chern classes of a globally generated vector
bundle over projective space must form a log-concave sequence with no internal zeros. For
remarks implying the same conclusion, see [BEST21, §1.3(B), §9], drawing on [Laz04, §1.6].

While our main motivation in establishing Theorem II is intrinsic to the theory of Segre
classes, we offer a concrete combinatorial application of this result in the particular case
of monomial schemes: in the third part of the paper we consider adjoint polynomials of
convex polytopes (or, equivalently, convex polyhedral cones). These polynomials were intro-
duced by Joe Warren ([War96]); the case of polygons had been considered earlier by Eugene
Wachspress ([Wac75]). Adjoint polynomials are used in the definition of “Wachspress coor-
dinates” of convex polytopes; we refer the reader to [KR20] for a discussion of the context
and recent progress in the study of Wachspress coordinates. We also note that adjoint poly-
nomials appear as numerators of canonical forms of certain ‘positive geometries’ introduced
in the study of scattering amplitudes. This is nicely explained in unpublished notes by
Christian Gaetz [Gae20]; see [KPR+21] for recent work on adjoints from this perspective.
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The adjoint curve of a polygon is the curve of minimal degree containing the points of
intersection of pairs of lines extending non-adjacent edges of the polygon:

an analogous description holds in any dimension. In [KR20], Kathlén Kohn and Kristian
Ranestad observe that the numerator of the Segre zeta function of a monomial scheme
may be interpreted as an adjoint polynomial of a related polytope. We sharpen this result
in Proposition 4.5, by proving that the adjoint polynomial of any convex polyhedral cone
contained in the nonnegative orthant and containing a face of the nonnegative orthant is
the numerator of 1 − ζI for a suitable choice of I. Together with Theorem II, this implies
the following.

Theorem III. Adjoint polynomials of convex polyhedral cones contained in the nonnegative
orthant and sharing a face with it are covolume polynomials.

See Theorem 4.3 for a more complete statement. In particular, these adjoint polynomials
are necessarily M-convex and sectional log-concave

It is conceivable that this result may extend to all convex polyhedral cones contained in
the nonnegative orthant. We prove that Theorem III does extend to a certain class of cones
which we call ‘orthantal’; see Definition 4.9 and Corollary 4.10.

It is also conceivable that adjoint polynomials of all convex polyedral cones contained in
the nonnegative orthant are actually Lorentzian after normalization. The conjecture stated
above would imply this fact for orthantal cones.

Acknowledgments. This work was supported in part by the Simons Foundation, collab-
oration grant #625561. The author thanks Caltech for the hospitality. The author also
thanks Petter Brändén, Kathlén Kohn, Matt Larson, and Jonathan Montaño for useful
comments.

2. Covolume polynomials

We work over an algebraically closed field k. Varieties are assumed to be irreducible,
but as their irreducibility is key to the main objects studied in this paper, we occasionally
remind the reader of this fact.

We consider (irreducible) subvarieties of products of projective spaces P := Pn0×· · ·×Pn`
and their classes in the Chow ring of P. We will let hj denote the pull-back of the hyperplane

class from the j-th factor. Every class in the codimension-d graded piece Ad(P) of the Chow
ring of P may be written uniquely as

α =
∑

∑
ij=d

ai0...i` h
i0
0 · · ·h

i`
` ∩ [P] ,
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where ij ≥ 0 and ai0...i` are nonnegative integers. For any choice of indeterminates t0, . . . , t`,
we associate with α the polynomial

Pα(t0, . . . , t`) :=
∑

0≤ij ,
∑
ij=d

ai0...i` t
i0
0 · · · t

i`
` .

In other words, Pα is the (unique) polynomial with integer coefficients and of degree ≤ nj
in the j-th variable such that

α = Pα(h0, . . . , h`) ∈ A(P) ∼= Z[h0, . . . , h`]/(h
n0+1
0 , . . . , hn`+1

` ) .

Definition 2.1. A polynomial P with nonnegative real coefficients is a covolume polynomial
if it is a limit of polynomials of the form cP[W ] for a positive real number c and a closed
subvariety W of a product of projective spaces. y

Remark 2.2. If W is a subvariety of P := Pn0×· · ·×Pn` with class [W ] = P (h0, . . . , h`)∩ [P],
then for all mj ≥ nj , the ‘cone’ W ′ over W in P′ := Pm0 × · · · × Pm` is a subvariety with
class [W ′] = P (h′0, . . . , h

′
`) ∩ [P′], where h′j denotes the pull-back of the hyperplane class

from the j-th factor of P′.
Thus, if P = P[W ] with W ⊆ Pn0 × · · · × Pn` , then we may in fact assume all nj � 0, or

even n0 = · · · = n` � 0. y

Example 2.3. Constant polynomials (including 0) trivially are covolume polynomials. Lin-
ear polynomials with nonnegative real coefficients are covolume polynomials. Indeed, by
continuity we can assume that the coefficients are positive and rational, and up to a multiple
we may then assume the coefficients to be integers. For positive integers a0, . . . , a`, general
sections of O(a0h0 + · · · + a`h`) on (Pn)`+1 are irreducible for n ≥ 2 and any ` ≥ 0. The
corresponding polynomial is a0t0 + · · ·+ a`t`. y

Example 2.4. For a nontrivial example, we note that the Schubert polynomial Sw(t0, . . . , t`)
associated with a permutation w ∈ S`+1 is a covolume polynomial. This follows from the
proof of [HMMS22, Theorem 6]. y

We are interested in log-concavity properties of covolume polynomials. We recall that a
sequence a0, . . . , an of nonnegative real numbers is log-concave if ∀i, a2

i ≥ ai−1ai+1. Further,
the sequence ‘has no internal zeros’ if ∀i ≤ j ≤ k, aiak 6= 0 =⇒ aj 6= 0. We say
that a polynomial is log-concave if its coefficients form a log-concave sequence with no
internal zeros. Powerful generalizations of this notion to polynomials in more variables have
been considered in the literature: among these strongly log-concave polynomials ([Gur09]),
completely log-concave polynomials ([ALGV18]), Lorentzian polynomials ([BH20]). These
notions are equivalent for homogeneous polynomials, as proved in [BH20, Theorem 2.30].
We will consistently use [BH20] as a reference for facts concerning this notion, and refer to
it by the term Lorentzian.

We will establish that covolume polynomials share certain key properties with Lorentzian
polynomials, and may also be viewed as a generalization of log-concave polynomials. Again,
we say that a homogeneous bivariate polynomial

P (u, v) :=
∑
i+j=d

aiju
ivj ∈ R[u, v]

is log-concave if and only if its coefficients ad0, . . . , a0d form a nonzero log-concave sequence
of nonnegative real numbers with no internal zeros.
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Definition 2.5. For ` ≥ 1, a homogeneous polynomial P (t) ∈ R[t0, . . . , t`] is sectional
log-concave if for all (` + 1) × 2 matrices A with nonnegative real entries, the polynomial
P (A

(
u
v

)
) is log-concave or identically 0. y

A bivariate homogeneous polynomial is sectional log-concave if it is log-concave (cf. Re-
mark 2.17), and in general a homogeneous polynomial is sectional log-concave if all its re-
strictions to ‘nonnegative’ lower dimensional subspaces are sectional log-concave. Lorentzian
polynomials are sectional log-concave; in fact, if P (t) is Lorentzian and A is as above, then
P (A

(
u
v

)
) is ultra-log-concave as a consequence of [BH20, Theorem 2.10 and Example 2.26].

One of our main goals in this section is to prove that covolume polynomials are sectional
log-concave.

The following characterization of two-variable covolume polynomials is a simple corollary
of another result of June Huh ([Huh12, Theorem 21]). Following [BH20], we consider the

normalization operator on the polynomial ring, defined on monomials by N(ti00 · · · t
i`
` ) :=

ti00 · · · t
i`
` /i0! · · · i`!. By [BH20, Corollary 3.7], the normalization of a Lorentzian polynomial

is Lorentzian.

Lemma 2.6. A nonzero homogeneous bivariate polynomial

P (u, v) :=
∑
i+j=d

aiju
ivj ∈ R[u, v]

is a covolume polynomial if and only if it is log-concave, that is, its coefficients ad0, . . . , a0d

form a nonzero log-concave sequence of nonnegative real numbers with no internal zeros.
Therefore, a homogeneous polynomial P (u, v) ∈ R[u, v] is a covolume polynomial if and

only if its normalization is Lorentzian.

Proof. Assume that P (u, v) ∈ R[u, v] is a covolume polynomial. By continuity, it suffices
to verify the statement when the coefficients of P are rational. Therefore, we may assume
that there exists a positive rational c and an irreducible subvariety W of codimension d in
Pn × Pn, with n� 0 (cf. Remark 2.2), such that

[W ] =
∑
i+j=d

caijh
ikj ∩ [Pn × Pn] .

