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x0. Introdu
tion

The group PGL(2) of linear transformations of the proje
tive line P

1

a
ts natu-

rally on the set of 
on�gurations of points on the line. We 
all ea
h 
on�guration

of d points (some of whi
h may 
oin
ide in the same point on the line) a `d-tuple'

of points; for a given d, the set of d-tuples of points in P

1

forms a dimension-d

proje
tive spa
e P

d

. In this note we are 
on
erned with the orbits of this a
tion of

PGL(2) on P

d

. The 
losure of ea
h orbit is a proje
tive subvariety of P

d

of whi
h

we determine the degree (x1), the `boundary'{i.e., the 
omplement of an orbit in

its 
losure{(x2), and the multipli
ity at points of the boundary (x3). These results

are used to provide a 
omplete 
lassi�
ation of the non-singular orbit 
losures, and


riteria for an orbit 
losure to be non-singular in 
odimension 1 (x4).

Although seemingly natural obje
ts of study, we didn't �nd a lot of work on

these orbits in the literature. Some of the results presented here appear also in

[Mukai-Umemura℄, in one form or another; and the `
ombinatorial' 
omputation

of the degree that we will sket
h in this introdu
tion goes ba
k to [Enriques-

Fano℄. But for example Mukai and Umemura establish the non-singularity of the

orbit 
losures of a spe
i�
 6-tuple and a spe
i�
 12-tuple by an ad-ho
 
oordinate


omputation. We hope to provide here a more unifying approa
h. Lu
y Moser-

Jauslin has developed te
hniques for the study of embeddings of SL(2) and PGL(2),

and the degree of the orbits 
an be 
omputed within her framework ([Moser℄, x8).

Our main motivation in this study is to prepare the ground for the mu
h ri
her


ase of the a
tion of PGL(3) on spa
es parametrizing plane 
urves. The approa
h

we use in this note is sus
eptible to be employed in higher dimensions, although

the te
hni
al diÆ
ulties mount very rapidly. The reader wishing to approa
h the

PGL(3) 
ase (see [AluÆ-Faber℄) will �nd here a sample of the essential te
hniques.

The main idea for the degree and multipli
ity 
omputations is the following: for

ea
h given d-tuple of points on P

1

, build a smooth variety

e

V and a proper map from

this to the 
losure of the orbit of the d-tuple. In fa
t this

e

V will be a 
ompa
ti�
ation

of PGL(2), determined by the d-tuple, whi
h we obtain by a suitable blow-up of

the P

3

of 2 � 2 (homogeneous) matri
es. After the 
onstru
tion, we redu
e the


al
ulations to 
al
ulations on

e

V , where some interse
tion 
al
ulus (parti
ularly,

the formalism of Segre 
lasses of [Fulton℄) allows us to perform them. The blow-up


onstru
tion also allows us to determine expli
itly the boundary of the orbit.

The 
lassi�
ation of smooth orbit 
losures follows from the multipli
ity 
ompu-

tations of x3; we use the 
lassi�
ation of �nite subgroups of PGL(2), whi
h 
an be

found for example in [Weber℄.

We now sket
h here the easy `
ombinatorial' 
omputation of the degree of the

orbit 
losure of a d-tuple 
onsisting of d � 3 distin
t points. In this 
ase the orbit


losure is 3-dimensional, so its degree may be 
omputed as the interse
tion produ
t

with three hyperplanes of P

d

.



For the hyperplanes, take 3 distin
t `point-
onditions', i.e., hyperplanes in P

d


onsisting of the d-tuples that 
ontain a 
ertain given point. One 
he
ks easily

that the interse
tion multipli
ity of the orbit 
losure and three point-
onditions

(determined by three distin
t points p

1

, p

2

, p

3

) at a d-tuple equals the produ
t of

the multipli
ities of p

1

, p

2

and p

3

in the d-tuple: so the interse
tion is automati
ally

transversal if the d-tuple 
onsists of d distin
t points. Therefore, in this 
ase the

degree is just the number of points of interse
tion: the 
omputation then 
omes

down to 
ounting the number of elements of PGL(2) that send a given d-tuple

(
onsisting of d distin
t points) to a d-tuple that 
ontains 3 (distin
t) given points.