Here h, resp. k denote the pull-backs of the hyperplane classes from the first, resp. second
factor. Thus,

[W ] =
∑
i+j=d

caij [Pn−i × Pn−j ] =
∑

i+j=dimW

can−i,n−j [Pi × Pj ]

is the class of an irreducible subvariety of Pn×Pn. By [Huh12, Theorem 21], the coefficients
can−i,n−j form a nonzero log-concave sequence with no internal zeros, and it follows that
the same holds for ad0, . . . , a0d.

Conversely, assume that ad0, . . . , a0d form a nonzero log-concave sequence of nonnegative
real numbers with no internal zeros. Such sequences are limits of log-concave sequences
of nonnegative rational numbers with no internal zeros, so we may assume ad0, . . . , a0d

are rational. Clearing denominators, there exists c ∈ Q>0 such that the coefficients caij
are integers; so cad0, . . . , ca0d form a log-concave sequence of nonnegative integers with no
internal zeros. Again by [Huh12, Theorem 21], a positive integer multiple of∑

i+j=d

caij [Pj × Pi] =
∑
i+j=d

caijh
ikj ∩ [Pd × Pd]
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is the class of an irreducible subvariety of Pd×Pd, and it follows that P (u, v) is a covolume
polynomial.

The coefficients of the polynomial
∑

i+j=d aiju
ivj form a log-concave sequence with no

internal zeros if and only if the coefficients of the normalization
∑

i+j=d aiju
ivj/i!j! form

an ultra log-concave sequence with no internal zeros, if and only if the normalization is
Lorentzian, cf. [BH20, Example 2.26]. �

Lemma 2.6 raises the natural question of whether the normalization of a covolume poly-
nomial may be Lorentzian in general. This is not the case.

Example 2.7. Let W be the image of the embedding

P1 × P1 × P1 ↪→ P7 × P3 × P1

obtained from the Segre embedding P1 × P1 × P1 ↪→ P7, the Segre embedding of the first
two factors P1 × P1 ↪→ P3, and the identity P1 → P1 on the third factor. Let

[W ] =
∑

i0+i1+i2=9

ai0i1i2h
i0
0 h

i1
1 h

i2
2 ∩ [P7 × P3 × P1] .

Denoting by ki the pull-back of the hyperplane classes from the i-th factor of the product
P1 × P1 × P1, we have

ai0i1i2 =

∫
h7−i0

0 h3−i1
1 h1−i2

2 ∩ [W ]

= coeff. of k0k1k2 in (k0 + k1 + k2)7−i0(k0 + k1)3−i1k1−i2
2 .

It follows that

P[W ](t0, t1, t2) = 2t70t1 + 2t60t
2
1 + 2t60t1t2 + 2t50t

3
1 + 4t50t

2
1t2 + 6t40t

3
1t2

is a covolume polynomial. The normalization of P[W ] is

N(P[W ]) =
1

2520
t70t1 +

1

720
t60t

2
1 +

1

360
t60t1t2 +

1

360
t50t

3
1 +

1

60
t50t

2
1t2 +

1

24
t40t

3
1t2 ,

and this polynomial is not Lorentzian. Indeed,

∂5

∂t50

∂2

∂t21
N(P[W ]) = t20 + 2t0t1 + 2t0t2 + t21 + 4t1t2 ,

with Hessian 2 2 2
2 2 4
2 4 0

 .

This matrix has two positive eigenvalues, contrary to the requirement for Lorentzianity
(cf. [BH20, §2.4]). y

On the other hand, the normalization of a simple transformation of a covolume polynomial
is Lorentzian.

Proposition 2.8. Let P (t0, . . . , t`) be a covolume polynomial. Let nj � 0, j = 0, . . . , `, be
any integers such that

Q(u0, . . . , u`) = un0
0 · · ·u

n`
` P

(
1

u0
, . . . ,

1

u`

)
is a polynomial. Then N(Q) is Lorentzian.
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In fact, we will prove that, possibly up to inessential factors, N(Q) is a volume polynomial
in the sense of [BH20, §4.2].

Proof. For all j, N(Q) is Lorentzian if N(ujQ) is Lorentzian; indeed, the former is the
derivative of the latter with respect to uj , and derivatives of Lorentzian polynomials are
Lorentzian by definition. Therefore, it suffices to show that the normalization of

Q(u0, . . . , u`) = ud0 · · ·ud`P
(

1

u0
, . . . ,

1

u`

)
is Lorentzian, where d = degP . By continuity and up to a constant multiple we may then
assume that P = P[W ] is the covolume polynomial associated with the class of an irreducible
subvariety W of a product of projective spaces; and by the same argument used above, it
suffices to show that there exist n0 ≥ d, . . . , n` ≥ d such that

Q[W ](u0, . . . , u`) = un0
0 · · ·u

n`
` P[W ]

(
1

u0
, . . . ,

1

u`

)
has Lorentzian normalization. By Remark 2.2, we may choose W ⊆ Pn0 × · · · × Pn` with
nj � 0. Then

P[W ] =
∑

i0+···+i`=d
ai0...i`t

i0
0 · · · t

i`
`

where 0 ≤ ij ≤ nj for all j and

[W ] =
∑

i0+···+i`=d
ai0...i`h

i0
0 · · ·h

i`
` ∩ [Pn0 × · · · × Pn` ]

with the usual notation. We have

ai0...i` =

∫
hn0−i0

0 · · ·hn`−i`` ∩ [W ] .

Therefore

N(Q[W ](u0, . . . , u`)) = N

(
un0

0 · · ·u
n`
` P[W ]

(
1

u0
, . . . ,

1

u`

))
=

∑
i0+···+i`=d

ai0...i`
un0−i0

0

(n0 − i0)!
· · ·

un`−i``

(n` − i`)!

=
∑

j0+···+j`=dimW

an0−j0...n`−j`
uj00
j0!
· · ·

uj``
j`!

=
∑

j0+···+j`=dimW

(∫
hj00 · · ·h

j`
` ∩ [W ]

)
uj00
j0!
· · ·

uj``
j`!

=
1

(dimW )!

∫ ∑
j0+···+j`=dimW

(
dimW

j0 . . . j`

)
(u0h0)j0 · · · (u`h`)j` ∩ [W ]

=
1

(dimW )!

∫
(u0h0 + · · ·+ u`h`)

dimW ∩ [W ] .

This shows that, up to a scalar factor, N(Q[W ]) is a volume polynomial. It follows that
N(Q[W ]) is Lorentzian by [BH20, Theorem 4.6], and this concludes the argument. �

Remark 2.9. A sharp version of this argument is given for the case of Schubert polynomials
(cf. Example 2.4) in [HMMS22, Theorem 6]. y
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Example 2.10. As we verified in Example 2.7, the polynomial

P (t0, t1, t2) = 2t70t1 + 2t60t
2
1 + 2t60t1t2 + 2t50t

3
1 + 4t50t

2
1t2 + 6t40t

3
1t2

is a covolume polynomial. For n0 = 7, n1 = 3, n2 = 1, we have

Q(u0, u1, u2) = u7
0u

3
1u2P

(
1

u0
,

1

u1
,

1

u2

)
= 6u3

0 + 4u2
0u1 + 2u2

0u2 + 2u0u
2
1 + 2u0u1u2 + 2u2

1u2 .

The normalization of this polynomial,

N(Q) = u3
0 + 2u2

0u1 + u2
0u2 + u0u

2
1 + 2u0u1u2 + u2

1u2 ,

is Lorentzian as prescribed by Proposition 2.8.
This also shows that a polynomial whose normalization is Lorentzian is not necessarily

a covolume polynomial. Indeed, if Q were a covolume polynomial, then by Proposition 2.8
it would follow that N(P ) is Lorentzian, and we have verified that this is not the case in
Example 2.7.

The same argument shows that Lorentzian polynomials are not necessarily covolume
polynomials. Indeed, the polynomial

A(u0, u1, u2, u3) = u2
0u1 + u2

0u2 + u2
0u3 + u0u1u2 + u0u1u3 + 4u0u2u3 + u1u2u3

is Lorentzian, but the normalization of

t20t1t2t3 ·A
(

1

t0
,

1

t1
,

1

t2
,

1

t3

)
= t2t3 + t1t3 + t1t2 + t0t3 + t0t2 + 4t0t1 + t20

is not Lorentzian. y

By Proposition 2.8, every covolume polynomial may be expressed in terms of a Lorentzian
polynomial: if P (t0, . . . , t`) is a covolume polynomial, then there exist nonnegative integers
n0, . . . , n` such that

(2.1) P (t0, . . . , t`) = tn0
0 · · · t

n`
` Q

(
1

t0
, . . . ,

1

t`

)
where Q is a polynomial whose normalization is Lorentzian. The result that follows is a
consequence of this observation.

Recall that a subset S ⊆ N`+1 is ‘M-convex’ if for all i and all α, β ∈ S such that
αi > βi, there exists j such that αj < βj and α − ei + ej ∈ S, β − ej + ei ∈ S, where ei
is that i-th standard unit vector. (See [Mur03], [BH20, §2].) This (symmetric) exchange
property generalizes the exchange property defining matroids; M-convex sets are generalized
polymatroids.

Corollary 2.11. The support of a covolume polynomial is an M -convex set.

Proof. Let

P =
∑

i0+···+i`=d
ai0...i`t

i0
0 · · · t

i`
`

be a covolume polynomial. The corresponding polynomial Q as in Proposition 2.8 or (2.1)
is given by

Q =
∑

j0+···+j`=
∑
k nk−d

an0−j0...n`−j`u
j0
0 · · ·u

j`
` .

As this polynomial is Lorentzian, its support, that is, the set

{(j0, . . . , j`) | an0−j0...n`−j` 6= 0}
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is M-convex ([BH20, Definition 2.6]). It is then straightforward to check that the support
of P , that is,

{(i0, . . . , i`) | ai0...i` 6= 0}
also satisfies the symmetric exchange property and is therefore M-convex. �

Lemma 2.6 and Corollary 2.11 indicate that while covolume polynomials (or even their
normalizations) are not necessarily Lorentzian, they share some key properties with Lorentzian
polynomials. The result that follows is possibly the most useful such analogue. Recall
from [BH20, Theorem 2.10] that if f(w) is a Lorentzian polynomial, then so is f(Av) for
any matrix A with nonnegative entries. Covolume polynomials are similarly preserved by
nonnegative coordinate changes.

Theorem 2.12. Let P (t) ∈ R[t0, . . . , t`] be a covolume polynomial, and let A be an (`+1)×
(m+ 1) matrix with nonnegative real entries. Then P (Au) ∈ R[u0, . . . , um+1] is a covolume
polynomial.

For example, the ‘dilation’ (replacing a variable by a nonnegative constant multiple of the
same variable) and ‘diagonalization’ (setting two variables equal to each other) operators
preserve the property of being a covolume polynomial. The following consequence is the
analogue of [BH20, Corollary 2.32].

Corollary 2.13. The product of two covolume polynomials is a covolume polynomial.

Proof. By continuity and multiplication by scalar multiples, we are reduced to showing that
P[W ′](t)P[W ′′](t) is a covolume polynomial, where W ′ and W ′′ are irreducible subvarieties of
P := Pn0×· · ·×Pn` . For this, note that W ′×W ′′ is an irreducible subvariety of P×P; there-
fore, P[W ′](t)P[W ′′](u) = P[W ′×W ′′](t, u) is a covolume polynomial, and by diagonalization
(that is, by Theorem 2.12), so is P[W ′](t)P[W ′′](t). �

Proof of Theorem 2.12. By continuity, we may assume that P (t) has rational coefficients
and A has positive rational entries; and up to a scalar multiple we can then assume that
A has positive integer entries and P (t) = P[W ](t) is the polynomial associated with an

irreducible subvariety W of P := (PM )`+1, with M � 0. Explicitly,

P (t) =
∑

f0+···+f`=d
βf0...f`t

f0
0 · · · t

f`
`

where
[W ] =

∑
f0+···+f`=d

βf0...f`h
f0
0 · · ·h

f`
` ∩ [(PM )`+1]

and as usual hi denotes the pull-back of the hyperplane class from the corresponding factor
of (PM )`+1.

The codimension of W is the degree d of P[W ]. We choose an integer S > d, implying in
particular (m+ 1)S > d; and we may assume (cf. Remark 2.2) that M is sufficiently large
to allow us to define Segre-Veronese embeddings

σi : (PS)m+1 → PM

for i = 0, . . . , `, such that
σ∗i (h) = ai0k0 + · · ·+ aimkm

where h is the hyperplane class in PM and k0, . . . , km are the pull-backs of the hyperplane
classes from the factors. These embeddings determine an embedding

ϕ : (PS)m+1 ↪→ (PM )`+1



LORENTZIAN POLYNOMIALS, SEGRE CLASSES, AND ADJOINT POLYNOMIALS 11

such that for i = 0, . . . , `,

ϕ∗(hi) = ai0k0 + · · ·+ aimkm .

Claim 2.14. For a general γ ∈ PGL(M + 1)`+1, the inverse image ϕ−1(γW ) of the γ-
translate of W is irreducible.

This claim follows from a result of Olivier Debarre, [Deb96, Théorème 2.2, 2)a))]. To
verify this, let

[ϕ(PS)m+1] =
∑

e0,...,e`

αe0...e`h
e0
0 · · ·h

e`
` ∩ [(PM )`+1]

where the sum is over all nonnegative e0, . . . , e` such that
∑

i(M − ei) = (m + 1)S. The
coefficients αe0...e` equal the intersection numbers

αe0...e` =

∫
hM−e00 · · ·hM−e`` ∩ [ϕ(PS)m+1]

=

∫ ∏̀
i=0

(ai1k1 + · · ·+ aimkm)M−ei ∩ [(PS)m+1]

and in particular αe0...e` 6= 0 for all nonnegative e0, . . . , e` such that
∑

i(M −ei) = (m+1)S
since the entries of A are assumed to be positive.

By Debarre’s theorem, ϕ−1(γW ) is irreducible for a general γ if for all nonempty subsets
I ⊆ {0, . . . , `} there exist e, f such that

αe0...e` 6= 0, βf0...f` 6= 0, and
∑
i∈I

(ei + fi) < |I|M .

As observed, αe0...e` 6= 0 for all e such that
∑

i(M−ei) = (m+1)S. As W has codimension d,
there exist f with

∑
j fj = d such that βf0...f` 6= 0; note that for all I ⊆ {0, . . . , `},∑

i∈I fi ≤ d. Given a nonempty I ⊆ {0, . . . , `}, let ei = M for i 6∈ I and choose any ei ≥ 0
for i ∈ I s.t.

∑
i∈I ei = |I|M − (m + 1)S. (We can do this because I is not empty and

M ≥ (m+ 1)S.) Then we have∑
i∈I

(ei + fi) ≤ |I|M − (m+ 1)S + d < |I|M

as we are assuming (m+ 1)S > d.
Thus the hypothesis of Debarre’s theorem is satisfied and Claim 2.14 follows. y
The class of ϕ−1(γW ) is

[ϕ−1(γW )] = ϕ∗([W ]) = P[W ](a00k0 + · · ·+ a0mkm, . . . , a`0k0 + · · ·+ a`mkm) .

The conclusion is that

P[W ](Au) = P[ϕ−1(γW )](u)

is the polynomial associated with the irreducible ϕ−1(γW ), hence a covolume polynomial,
as needed. �

Corollary 2.15. Covolume polynomials are sectional log-concave.

Proof. Given Definition 2.5, this is now an immediate consequence of Theorem 2.12 and
Lemma 2.6. �

Example 2.16. (Cf. Example 2.7.) The polynomial

P (t0, t1, t2) := 2t70t
2
1 + 2t60t

3
1 + 2t60t

2
1t2 + 2t50t

4
1 + 4t50t

3
1t2 + 6t40t

4
1t2
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as well as its normalization N(P ) are not Lorentzian, but P is sectional log-concave, as it
is a covolume polynomial. y

Remark 2.17. Let P (u, v) be a homogeneous log-concave polynomial1. By Lemma 2.6, P is
a covolume polynomial; by Theorem 2.12, P (A

(
u
v

)
) is a covolume polynomial for all 2 × 2

invertible matrices A with nonnegative entries; and then P (A
(
u
v

)
) must be a log-concave

polynomial, again by Lemma 2.6. This particular case of Theorem 2.12 implies that log-
concave polynomials are indeed sectional log-concave, as claimed earlier in this section.

One way to view this fact is as follows: for bivariate homogeneous polynomials, the prop-
erty of having Lorentzian normalization is preserved by nonnegative coordinate changes.
We don’t know if this is also the case for homogeneous polynomials in more variables. It
does not appear to be a direct consequence of the fact that the property of being Lorentzian
is preserved by nonnegative coordinate changes (i.e., [BH20, Theorem 2.10]).

The fact that the class of log-concave polynomials is preserved by nonnegative changes of
coordinates is easily seen to be equivalent to the assertion that if f(t) is a (non-homogenous)
log-concave univariate polynomial, then so is f(t + 1). For alternative arguments proving
this fact, see [Hog74, Theorem 2] and Corollary 8.4 in the survey [Bre94]. y

3. Segre classes

We work over an algebraically closed field k; schemes are assumed to be of finite type.
The Segre class s(Z, Y ) of a closed embedding Z ⊆ Y of schemes is a class in the Chow
group A∗(Z) recording important intersection-theoretic information about the embedding.
For a thorough treatment of Segre classes, the reader is addressed to [Ful84, Chapter 4].
By definition, the Segre class s(Z, Y ) is the Segre class of the cone CZY ; in particular,
if Z ⊆ Y is a regular embedding, then s(Z, Y ) = c(NZY )−1 ∩ [Z] is the inverse Chern
class of the normal bundle of Z in Y . Segre classes are preserved by birational morphisms
([Ful84, Proposition 4.2(a)]). These two properties characterize Segre classes: the birational

invariance reduces the computation of s(Z, Y ) to the computation of s(E, Ỹ ), where E is

the exceptional divisor in the blow-up Ỹ of Y along Z, and since E is regularly embedded,

s(E, Ỹ ) = c(NEỸ )−1 ∩ [E] =
[E]

1 + E
,

where
1

1 + E
= 1− E + E2 − E3 + · · · .