Sin
e an element of PGL(2) is uniquely determined by pres
ribing the images of 3

distin
t points, one sees that the answer must be

d(d� 1)(d� 2):

To get the degree of the orbit 
losure, we have to divide this number by the number

of elements of PGL(2) sending a d-tuple to itself: i.e., the order of the stabilizer of

the d-tuple. For example:

(1) The stabilizer of a 3-tuple 
onsisting of 3 distin
t points is S

3

, so the degree

of the orbit 
losure is 1 (the orbit 
losure is P

3

).

(2) A general 4-tuple has stabilizer C

2

�C

2

, so the degree of the orbit 
losure is

4�3�2

4

= 6. The 4-tuples with j = 0 (resp. 1728) have stabilizers A

4

(resp. D

4

),

so that the orbit 
losure has degree 2 (resp. 3).

(3) For d � 5, a general d-tuple has trivial stabilizer, so the degree of the orbit


losure is d(d� 1)(d� 2).

It would be easy to apply the same pro
edure to examine the 
ase in whi
h

some points of the d-tuples appear with multipli
ity. However, we don't see how

to obtain by this approa
h a uni�ed treatment of all 
ases; more importantly, this

approa
h wouldn't help us to study the singularity of these orbit 
losures, and more

important still we don't see how this kind of 
omputations 
ould be interpreted to

atta
k higher dimensional 
ases su
h as the one dealt with in [AluÆ-Faber℄.
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x1. The predegree of the orbit 
losure.

We work over an algebrai
ally 
losed �eld of 
hara
teristi
 0.

The �rst question we 
onsider is the 
omputation of the degree of the 
losure

(in P

d

) of the orbit of a d-tuple under the a
tion of PGL(2). Here we think of P

d

as the spa
e parametrizing homogeneous forms of degree d on P

1

, and ea
h point

of this spa
e is identi�ed with the d-tuple of zeros of the form 
orresponding to it.

Also, we will denote by s the number of distin
t points in the d-tuple. As mentioned

in the introdu
tion, the main ingredient in the 
omputation is the 
onstru
tion for

ea
h d-tuple of a non-singular variety dominating the orbit 
losure.

First we observe this is not ne
essary if the whole d-tuple is 
on
entrated in one

point (that is, if s = 1). We'll refer to this parti
ular d-tuple as to the `d-fold point',

and the reader should have no diÆ
ulties in 
he
king that the orbit of the d-fold

point (that is, the set of all su
h d-tuples) is simply the degree-d rational normal


urve in P

d

.
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Next, let's 
onsider the 
ase when the d-tuple is distributed among 2 distin
t

points, that is one r-fold point and one distin
t (d � r)-fold point. Again, in this


ase the reader will see immediately that the orbit 
onsists of all d-tuples with the

same multipli
ity data.

Proposition 1.1. The orbit 
losures of d-tuples 
onsisting of an r-fold point and

a (d � r)-fold (distin
t) point are surfa
es in P

d

, of degree: 2r(d � r) if r 6= d=2,

r(d� r) = r

2

if r = d=2.

Proof: For this, we dominate the orbit 
losure with P

1

� P

1

, using the map P

1

�

P

1

�! P

d

de�ned by

((a

0

: a

1

); (b

0

: b

1

)) 7! (a

1

x� a

0

y)

r

(b

1

x� b

0

y)

d�r

:

it is 
lear that this map is �nite, and that the 
omplement of the diagonal in P

1

�P

1

maps onto the orbit we are 
onsidering. Also, it is 
lear that the degree of this map

is 1 if d 6= 2r, and 2 if d = 2r: so to get the statement we just need to 
he
k that

the self-interse
tion of the pull-ba
k of the hyperplane 
lass from P

d

to P

1

� P

1

via

the above map is 2r(d�r). This is straightforward: if h

1

, h

2

denote the hyperplane


lass of the fa
tors, the pull-ba
k of the hyperplane 
lass from P

d

is (rh

1

+(d�r)h

2

),

and

Z

P

1

�P

1

(rh

1

+ (d� r)h

2

)

2

=

Z

P

1

�P

1

2r(d� r)h

1

h

2

= 2r(d� r) :

(Here and in the following

R

will denote `degree' in the sense of [Fulton℄)

It's worth observing that if r = d=2, then the orbit 
losure is a (regular) proje
tion

to P

d

of the r-th Veronese embedding of P

2

|the degree is indeed r

2

in this 
ase,

as it should be. For example, for r = 2 this is the (non-singular) proje
tion of the

Veronese surfa
e in P

5

to P

4

.