(Cf. [Ful84, Corollary 4.2.2].)
Segre classes are a key ingredient in the definition of the intersection product in Fulton-

MacPherson intersection theory ([Ful84, Proposition 6.1(a)]), with direct applications to
enumerative geometry. They can also be used to express important classical invariants such
as multiplicity, Milnor numbers, local Euler obstructions, etc. For a survey of the role of
Segre classes in the theory of singularities, see [Alu22].

Let Z be a closed subscheme of projective space Pn, determined by a homogeneous
ideal I of k[x0, . . . , xn]. For N ≥ n, any generating set of I, viewed in k[x0, . . . , xN ], defines
a subscheme ZN of PN , which we may view as a cone over Z = Zn. Let ιN : ZN → PN
be the embedding. We consider the push-forwards ιN∗s(Z,PN ) of the corresponding Segre

1Recall that by this we mean that the coefficients of P (u, v) form a log-concave sequence with no internal
zeros.
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classes. In previous work we have observed that these classes are organized by a power
series

(3.1) ζI(t) :=
∑
i≥0

s(i)ti

with integer coefficients s(i), such that

ιN∗s(ZN ,PN ) =
N∑
i=0

s(i)H i ∩ [PN ] ,

where H denotes the hyperplane class in PN . (The fact that ζI is well-defined is the content
of [Alu17, Lemma 5.2].)

Theorem 3.1 ([Alu17], Theorem 5.8). The power series ζI(t) is rational. More precisely,
let d0, . . . , dr be the degrees of the elements in any homogeneous generating set for I; then

ζI(t) =
P (t)∏r

i=0(1 + dit)

where P (t) ∈ Z[t] is a polynomial with nonnegative coefficients, trailing term of degree
codim(I), and leading coefficient

∏r
i=0 di.

As a consequence of this result, the polynomial

r∏
i=0

(1 + dit)− P (t)

has degree ≤ r. In this section we will prove that the coefficients of this polynomial form
a log-concave sequence of nonnegative integers with no internal zeros. We will also prove
that the coefficients of P (t) also form a log-concave sequence of nonnegative integers with
no internal zeros, provided that the normal cone of Z in Pn is irreducible.

We will view the set-up described above as a particular case of the following more general
situation. Let Z ⊆ Pn1 × · · · × Pn` be a closed subscheme, whose ideal I is generated by a
finite set of multihomogeneous polynomials. We consider the subscheme ZN defined by the

same polynomials in PN := PN1 × · · · × PN` , for all N = (N1, . . . , N`) with Nj ≥ nj . The
analogue of (3.1) is a power series

(3.2) ζI(t1, . . . , t`) :=
∑
i≥0

s(i1...i`)ti11 · · · t
i`
`

such that for all N as above, and denoting by ιN the inclusion ZN ↪→ PN and by hj the
pull-back of the hyperplane class from the j-th factor,

(3.3) ιN∗s(ZN ,PN ) =
∑
ij≤Nj

s(i1...i`)hi11 · · ·h
i`
` ∩ [PN ] .

The natural extension of Theorem 3.1 holds for this power series.

Theorem 3.2. The power series ζI(t1, . . . , t`) is rational. More precisely, let (e1k, . . . , e`k),
k = 0, . . . , r, be the multidegrees of the elements in any multihomogeneous generating set
for I, and let

Q(t1, . . . , t`) =
r∏

k=0

(1 + e1kt1 + · · ·+ e`kt`) .
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Then

ζI(t1, . . . , t`) =
P (t1, . . . , t`)

Q(t1, . . . , t`)

where P (t1, . . . , t`) ∈ Z[t1, . . . , t`] is a polynomial with nonnegative coefficients, trailing term
of total degree codim(I), and leading term equal to

∏r
k=0(e1kt1 + · · ·+ e`kt`).

A proof of this result may be obtained by following the same blueprint as the proof of
Theorem 3.1 given in [Alu17]; for the case ` = 2, also see [Jor20, §5.2].

We focus on the polynomial

R(t1, . . . , t`) = Q(t1, . . . , t`)− P (t1, . . . , t`) ,

for which

1− ζI(t1, . . . , t`) =
R(t1, . . . , t`)

Q(t1, . . . , t`)
.

As a consequence of Theorem 3.2, R(t1, . . . , t`) is a polynomial with integer coefficients and
total degree ≤ r. Our main goal is to establish log-concavity properties of these polynomials.
As they are not necessarily homogeneous, we adapt Definition 2.5 accordingly.

Definition 3.3. A polynomial f(t1, . . . , t`) ∈ R[t1, . . . , t`] is sectional log-concave if for all

`×2 matrices A with nonnegative real entries, the polynomial p(A
(

1
v

)
) is either identically 0

or its coefficients form a log-concave sequence of nonnegative real numbers with no internal
zeros. y

Remark 3.4. If f is homogeneous, then it is sectional log-concave in the sense of Defini-
tion 3.3 if and only if it is in the sense of Definition 2.5. For any f(t1, . . . , t`), f is sectional
log-concave if any homogenization F (t0, . . . , t`) of f is sectional log-concave. Indeed, as-

sume F is homogeneous and f = F |t0=1. Then f(A
(

1
v

)
) = F (u,A

(
u
v

)
)|u=1, and F (u,A

(
u
v

)
)

is log-concave or identically 0 if F is sectional log-concave.
If f is obtained by setting one of the variables of a homogeneous polynomial F to 1, we

will say that f is a de-homogenization of F . y

Similarly, we will say that f(t1, . . . , t`) ∈ R[t1, . . . , t`] is M-convex if it is the de-homoge-
nization of an M-convex polynomial.

A precise result can be established for the polynomials R(t1, . . . , t`) arising as numerators
of 1− ζi.

Theorem 3.5. Let Z ⊆ Pn1 × · · · × Pn` be a closed subscheme whose ideal I is generated
by forms of multidegrees (e1k, . . . , e`k), k = 0, . . . , r. Define the polynomial R(t1, . . . , t`) by
the identity

1− ζI(t1, . . . , t`) =
R(t1, . . . , t`)∏r

k=0(1 + e1kt1 + · · ·+ e`kt`)
.

Then R(t1, . . . , t`) is the de-homogenization of a covolume polynomial of degree r. In par-
ticular:

• R(t1, . . . , t`) has nonnegative coefficients and M -convex support;
• R(t1, . . . , t`) is sectional log-concave;

• If R =
∑

0≤ij≤rj bi1...i`t
i1
1 · · · t

i`
` , then the normalization of the polynomial∑

0≤ij≤rj

bi1...i`u
i1+···+i`
0 ur1−i11 · · ·ur`−i``

is Lorentzian;
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• In the univariate case, i.e., ` = 1, the coefficients of R(t1) form a log-concave
sequence with no internal zeros.

It is natural to ask whether the numerator of ζI itself satisfies the same constraints. We
can prove that this is the case, but only subject to an irreducibility hypothesis.

Theorem 3.6. Let Z ⊆ Pn1 × · · · × Pn` be a closed subscheme whose ideal I is generated
by forms of multidegrees (e1k, . . . , e`k), k = 0, . . . , r. Define the polynomial P (t1, . . . , t`) by
the identity

ζI(t1, . . . , t`) =
P (t1, . . . , t`)∏r

k=0(1 + e1kt1 + · · ·+ e`kt`)
.

Assume that the projectivized normal cone P(CZ(Pn1 × · · · × Pn`)) is irreducible. Then
P (t1, . . . , t`) is the de-homogenization of a covolume polynomial of degree r+1. In particular,

• P (t1, . . . , t`) has nonnegative coefficients and M -convex support;
• P (t1, . . . , t`) is sectional log-concave;

• If P =
∑

0≤ij≤rj ai1...i`t
i1
1 · · · t

i`
` , then the normalization of the polynomial∑

0≤ij≤rj

ai1...i`u
i1+···+i`
0 ur1−i11 · · ·ur`−i``

is Lorentzian;
• In the univariate case, i.e., ` = 1, the coefficients of P (t1) form a log-concave

sequence with no internal zeros.

We will informally refer to the polynomials P , resp. R, in these statements as the ‘nu-
merators’ of ζI , resp. 1− ζI . This is an abuse of language since the polynomials depend on
the multidegrees of the chosen generators; it is harmless in the sense that the statements
hold for any choice of generators.

Example 3.7. Segre classes have applications in enumerative geometry; the prototypical
example is the computation of the number 3264 of smooth plane conics that are tangent to
five general smooth conics, cf. [Ful84, Examples 9.1.8, 9.1.9].

The characteristic numbers for the family of smooth plane curves of degree d are the
numbers of such curves that contain a selection of general points and are tangent to a
selection of general lines. For plane cubics, the characteristic numbers are

1, 4, 16, 64, 976, 3424, 9766, 21004, 33616

([Mai71, Alu88, KS91]): for example, there are , cubics tangent to 9 lines in general
position. The information of the characteristic numbers is equivalent to the information of
the push-forward to the P9 of plane cubics of the Segre class of a scheme naturally supported
on the set of non-reduced curves:

48[P4]− 480[P3] + 3930[P2]− 38220[P1] + 372960[P0] .

This scheme is cut out by 10 quartic hypersurfaces, and it follows that the corresponding
Segre zeta function is

(3.4) ζI(t) :=
48t5 + 1440t6 + 19290t7 + 142020t8 + 567840t9 + 1048576t10

(1 + 4t)10
.

The numerator of 1− ζI(t) equals

1+40t+720t2 +7680t3 +53760t4 +258000t5 +858720t6 +1946790t7 +2807100t8 +2053600t9

and as prescribed by Theorem 3.5 the coefficients of this polynomial form a log-concave
sequence with no internal zeros. y
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Remark 3.8. The characteristic numbers may be interpreted as the multidegrees of the
closure of the graph of the duality map (in the case of cubics, the map associating to
a smooth cubic the corresponding dual sextic). It follows that they form a log-concave
sequence of integers with no internal zeros, by [Huh12, Theorem 21]. y

Our main tool in the proof of Theorems 3.5 and 3.6 will be a result providing a large
supply of polynomials that are de-homogenizations of covolume polynomials.

Proposition 3.9. Let X be an irreducible variety and let

q : X → Pn1 × · · · × Pn`

be a proper map. Let R be a globally generated vector bundle of rank r on X, and write

(3.5) q∗(c(R) ∩ [X]) =
∑

0≤ij≤nj

ai1...i`h
i1
1 · · ·h

i`
` ∩ [Pn1 × · · · × Pn` ] .

Then the polynomial

(3.6)
∑

0≤ij≤nj

ai1...i`t
i1
1 · · · t

i`
`

is the de-homogenization of a covolume polynomial of degree r + (
∑
nj)− dimX.

Proof. Let V be a (D+1)-dimensional vector space of global sections generating R. Consider
the product

P(V )×X
p1

yy

p2

$$
P(V ) X

,

and denote by H the hyperplane class in P(V ). Let K be the kernel of the surjection
V = V ⊗ OX → R. Identify P(V ) × X with P(V ) and view P(K ) as a codimension-
r = rk R subscheme of P(V )×X; also note that p∗1H = c1(OV (1)). By definition, P(K ) is
the zero-scheme of the composition

OV (−1) ↪→ p∗2V � p∗2R ;

therefore, of the corresponding section O → p∗2R ⊗ OV (1). This section is regular ([Ful84,
B.5.6]), and it follows that the class [P(K )] in A∗(P(V ) × X) is the top Chern class of
p∗2R ⊗ OV (1):

(3.7) [P(K )] =

r∑
i=0

(p∗1H
r−i)(p∗2ci(R)) ∩ [P(V )×X]

in AD+dimX−r(P(V )×X). Next, consider the proper map

P(V )×X
id×q // P(V )× Pn1 × · · · × Pn` .

We claim that

(3.8) (id×q)∗([P(K )]) =
r∑
i=0

∑
∑
ij=i−dimX+

∑
nj

ai1...i`H
r−ihi11 · · ·h

i`
` ∩[P(V )×Pn1×· · ·×Pn` ]

with ai1...i` as in (3.5), and where H,hj denote the pull-backs of the corresponding classes
to the product P(V )× Pn1 × · · · × Pn` .
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To prove (3.8), consider the diagram

P(V )×X
p1

tt

p2 //

id×q

��

X

q

��

P(V )

P(V )× Pn1 × · · · × Pn`
π1

jj

π2 // Pn1 × · · · × Pn`

We have

p∗1 = (id× q)∗ ◦ π∗1 and (id× q)∗ ◦ p∗2 = π∗2 ◦ q∗
([Ful84, Proposition 1.7]). By (3.7), these identities and the projection formula give

(id× q)∗([P(K )]) =
r∑
i=0

(id× q)∗((p∗1Hr−i)(p∗2ci(R)) ∩ [P(V )×X])

=
r∑
i=0

(π∗1H
r−i) ∩ π∗2q∗(ci(R) ∩ [X]) .

Using (3.5), we see that this class equals

r∑
i=0

(π∗1H
r−i) ∩ π∗2

∑
∑
ij=i−dimX+

∑
nj

ai1...i`h
i1
1 · · ·h

i`
` ∩ [Pn1 × · · · × Pn` ]

and (3.8) follows.
Since by definition (id×q)∗([P(K )]) is a multiple of the class of the irreducible subvariety

(id× q)(P(K )), this shows that

r∑
i=0

∑
∑
ij=i−dimX+

∑
nj

ai1...i`t
r−i
0 ti11 · · · t

i`
`

is a covolume polynomial. The polynomial (3.6) is obtained from this polynomial by setting
t0 = 1, so this proves the statement. �

Example 3.10. The degrees of the Chern classes of a globally generated bundle over projec-
tive space form a log-concave sequence of nonnegative integers with no internal zeros.

This follows from Proposition 3.9 and Lemma 2.6 in the very particular case where ` = 1
and q the identity map Pn1 → Pn1 . y

Theorems 3.5 and 3.6 are consequences of Proposition 3.9.

Proof of Theorems 3.5 and 3.6. In both statements, the four listed properties are formal
consequence of the assertion that the polynomial is the de-homogenization of a covolume
polynomial. Specifically, the first property follows from Corollary 2.11; the second from
Corollary 2.15 (cf. Remark 3.4); the third from Proposition 2.8; and the last property from
Lemma 2.6.

Therefore, it suffices to prove that R(t1, . . . , t`) is a de-homogenization of a covolume
polynomial, and so is P (t1, . . . , t`) if P(CZ(Pn1 × · · · × Pn`)) is irreducible.

Let N = (N1, . . . , N`), with Nj ≥ nj for all j. Denote by Oj(1) the pull-back of the
hyperplane line bundle from the j-th factor of PN . The subscheme ZN of PN is cut out by
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hypersurfaces Xk, k = 0, . . . , r, with O(Xk) = O1(e1k) ⊗ · · · ⊗ O`(e`k). We have the fiber
square

(3.9)

ZN
� � ιN //

δ

��

PN

∆
��

X0 × · · · ×Xr
� � // PN × · · · × PN

where ∆ is the diagonal embedding. This is an instance of the situation considered in [Ful84,
§6.1]; the Fulton-MacPherson intersection product (X0 × · · · ×Xr) · PN is one term in the
class

δ∗(NX0×···×Xr(PN × · · · × PN )) ∩ s(ZN ,PN ) = c(ι∗NN ) ∩ s(ZN ,PN ) ,

where

N = ⊕rk=0 (O1(e1k)⊗ · · · ⊗ O`(e`k)) .

By [Ful84, Example 6.1.6], this class only has terms in codimension ≤ r + 1. Thus, its
push-forward

ιN∗
(
c(ι∗NN ) ∩ s(ZN ,PN )

)
= c(N ) ∩ ιN∗s(ZN ,PN )

=
r∏

k=0

(1 + e1kh1 + · · ·+ e`kh`) ∩ ιN∗s(ZN ,PN )

may be written as a polynomial ∑
0≤ij≤Nj

ai1...i`h
i1
1 · · ·h

i`
` ∩ [PN ]

of total degree ≤ (r + 1). By (3.2), (3.3), and Theorem 3.2,

P (h1, . . . , h`) =
r∏

k=0

(1 + e1kh1 + · · ·+ e`kh`) ∩ ιN∗s(ZN ,PN )

in A∗(PN ), that is, modulo h
Nj+1
j for all j. Taking Nj ≥ max(nj , r+ 1), we get the equality

of polynomials

P (t1, . . . , t`) =
∑

0≤ij≤Nj

ai1...i`t
i1
1 · · · t

i`
` ∈ Z[t1, . . . , t`] .

Summarizing, let Nj � 0 for all j; then the polynomial P (t1, . . . , t`) ∈ Z[t1, . . . , t`] is the
unique lift of degree ≤ Nj in tj of the class

(3.10) c(N ) ∩ ιN∗s(ZN ,PN ) .

It also follows that R(t1, . . . , t`) is the unique lift of degree ≤ Nj in tj of the class

(3.11) c(N ) ∩ (1− ιN∗s(ZN ,PN )) .

Next, consider the blow-up P̃N of PN along ZN , with exceptional divisor E = P(CZNPN )
and notation as in the following diagram:

(3.12)

E
j //

ρ

��

P̃N

ν
��

ZN ιN
// PN
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By the birational invariance of Segre classes,

ιN∗s(ZN ,PN ) = ν∗j∗s(E, P̃N ) = ν∗j∗

(
c(NEP̃N )−1 ∩ [E]

)
.

stacking diagrams (3.9) and (3.12) gives a fiber square

E
j //

δ◦ρ
��

P̃N

∆◦ν
��

X0 × · · · ×Xr
� � // PN × · · · × PN

whose excess intersection bundle (in the sense of [Ful84, §6.3]) is

(δ ◦ ρ)∗NX0×···×Xr(PN × · · · × PN )/NEP̃N = ρ∗ι∗NN /j∗O(E) = j∗R

with

R = ν∗(⊕rk=0 (O1(e1k)⊗ · · · ⊗ O`(e`k)))/O(E) .