Now we move to the most interesting 
ase, that of a d-tuple distributed in s � 3

points. In this 
ase the orbit and its 
losure have dimension 3. In order to 
onstru
t

a non-singular threefold dominating the orbit 
losure of a given d-tuple, we resolve

the indetermina
ies of a rational map asso
iated naturally to the given d-tuple.

Choose 
oordinates (x : y) in P

1

, and let C stand for a homogeneous form in

(x : y) of degree d � 3, and for the d-tuple of points on P

1


orresponding to it. The

PGL(2)-orbit of C in P

d

is the image of the map


 : PGL(2)! P

d

sending � 2 PGL(2) to the form C Æ �. Observe that this map is �nite (if at

least three points of the d-tuple are distin
t), and its degree equals the order of the

stabilizer of C. This map determines a rational map from the P

3

of 2� 2 matri
es

to P

d

, whi
h we also denote by 
.

Now we will resolve this rational map: i.e., we will 
onstru
t a variety

e

V �lling a


ommutative diagram

PGL(2) �

e

V

~


����! P

d










�

?

?

y










PGL(2) � P

3




- - - -

>

P

d

3



The image of ~
 in P

d

is pre
isely the orbit 
losure. Thus the degree of the

orbit 
losure 
an be found by 
omputing the third power of the pull-ba
k of the

hyperplane 
lass of P

d

to

e

V , and dividing by the order of the stabilizer of C. We


all `predegree' the produ
t of the degree by the order of the stabilizer: sin
e the

d-tuple is supported on at least 3 points, this term will be synonymous for the 3-fold

self-interse
tion of the pull-ba
k of the hyperplane from P

d

.

The base lo
us of 
 : P

3

- - -

>

P

d


onsists of the matri
es � for whi
h the form

C Æ � is identi
ally zero. This happens exa
tly when � is a rank-1 matrix with

image a point of the d-tuple C. The base lo
us of 
 is therefore supported on a

�nite number of `parallel' lines in the (non-singular) quadri
 of rank-1 matri
es.

There are as many distin
t lines as there are distin
t points in the d-tuple C.

Proposition 1.2. A variety

e

V as above 
an be obtained by blowing up P

3

along

the support of the base lo
us of 
.

Proof: To see this, 
all `point-
onditions in P

3

' the inverse image of the point-


onditions of P

d

(de�ned above). The map 
 is then the map de�ned by the linear

system generated by the point-
onditions in P

3

, and therefore the base lo
us of 
 is

a
tually 
ut out by the point-
onditions. Now we argue that a point-
ondition in

P

3

is a degree-d hypersurfa
e 
onsisting of nothing but a 
olle
tion of hyperplanes,

one for ea
h point in the d-tuple C, ea
h appearing with the same multipli
ity as

the 
orresponding point appears in C. This is immediate: give 
oordinates

�

p

0

p

1

p

2

p

3

�

to the P

3

of matri
es; and suppose C is given by the equation

F (x : y) = 0 :

Then the point-
ondition 
orresponding to e.g. the point (1 : 0) has equation

F (p

0

: p

2

) = 0 ;

so is indeed a union of hyperplanes as argued.

Let

e

V be the blow-up of P

3

along the lines supporting the base lo
us of 
. The

(a priori rational) map ~
 making the above diagram 
ommute is then de�ned by the

linear system on

e

V generated by the proper transforms of the point-
onditions: so

the base lo
us of ~
 is 
ut out by the proper transforms in

e

V of the point-
onditions.

But sin
e the point-
onditions are supported on unions of hyperplanes, they ne
es-

sarily interse
t transversally in P

3

along the base lo
us of 
: therefore their inter-

se
tion in

e

V is empty, and we 
an 
on
lude that the map ~
 :

e

V �! P

d

is indeed a

morphism.