With this notation, and repeatedly using the projection formula, the class in (3.10) (repre-
sented by the polynomial P (t1, . . . , t`)) may be rewritten as

c(N ) ∩ ιN∗s(ZN ,PN ) = c(N ) ∩ ν∗j∗
(
c(NEP̃N )−1 ∩ [E]

)
= (ν ◦ j)∗

(
c(j∗ν∗N )c(NEP̃N )−1 ∩ [E]

)
= (ν ◦ j)∗

(
c(ρ∗ι∗NN )c(j∗O(E))−1 ∩ [E]

)
= (ν ◦ j)∗ (c(j∗R) ∩ [E]) .

Since R is generated by global sections, Proposition 3.9 implies that if E = P(CZNPN ) is

irreducible, then P (t1, . . . , t`) is the de-homogenization of a covolume polynomial. This
establishes the first part of Theorem 3.6, since P(CZNPN ) is irreducible if and only if

P(CZ(Pn1 × · · · × Pn`)) is (recall that ZN is a cone over Z).
Concerning the class in (3.11), represented by the polynomial R(t1, . . . , t`):

c(N ) ∩ (1− ιN∗s(ZN ,PN )) = c(N ) ∩ ν∗
(

1− [E]

1 + E

)
= c(N ) ∩ ν∗

[P̃N ]

1 + E

= ν∗

(
c(ν∗N )c(O(E))−1 ∩ [P̃N ]

)
= ν∗

(
c(R) ∩ [P̃N ]

)
.

Since R is generated by global sections and [P̃N ] is irreducible, Proposition 3.9 implies
(unconditionally) that R(t1, . . . , t`) is the de-homogenization of a covolume polynomial,
establishing the first part of Theorem 3.5 and completing the proof. �

As proved above, the polynomials P and R determined by a closed subscheme Z ⊆
Pn1 × · · · × Pn` are closely related to Lorentzian polynomials. It is natural to inquire
whether their homogenizations may themselves be Lorentzian, perhaps after normalization.

For ` = 1, the normalization of the numerator R of 1−ζI is Lorentzian, as a consequence
of Theorem 3.5 and of [BH20, Example 2.26]. It is not necessarily Lorentzian itself.
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Example 3.11. Let Z = Pn−3 as a subscheme of Pn, with ideal I = (x0, x1, x2) ⊆ k[x0, . . . , xn].
If H denotes the hyperplane class in Pn, the Segre class s(Z,Pn) = c(NPn−3Pn)−1 ∩ [Pn−3]
pushes forward to H3/(1 +H)3 ∩ [Pn], and it follows that

1− ζI(t1) = 1− t31
(1 + t1)3

=
1 + 3t1 + 3t21

(1 + t1)3
.

The homogenization t20 + 3t0t1 + 3t21 is not Lorentzian, i.e., the sequence 1, 3, 3 is not ultra-
log-concave. Its normalization is Lorentzian, i.e., the sequence is log-concave, as prescribed
by Theorem 3.5.

For another example, let I = (x0, y0, z0) ⊆ k[x0, . . . , xn; y0, . . . , yn; z0, . . . , zn), defining
an inclusion of Pn−1 × Pn−1 × Pn−1 in Pn × Pn × Pn, for all n ≥ 1. This is also a complete
intersection, and it follows that

1− ζI(t1, t2, t3) = 1− t1t2t3
(1 + t1)(1 + t2)(1 + t3)

=
1 + t1 + t2 + t3 + t1t2 + t1t3 + t2t3

(1 + t1)(1 + t2)(1 + t3)
,

so that the homogenization of R(t1, t2, t3) is

(3.13) t20 + t0t1 + t0t2 + t0t3 + t1t2 + t1t3 + t2t3 .

This polynomial is sectional log-concave and M-convex (as prescribed by Theorem 3.5), but
it is not Lorentzian. We note that its normalization

1

2
t20 + t0t1 + t0t2 + t0t3 + t1t2 + t1t3 + t2t3

is Lorentzian. y

We know of no example of a closed subscheme Z ⊆ Pn1 ×· · ·×Pn` for which the normal-
ization of the homogenization of the numerator of 1− ζI is not Lorentzian. This does not
appear to follow directly from Theorem 3.5.

Question 1. Is the normalization of the homogenization of the numerator of 1− ζI always
a Lorentzian polynomial?

The conjecture stated in §1 proposes that the answer to this question should be affirma-
tive. We have verified that this is the case for several hundred randomly chosen monomial
ideals.

Concerning the polynomial P of Theorem 3.6, that is, the ‘numerator of ζI ’, we note that
the hypothesis of irreducibility of the normal cone cannot be removed.

Example 3.12. Let I = (x0y0, x0z0) ⊆ k[x0, . . . , xn; y0, . . . , yn; z0, . . . , zn], defining a closed
subscheme Z ⊆ P := Pn × Pn × Pn, n � 0. The support of this subscheme is the union of
an irreducible divisor and a codimension-two subvariety; Z is not irreducible, and therefore
its normal cone is not irreducible. The function ζI(t1, t2, t3) may be determined as follows:
with evident notation, the Segre class of Z is (h1 + h.o.t.) ∩ [P], since this is the case away
from the codimension-2 component; since I is generated by divisors with classes h1 + h2,
h1 + h3, we must have

ζI(t1, t2, t3) =
t1 + (t1 + t2)(t1 + t3)

(1 + t1 + t2)(1 + t1 + t3)

by Theorem 3.2. (For an alternative argument, compute the Segre class of Z in (Pn)3

by ‘residual intersection’, [Ful84, Proposition 9.2] or [Alu94, Proposition 3]; and then let
n→∞.) The homogenization of the numerator P (t1, t2, t3) is

(3.14) t0t1 + t21 + t1t2 + t1t3 + t2t3 ;
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the support of this polynomial consists of the points

(1, 1, 0, 0) , (0, 2, 0, 0) , (0, 1, 1, 0) , (0, 1, 0, 1) , (0, 0, 1, 1)

and is not M-convex: for α = (1, 1, 0, 0) and β = (0, 0, 1, 1) we have α0 > β0 and there is
no j such that βj > αj and α− e0 + ej , β − ej + e0 are both in S. This polynomial is also
not sectional log-concave: setting t0 = 4u, t1 = u, t2 = v, t3 = v gives 5u2 + 2uv + v2, and
22 6≥ 5 · 1.

By Proposition 2.8, the numerator is not the de-homogenization of a covolume polyno-
mial. y

Since the homogenization of the polynomial P from Example 3.12 is not M-convex, it also
follows that it is not Lorentzian and neither is its normalization. In fact, the following simple
example shows that the numerator of ζI is not necessarily Lorentzian before normalization
even in the univariate (i.e., ` = 1) case. (The Segre zeta function (3.4) in Example 3.7 also
provides an example.)

Example 3.13. For any n, let Z ⊆ Pn consist of a hyperplane Pn−1 with an embedded com-
ponent along the transversal intersection of two smooth quadric hypersurfaces in this hyper-
plane. More precisely, let Z be the subscheme of Pn defined by the ideal I ⊆ k[x0, . . . , xn]
generated by (x2

0, x0Q1, x0Q2), where Q1 and Q2 are general homogeneous quadratic poly-
nomials. The Segre class of Z may be computed by residual intersection, and this yields

ζI(t1) =
t1 + 7t21 + 18t31

(1 + 2t1)(1 + 3t2)2
.

The sequence 1, 7, 18 is not ultra-log-concave, so the homogenization

t20t1 + 7t0t
2
1 + 18t31

is not Lorentzian. The same sequence is log-concave (that is, the normalization of the
polynomial is Lorentzian). y

It would be interesting to establish to what extent the irreducibility hypothesis in Theo-
rem 3.6 can be weakened.

Question 2. For what subschemes of a product of projective spaces is the numerator of ζI
necessarily sectional log-concave?

B. Story [Sto23] has verified that the numerator of ζI is log-concave for several families
of subschemes Z ⊆ Pn (that is, the ` = 1 case) not satisfying any a priori irreducibility
condition.

4. Adjoint polynomials

Our main motivation in establishing Theorems 3.5 and 3.6 is the general study of Segre
classes: constraints on the possible numerators of Segre zeta functions translate into con-
straints on what classes can be Segre classes of subschemes of e.g., projective space, thus
may be an aid in their computation. In this section we provide an alternative motivation
for this work, by interpreting Theorem 3.5 in the special case of monomial ideals. There
is a connection between Segre zeta functions of monomial ideals and adjoint polynomials,
first noted by Kathlén Kohn and Kristian Ranestad ([KR20, Proposition 1]). Kohn and
Ranestad focused on the numerator of ζI . We recover an analogous result for the numerator
of 1 − ζI , with the advantage that the corresponding polytopal object is convex. In short,
we will prove that adjoint polynomials of certain convex polytopes are necessarily covolume
polynomials; in particular, they are M-convex and sectionally log-concave.
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Following Joe Warren ([War96]), we consider polyhedral cones, that is, convex hulls of
finite sets of rays emanating from the origin in an R-vector space V . For a set of nonzero
vectors S ∈ V , we will denote by PS the convex polyhedral cone obtained by taking the
convex hull of the rays through the vectors v ∈ S.