Now 
omputing the 3-fold self-interse
tion of the 
lass of the proper transform

of a point-
ondition (i.e., the predegree of the orbit 
losure) is a straightforward

interse
tion 
al
ulus exer
ise. We use [AluÆ-Faber℄, Proposition 3.2: the self-

interse
tion is 
omputed as the self-interse
tion of the point-
ondition in P

3

(i.e.,
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d

3

) minus 
ontributions 
oming from ea
h 
omponent of the base lo
us of 
. The

formula gives

predegree = d

3

�

s

X

i=1

Z

L

i

(m

i

+ dh)

3

1 + 2h

;

where the summation runs over the distin
t points p

1

; : : : ; p

s

of the d-tuple, L

i

is

the line in the base lo
us 
orresponding to p

i

, m

i

is the multipli
ity of p

i

in the

d-tuple (thus the multipli
ity of the point-
onditions along L

i

), and h denotes the

hyperplane 
lass in L

i

. The degree is 
omputed by taking the 
oeÆ
ient of h in the

expression under

R

. Doing this gives:

Proposition 1.3. For d � 3, the predegree of the orbit 
losure of a d-tuple is

d

3

� 3d(

s

X

i=1

m

2

i

) + 2(

s

X

i=1

m

3

i

) :

So the predegree of a d-tuple C 
an be written in terms of just d and two numbers,

ea
h of whi
h is a sum of `lo
al 
ontributions' given by ea
h point of C. For example,

if the d-tuple 
onsists of d� r simple points and one r-fold point, then

s

X

i=1

m

2

i

= r

2

+ d� r;

s

X

i=1

m

3

i

= r

3

+ d� r;

so

predegree = d

3

� 3d(r

2

+ d� r) + 2(r

3

+ d� r)

= (d� r)(d� r � 1)(d+ 2r � 2) :

As seen in [AluÆ-Faber℄, this general feature of the predegree (being determined

by a few numbers re
ording lo
al data) is preserved in the PGL(3) 
ase, at least for

smooth 
urves.

For s = 1 or 2, the formula of this proposition gives 0: whi
h re
e
ts the fa
t

that in these 
ases the orbits have dimension < 3. We also remark that the P

1

�P

1

used to dominate the orbit 
losure in the 
ase s = 2 in Proposition (1.1) 
an also be

seen as one 
omponent of the ex
eptional divisor of the same blow-up 
onstru
tion

used for the 
ase s � 3.

x2. The boundary of an orbit 
losure

We turn now to the question of determining the `boundary' of the orbit of a d-

tuple C, by whi
h we mean the 
omplement of the orbit in its 
losure. Observe that

the boundary of an orbit is ne
essarily itself the union of orbits, and has dimension

� 2. Sin
e the orbit of a d-tuple has dimension 3 as soon as the d-tuple 
onsists

of at least 3 distin
t points, we 
an 
on
lude right away that the boundary of the

orbit of a given d-tuple must 
onsist of a union of orbits of d-tuples 
on
entrated

in at most two points. We will show:
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Proposition 2.1. The boundary of the (3-dimensional) orbit of C is the union of

the 1-dimensional orbit of x

d

and of those 2-dimensional orbits of x

r

y

d�r

for whi
h

r is the multipli
ity of a point of C.

Proof: We use again the variety

e

V 
onstru
ted in x1. The rank-1 matri
es not

in the base lo
us have image in the orbit of x

d

; so we only have to determine the

image in P

d

of the 
omponents of the ex
eptional divisor in

e

V . Give 
oordinates

�

p

0

p

1

p

2

p

3

�

to the P

3

of matri
es; the lo
us of rank-1 matri
es is given by p

0

p

3

� p

1

p

2

= 0.

Suppose the d-tuple C has equation a

0

x

d

+a

1

x

d�1

y+ � � �+a

d

y

d

= 0, 
orresponding

to the point (a

0

: a

1

: � � � : a

d

) 2 P

d

(with obvious 
hoi
e of 
oordinates there).

Assume that (1 : 0) is a point of multipli
ity r � 1 in C, i.e., a

0

= a

1

= � � � =

a

r�1

= 0; a

r

6= 0. Then p

2

= p

3

= 0 is a 
omponent of the base lo
us of 
 and we


an study

e

V lo
ally by blowing up P

3

along p

2

= p

3

= 0.

On the aÆne pie
e p

0

= 1 we have 
oordinates (p

1

; p

2

; p

3

). On an aÆne pie
e of

the blow-up, 
oordinates (q

1

; q

2

; q

3

) are given by

8

>

<

>

:

p

1

= q

1

p

2

= q

2

p

3

= q

2

q

3

The map indu
ed by 
 is then given by

(q

1

; q

2

; q

3

) 7! (b

0

: b

1

: � � � : b

d

)

with

b

0

x

d

+ � � �+ b

d

y

d

� a

r

(x+ q

1

y)

d�r

(q

2

x+ q

2

q

3

y)

r

+ � � �+ a

d

(q

2

x+ q

2

q

3

y)

d

:

Note that we 
an fa
tor out q

2

r

from the last expression, so that

b

0

x

d

+ � � �+ b

d

y

d

� a

r

(x+ q

1

y)

d�r

(x+ q

3

y)

r

+ a

r+1

q

2

(x+ q

1

y)

d�r�1

(x+ q

3

y)

r+1

+ � � �+ a

d

q

d�r

2

(x+ q

3

y)

d

:

The ex
eptional divisor is given here by q

2

= 0. The restri
tion of the map ~
 :

e

V �!

P

d

to the 
omponent of the ex
eptional divisor of

e

V 
orresponding to the r-fold

point is then given by restri
ting the last expression to q

2

= 0: we get d-tuples


orresponding to points

(*) b

0

x

d

+ � � �+ b

d

y

d

� a

r

(x+ q

1

y)

d�r

(x+ q

3

y)

r

:

we 
on
lude that the image of the ex
eptional divisor 
orresponding to a point in

C of multipli
ity r is the 
losure of the PGL(2)-orbit of x

d�r

y

r

. (The boundary of

this orbit is the orbit of x

d

.) The statement follows.
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x3. Multipli
ities.

We will now use the blow-up 
onstru
tion des
ribed in x1 to 
ompute the mul-

tipli
ity of the 
losure of an orbit along the orbits making up its boundary. For

s = 1 and s = 2; r = d=2 (notations as in x1) we have remarked that the orbit


losure is essentially a Veronese, so it is non-singular. To analyze the situation for

s = 2; r 6= d=2 and s � 3, we �rst need the following fa
t.

Identify P

d

with the spa
e of d-tuples of points on P

1

, by giving it 
oordinates

(a

0

: � � � : a

d

) and asso
iating with every A = (a

0

: � � � : a

d

) the d-tuple of zeros of

F

A

(x : y) = a

0

x

d

+ a

1

x

d�1

y + � � �+ a

d

y

d

. Then let H

A

(x : y) denote the Hessian

of this form with respe
t to x; y, a form itself of degree 2d � 4 in (x : y) for ea
h

given A. For a given (� : �) in P

1

, the equation H

A

(� : �) = 0 determines the

quadri
 of all d-tuples A whose Hessian vanishes at (� : �). We'll use freely a few

fa
ts about the Hessians, whose veri�
ation will generally be left to the reader; the

most important is the following, whi
h we want to highlight:

Lemma 3.1. The orbit of the d-fold point in P

d

is 
ut out s
heme-theoreti
ally by

the equations H

A

(� : �) = 0, (� : �) 2 P

1

.

Proof: Clearly the Hessian of x

d

is identi
ally zero. On the other hand, if the

Hessian of a form is identi
ally zero, then after a 
hange of 
oordinates a 
olumn

in the matrix of se
ond derivatives vanishes. Sin
e the 
hara
teristi
 of the ground

�eld is zero, the form is in the orbit of x

d

. To �nish the proof it suÆ
es to show that

the quadri
s H

A

(� : �) 
ut out the orbit at the d-tuple x

d

= 0. Now the tangent

spa
e to H

A

(� : �) at (1 : 0 : � � � : 0) is

d

X

i=0

i(i� 1)a

i

�

2d�i�2

�

i�2

= 0 ;

so the interse
tion of the tangent spa
es at (1 : � � � : 0) is given by a

2

= � � � = a

d

= 0,

the tangent spa
e to the orbit.

To evaluate the multipli
ity of the orbit 
losure of a d-tuple at points of its

boundary, we use the te
hniques of [Fulton℄, Chapter 4: the multipli
ity of a

variety Y along an irredu
ible subvariety X is the 
oeÆ
ient of [X℄ in the Segre


lass s(X;Y ) of X in Y ([Fulton℄, x4.3), and Segre 
lasses behave well with respe
t

to proper maps ([Fulton℄, x4.2). For ea
h 
omponent of the boundary of an orbit


losure, we'll pull-ba
k equations for the 
omponent (essentially provided by the

above lemma) to the varieties 
onstru
ted in the degree 
omputations. Computing

the relevant term in the Segre 
lass will be manageable on these varieties as they

are non-singular. A push-forward will then give the Segre 
lass in the orbit 
losure,

and 
ompute the multipli
ity.

The boundary of the orbit 
losure of a d-tuple supported on a pair of points


onsists just of the orbit of a d-fold point.