For example, one may consider PS for S the set of vertices of a convex polytope embedded
in a hyperplane x0 = 1. It is convenient to think of polyhedral cones as a ‘projective’ version
of polytopes.

We will denote by V (P) a set of vectors spanning the vertex rays of P. Each such
vector is determined up to the choice of a positive real scalar. We may take V (PS) to be
a subset of S.

A triangulation of a polyhedral cone P of dimension d is a partition of P into a collection
of d-dimensional simplicial cones whose vertex rays are subsets of the rays of P and such
that the intersections of any two simplicial cones are faces of both.

Definition 4.1. ([War96]) Let P be a polyhedral cone in R`+1 and let T (P) be a trian-
gulation of P. We define the adjoint polynomial of P to be

(4.1) AP(t0, . . . , t`) =
∑

σ∈T (P)

Vol(σ)
∏

(v0,...,v`)∈V (P)rV (σ)

(v0t0 + · · ·+ v`t`) .

(This definition is independent of the chosen triangulation.) y

The quantity Vol(σ) in (4.1) is the absolute value of the determinant of the matrix whose
entries are the coordinates of the vertices of the simplicial cone σ. It should be viewed as
the volume of σ, up to a normalization factor.

The adjoint polynomial in Definition 4.1 is determined by P up to a positive real scalar
factor: replacing a vertex v of P by a multiple λv with λ ∈ R>0 has the effect of multiplying
each summand of AP(t) by λ, since this either multiplies by λ a column of the determinant
computing Vol(σ) or exactly one of the other factors. We could fix this factor, for example
by requiring all vertices to have length 1, or by requiring the non-coordinate vertices to lie
on the hyperplane {a0 = 1}, but no such choice is necessary for what follows.

The independence of the definition of AP(t) on the choice of a triangulation is proved
in [War96, Theorem 4]; also see Remark 4.7.

The adjoint polynomial AP(t) of a polyhedral cone P in R`+1 is a homogeneous polyno-
mial of degree |V (P)|−`−1 ([War96, Theorem 1]). Note that the coefficients of an adjoint
polynomial are not necessarily nonnegative.

Example 4.2. The adjoint polynomial for the cone PS ⊆ R3 for S = {(1, 0, 0), (1,−1, 0),
(1, 0,−1), (1,−1,−1)} (the vertices of a square in the hyperplane x0 = 1) is APS

(t) =
2t0 − t1 − t2. y

As we are interested in studying Lorentzian properties of adjoint polynomials, it is natural
to impose a condition guaranteeing that the coefficients are nonnegative. The most natural
such condition is that the spanning set S should be contained in the nonnegative orthant.
We will further require that the cone should contain all but one coordinate rays, that is,
that the cone shares a face with the nonnegative orthant. A mild generalization of this
condition will be considered in Corollary 4.10.

Theorem 4.3. Let S ⊆ R`+1
≥0 be a finite set including the coordinate vectors e1, . . . , e`. Then

APS
(t0, . . . , t`) is a covolume polynomial. In particular, APS

is M-convex and sectional log-
concave, and for all integers n0, . . . , n` ≥ 0 such that

(4.2) un0
0 · · ·u

n`
` APS

(
1

u0
, . . . ,

1

u`

)
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is a polynomial, the normalization of this polynomial is Lorentzian.

Example 4.4. Let P be the polyhedral cone with vertex rays spanned by the vectors

v1 := (1, 1,
√

2, 0, 0), v2 := (1,
√

2, 1, 0, 0), v3 := (1, 0, 0, 1, 0), v4 := (1, 0, 0, 0, 1)

as well as the coordinate directions

e1 = (0, 1, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 1, 0, 0, 0), e4 = (0, 1, 0, 0, 0) .

A triangulation of P consists of the four simplices

〈v1, v2, v3, v4, e1〉, 〈v1, v3, v4, e1, e2〉, 〈v1, v2, e2, e1, e4〉, 〈v3, e1, e2, e3, e4〉 ,

and the adjoint polynomial of P is

AP(t0, . . . , t4) = t30 + (1 +
√

2)t1t
2
0 + (1 +

√
2)t2t

2
0 + t3t

2
0 + t4t

2
0 +
√

2t21t0 + 3t0t1t2

+ (1 +
√

2)t1t3t0 + (1 +
√

2)t4t1t0 +
√

2t22t0 + (1 +
√

2)t2t3t0 + (1 +
√

2)t4t2t0 + t3t4t0

+
√

2t21t3 +
√

2t21t4 + 3t1t2t3 + 3t1t2t4 +
√

2t1t3t4 +
√

2t22t3 +
√

2t22t4 + t2t3t4
√

2 .

The 21 terms in its support (of 35 in the simplex of tuples (a0, . . . , a4) of nonnegative
integers with

∑
ai = 3) form an M-convex set, as prescribed by Theorem 4.3. In fact, the

normalization of AP is Lorentzian (the polynomial itself is not Lorentzian). The reader
may verify that the normalization of

u3
0u

2
1u

2
2u3u4 · AP

(
1

u0
,

1

u1
,

1

u2
,

1

u3
,

1

u4

)
,

a homogeneous degree-6 polynomial, is Lorentzian as stated in Theorem 4.3. y

Theorem 4.3 is proved by relating the adjoint polynomial to a Segre zeta function. As
mentioned at the beginning of this section, Kathlén Kohn and Kristian Ranestad express
such a relation in [KR20, Proposition 1]; their result deals with ζI , and correspondingly
with not necessarily convex regions. We adopt the context of convex polyhedral cones and
focus on the function 1 − ζI . For these considerations, I is an ideal generated by a set of
monomials.

Precisely, let F be a finite set of vectors (v1, . . . , v`) ∈ Z`≥0. We can associate with F two
objects:

• The convex polyhedral cone PS in R`+1 spanned by the set

(4.3) S = {v := (1, v1, . . . , v`) | (v1, . . . , v`) ∈ F} ∪ {e1, . . . , e`} .

• The ideal I ⊆ k[x1, . . . , x`] generated by the monomials

xv11 · · ·x
v`
` , with (v1, . . . , v`) ∈ F

and the corresponding Segre zeta function ζI(t1, . . . , t`).

Proposition 4.5. With notation as above, let v0, . . . , vr ∈ V (PS) be the vertex ray vectors
other than e1, . . . , e`. Then

1− ζI(t1, . . . , t`) =
APS

(t0, . . . , t`)∏r
i=0 vi · (t0, . . . , t`)

∣∣∣∣
t0=1

.

Remark 4.6. In other words, the adjoint polynomial APS
is the degree-r homogenization

of the polynomial R appearing in Theorem 3.5. y
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Proof. The Segre class s(Z,W ) of a monomial subscheme of a variety W may be expressed
as an integral. Explicitly, let X1, . . . , X` be hypersurfaces of a variety W meeting with
normal crossings; let Z be the closed subscheme cut out by monomials in the Xi with
classes v1X1 + · · · + v`X` as (v1, . . . , v`) ∈ Z`≥0 ranges over a finite set F ; and let N ⊆ R`

be the complement in the nonnegative orthant R`≥0 of the convex hull of the translates of

the nonnegative orthant by the points in F . Then, using coordinates (a1, . . . , a`) for R`, we
have ([Alu16, Theorem 1.1])

s(Z,W ) =

∫
N

`!X1 · · ·X` da1 · · · da`
(1 +X1a1 + · · ·+X`a`)`+1

.

(The result in [Alu16] holds in a somewhat more general setting, but this won’t play a role
here.) This should be interpreted by computing the integral on the right-hand side as a
rational function in the parameters Xj , then expanding this function as a power series, and
evaluating each monomial Xa1

1 · · ·X
a`
` as a class in A∗(Z); see [Alu16] for a more extensive

discussion. For instance, monomials Xa1
1 · · ·X

a`
` with

∑
j aj > dimW evaluate to 0, so that

the integral may be written as a sum of only finitely many terms for any given Z and W .
If N is the nonnegative orthant itself, the integral evaluates to 1. Therefore,

(4.4) [W ]− ι∗s(Z,W ) =

∫
R`≥0rN

`!X1 · · ·X` da1 · · · da`
(1 +X1a1 + · · ·+X`a`)`+1

,

where ι : Z → W is the inclusion. Adopting the notation introduced in (4.3) and viewing
the polytope PS in R`+1, with coordinates (a0, . . . , a`),

R`≥0 rN = {a0 = 1} ∩PS .