Proposition 3.2. (s = 2) If r 6= d=2, the orbit 
losure of a d-tuple 
onsisting of

one r-fold point and one (d� r)-fold point has multipli
ity 2 along its boundary. If

r = d=2, this orbit 
losure is non-singular.

Proof: Pull ba
k all equations H

A

(� : �) = 0 via the map P

1

�P

1

�! P

d


onsidered

in Proposition (1.1). With the notations of x1, H

A

(� : �) pulls ba
k to

(a

1

b

0

� a

0

b

1

)

2

(d� 1)(d� r)r(a

1

� � a

0

�)

2r�2

(b

1

� � b

0

�)

2(d�r)�2

;
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as (� : �) varies in P

1

we see that the equations of the orbit of the d-tuple pull

ba
k to the square of the equation of the diagonal in P

1

� P

1

. The diagonal maps

isomorphi
ally onto the orbit of the d-fold point, and the map from P

1

� P

1

to the

orbit 
losure has degree 1 if r 6= d=2: thus, pushing forward to P

d

, it follows that

the �rst term in the Segre 
lass of the orbit of the d-fold point in the orbit 
losure

is twi
e the 
lass of the orbit. The �rst assertion follows. If r = d=2, the map from

P

1

� P

1

to the orbit 
losure has degree 2: thus the �rst term in the Segre 
lass

is the orbit of the d-fold point, with 
oeÆ
ient 2=2 = 1. So the orbit 
losure is

non-singular in this 
ase, as already observed earlier.

s � 3. If the d-tuple 
onsists of at least 3 distin
t points, then its stabilizer in

PGL(2) is �nite, so its orbit 
losure is a threefold in P

d

. We have seen in x2 that the

boundary of the orbit of a d-tuple 
onsists of the union of the 1-dimensional orbit of

x

d

and the 2-dimensional orbits of x

r

y

d�r

, for all r that appear as the multipli
ity

of a point in the d-tuple.

We 
all `premultipli
ity' the produ
t of the multipli
ity of the orbit 
losure of a

d-tuple C (with s � 3) and the order of its stabilizer. Given C, 
onsider its Hessian

H

C

, this time spe
i�
ally as a degree-(2d � 4) form on P

1

, and thus as a (2d� 4)-

tuple determined by C. An important role is going to be played by the points of

this (2d� 4)-tuple that lie away from C. We state the results �rst:

Proposition 3.3. The premultipli
ity of the orbit 
losure of C along the orbit of

the d-fold point is

X

i

k

2

i

+ 4s� 8 ;

where the summation runs over all zeros of the Hessian H

C

external to the d-tuple,

and the k

i

denote the multipli
ity of H

C

at su
h points.

For example, suppose the Hessian is simple at all points external to C; sin
e the

Hessian has degree 2d � 4, and ea
h point with multipli
ity r on C 
ontributes

pre
isely a (2r � 2)-fold point to the Hessian, we �nd that in this 
ase H

C

has

exa
tly 2s� 4 simple points outside of C, so the premultipli
ity along the orbit of

the d-fold point must be

(2s� 4) + (4s� 8) = 6(s� 2) :

In parti
ular, the orbit 
losure of the general d-tuple, d � 5, has multipli
ity 6(d�2)

along this orbit.

Next for the 2-dimensional 
omponents of the boundary. For every point p of C

of multipli
ity r, denote by C

p

the residual (d� r)-tuple to p in C. In this 
ase it

matters whether the point p of C is a point of the Hessian of its residual C

p

in C

(thus automati
ally external to C

p

!).

As seen in x2, p 
ontributes to the boundary of the orbit 
losure of C by the orbit

of x

r

y

d�r

. The next result may be seen as a re�nement of that statement:

Proposition 3.4. Ea
h r-fold point p of the d-tuple 
ontributes to the premulti-

pli
ity of the orbit 
losure along the orbit of x

r

y

d�r

by

2 +mult. of p in H

C

p

8



if r 6= d=2, and

4 + 2 (mult. of p in H

C

p

)

if r = d=2.

So the orbit 
losure of the general d-tuple has multipli
ity 2d along its only

boundary 
omponent (i.e., the orbit of xy

d�1

), for d � 5.