Applying (4.4) with W = Pn1×· · ·×Pn` , nj � 0, and Xj = the hypersurface in W obtained
by restricting the j-th factor to a hyperplane, we get

(4.5) 1− ζI(t1, . . . , t`) =

∫
{a0=1}∩PS

`! t1 · · · t` da1 · · · da`
(1 + t1a1 + · · ·+ t`a`)`+1

.

Now let T (PS) be a triangulation of PS , as in the Definition 4.1. According to [Alu16, §2],
a simplex with vertices v0, . . . , vd and ei1 , . . . , ei`−d , where vj correspond to vectors in F ,
contributes

Vol(σ) t1 · · · t`∏d
j=0(1 + vj1t1 + · · ·+ vj`t`)

∏`−d
j=1 tj

=
Vol(σ) t1 · · · t`∏d

j=0(vj · t)
∏`−d
j=1(ej · t)

∣∣∣∣∣
t0=1

=
Vol(σ) t1 · · · t`∏
v∈V (σ)(v · t)

∣∣∣∣∣
t0=1

to the integral in (4.5), and therefore

(4.6)

1− ζI(t1, . . . , t`) =

∫
{a0=1}∩PS

`! t1 · · · t` da1 · · · da`
(1 + t1a1 + · · ·+ t`a`)`+1

=

∑
σ∈T (PS) Vol(σ)

∏
v∈V (PS)rV (σ)(v · t) t1 · · · t`∏

v∈V (PS)(v · t)

∣∣∣∣∣
t0=1

=
APS

(t0, . . . , t`) t1 · · · t`∏
v∈V (PS)(v · t)

∣∣∣∣∣
t0=1

=
APS

(t0, . . . , t`)∏r
i=0(vi · t)

∣∣∣∣
t0=1

.

as stated. �
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Remark 4.7. As an aside, the statement of Proposition 4.5 implies that the definition of ad-
joint polynomial is independent of the triangulation (cf. [War96, Theorem 4]), for the convex
polyhedral cones considered here. In fact, the integral expression for the adjoint polynomial
worked out in (4.6) extends to arbitrary polyhedral cones (but not, to our knowledge, the
interpretation in terms of a Segre zeta function), and this implies the independence on the
choice of triangulation in general, providing an alternative to [War96, Theorem 4]. y

Proof of Theorem 4.3. The adjoint polynomial of a polyhedral cone depends continuously
on the coordinates of vectors spanning its vertex rays, so we may express it as a limit of
adjoint polynomials of polyhedral cones whose vertex rays contain vectors with rational
components. By definitions, limits of covolume polynomials are covolume polynomials, so
we are reduced to the case of polyhedral cones with rational vertex rays. In fact, by choosing
a large enough integer d, we may assume that all non-coordinate vectors in S are of the
form (d, v1, . . . , v`) ∈ Z`+1

≥0 . We are then reduced to proving the assertion of Theorem 4.3
for polyhedral cones spanned by a set S consisting of e1, . . . , e` and of vectors of this type.

For this, let

S′ = {e1, . . . , e`} ∪ {(1, v1, . . . , v`) | (d, v1, . . . , v`) ∈ S} .

The set S′ is of the form considered in Proposition 4.5. It follows that APS′
is the homog-

enization of the numerator of 1− ζI for a suitable (monomial) ideal I, cf. Remark 4.6. By
Theorem 3.5, APS′

is a covolume polynomial. Now Definition 4.1 implies that

APS
(t0, t1, . . . , t`) = APS′

(dt0, t1, . . . , t`) ;

therefore, APS
is obtained from a covolume polynomial by a nonnegative change of coordi-

nates. By Theorem 2.12 we can conclude that APS
is a covolume polynomial, as needed. �

We do not know whether the adjoint polynomials considered in Theorem 4.3 are also
necessarily Lorentzian after normalization. An affirmative answer to Question 1 would
imply that this is the case.

We also do not know whether Theorem 4.3 extends to all convex polyhedral cones con-
tained in the nonnegative orthant. The hypothesis of convexity cannot be removed, in the
sense that there are non-convex unions of polyhedral cones contained in the nonnegative
orthant and whose adjoint polynomial is not M-convex, hence not a covolume polynomial.

Example 4.8. Let v1 = (1, 1, 1, 0), v2 = (1, 1, 0, 1), along with the coordinate vectors e0 =
(1, 0, 0, 0), . . . , e3 = (0, 0, 0, 1) in R4. The adjoint polynomial of the union of the three
simplicial cones with vertex rays e0e1v1v2, e0v1v2e3, e0v1e2e3 is

t0t1 + t21 + t1t2 + t1t3 + t2t3

as the reader may verify. This polynomial is not M-convex or sectional log-concave. (This
example is the polyhedral version of Example 3.12; see [KR20, Proposition 1].) y

On the other hand, Theorem 4.3 extends easily to the following class of polyhedral cones.

Definition 4.9. We say that a convex polyhedral cone is orthantal if it shares a face with
a simplex enclosing it and contained in the nonnegative orthant. y

The intersection of an orthantal polyhedral cone with the hyperplane a0 = 1 will be a
convex polytope enclosed in a simplex with which it shares a face, and we are assuming
that this simplex is contained in the nonnegative orthant.
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The polyhedral cones considered in Theorem 4.3 are orthantal, with the simplex equal to
the nonnegative orthant itself.

Corollary 4.10. The adjoint polynomial of a convex orthantal polyhedral cone is a covolume
polynomial. Therefore, it is M-convex, sectional log-concave, and the normalizations of the
corresponding polynomials (4.2) are Lorentzian.

We need the following elementary fact recording the effect of a linear transformation on
an adjoint polynomial. Let A = (aij), 0 ≤ i, j ≤ ` be a nonsingular matrix and let P be

any polyhedral cone in R`+1. Denote by AP the polyhedral cone with vertices A · v for
v ∈ V (P). Denote by At the transpose of A.

Lemma 4.11.

AAP(t) = | det(A)| · AP

(
At(t)

)
.

Remark 4.12. Since the adjoint polynomial is only defined up to a positive factor, the term
|det(A)| in Lemma 4.11 is actually superfluous. y

Proof. By definition,

AAP(t) =
∑

σ∈T (AP)

Vol(σ)
∏

(w0,...,w`)∈V (AP)rV (σ)

(w0t0 + · · ·+ w`t`)

where T (AP) denotes a triangulation of AP. A triangulation of AP can be obtained by
mapping by A the simplices of a triangulation for P; the volume of the simplices in the
triangulation is multiplied by det(A). Therefore

AAP(X) =
∑

σ∈T (P)

|det(A)|Vol(σ)
∏

v=(v0,...,v`)∈V (P)rV (σ)

((Av)0t0 + · · ·+ (Av)`t`)

= |det(A)|
∑

σ∈T (P)

Vol(σ)
∏

(v0,...,v`)∈V (P)rV (σ)

∑̀
i=0

∑̀
j=0

aijvjti


= |det(A)|

∑
σ∈T (P)

Vol(σ)
∏

(v0,...,v`)∈V (P)rV (σ)

(
v0
∑̀
i=0

ai0ti + · · ·+ v`
∑̀
i=0

ainti

)

with the stated consequence. �

Proof of Corollary 4.10. Let P be an orthantal polynomial. Let (a0j , . . . , a`j), j = 0, . . . , `,

be the vectors in V (Σ) for the simplex Σ containing P and contained in R`+1
≥0 , with
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(a0j , . . . , a`j), j = 1, . . . , ` the vertices of the simplicial face of P in common with Σ.
Let

A =


a00 a01 · · · a0`

a10 a11 · · · a1`
...

...
. . .

...
a`0 a`1 · · · a``

 .

Since Σ is a full dimensional simplex contained in R`+1
≥0 , A has nonnegative entries and is

nonsingular. By Lemma 4.11,

AP(t) = AA−1P

(∑̀
i=0

ai0ti, . . . ,
∑̀
i=0

ai`ti

)
.

The chosen simplicial face of the polyhedral cone A−1P has vertices along e1, . . . , e`, while
the other vertex of the enclosing simplex is mapped to e0. Therefore A−1P is enclosed in
the simplex with vertices e0, . . . , e`, that is, the nonnegative orthant.

By Theorem 4.3, AA−1P is a covolume polynomial. Since AP is obtained from AA−1P

by a nonnegative change of variables, Theorem 2.12 implies that AP is also a covolume
polynomial, completing the proof. �
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[Deb96] Olivier Debarre. Théorèmes de connexité pour les produits d’espaces projectifs et les grassman-
niennes. Amer. J. Math., 118(6):1347–1367, 1996.

[Ful84] William Fulton. Intersection theory. Springer-Verlag, Berlin, 1984.
[Gae20] Christian Gaetz. Canonical forms of polytopes from adjoints. MIT positive geometries learning

seminar, 2020.
[Gur09] Leonid Gurvits. On multivariate Newton-like inequalities. In Advances in combinatorial mathe-

matics, pages 61–78. Springer, Berlin, 2009.
[HMMS22] June Huh, Jacob P. Matherne, Karola Mészáros, and Avery St. Dizier. Logarithmic concavity
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