Proofs: For the �rst 
omputation (multipli
ity along orbit of the d-fold point),

every point (� : �) in P

1

gives one equation for the orbit of the d-fold point in P

d

,

i.e. H

A

(� : �) = 0 (see Lemma (3.1)). Now if ' 2 P

3

, the Hessian of the translate

by ' is given by

H

AÆ'

= (det')

2

H

A

Æ ' :

therefore ea
h of the above equations for the orbit of x

d

pulls-ba
k in P

3

to the

square of the equation of the lo
us D of rank-1 matri
es, times the equation of

the point-
ondition in P

3

relative to the Hessian of the d-tuple. As seen in x1,

point-
onditions are separated above the base lo
us by the blow-up resolving the

rational map determined by the d-tuple, and as shown in the proof of Proposition

2.1, the ex
eptional divisors are mapped onto 2-dimensional boundary 
omponents.

Equations for the inverse image of the orbit of x

d

in the blow-up are therefore

e

D

2

e

H(� : �) ; (� : �) 2 P

1

where

e

D is the equation for the proper transform of D, and

e

H(� : �) is the point-


ondition in the blow-up relative to the points in the Hessian not 
ontained in the

d-tuple. The s
heme-theoreti
 inverse image 
onsists then of a non-redu
ed s
heme

supported on the proper transform of the lo
us of rank-1 matri
es, with length

2 over the support, and embedded 
omponents along pen
ils of matri
es whose

image is a point of the Hessian not 
ontained in the d-tuple; ea
h of these pen
ils

maps isomorphi
ally to the 1-dimensional orbit of x

d

. To examine the situation

along these pen
ils, observe that every point of the Hessian (say of multipli
ity k),

determines a 
omponent of every

e

H(� : �), in fa
t a k-fold plane 
ontaining the

pen
il. As (� : �) moves in P

1

, these 
omponents de�ne a s
heme supported on the

pen
il. The de�ning ideal is the k-th power of that of the pen
il and its algebrai


multipli
ity ([Fulton℄, x4.3) is equal to k

2

. By [Fulton℄, Proposition 9.2, applied

to

e

D � ~


�1

(orbit of x

d

) �

e

V ;

the 
ontribution of ea
h embedded pen
il to the Segre 
lass is then k

2

times its


lass, and this gives the term

P

k

2

i

in the formula. It remains therefore to be seen

that the proper transform

e

D of the lo
us of rank-1 matri
es a

ounts for the term

4s � 8 in the premultipli
ity. Now we 
laim that all we have to 
he
k is that

e

D

2

pushes forward to (2�s) times the 
lass of the orbit of x

d

: indeed, it will follow that

the 
ontribution of

e

D to the 1-dimensional term of the Segre 
lass (i.e., �(2

e

D)

2

)

pushes forward in P

d

to (4s� 8) times the 
lass of the orbit of x

d

, and we will be

done. Now a straightforward 
omputation shows that the push-forward of

e

D

2

is

the push-forward from P

3

of D

2

minus the s lines of the base lo
us (whi
h map

isomorphi
ally to the orbit of x

d

). Finally, D

2


onsists, as a 
lass on the quadri


D, of 2 lines of ea
h ruling, and the ruling parametrizing matri
es with given kernel
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pushes forward to 0 in P

d

; so the push-forward is indeed 2 � s times the orbit, as

needed.

For the se
ond statement (the multipli
ity along the orbit of x

r

y

d�r

), suppose p

is a point of multipli
ity r in the d-tuple, and fa
tor the map P

3

- - -

>

P

d

through

P

3

- - -

>

P

1

� P

d�r

�! P

d

;

where P

3

maps to ea
h fa
tor P

1

and P

d�r

as usual, by extending the a
tion of

PGL(2) on the r-fold point p and its residual (d�r)-tuple C

p

respe
tively; the orbit


losure of this point (p; C

p

) in P

1

�P

d�r

maps surje
tively to the orbit 
losure of the

d-tuple in P

d

. The point is that the map P

1

� P

d�r

�! P

d

is an immersion at every

point (p; (d� r)q) if p 6= q; moreover, in this 
ase the inverse image of rp+ (d� r)q


onsists of pre
isely (p; (d� r)q) if r 6= d=2, and of the two points (p; (d� r)q) and

(q; rp) if r = d=2. Thus we only have to show that the premultipli
ity of the orbit


losure of (p; C

p

) in P

1

� P

d�r

is 2 + mult. of p in the Hessian of C

p

.

For this, we observe that equations for the set of points in P

1

� P

d�r

of type

(p; (d � r)q) are (again by Lemma (3.1)) given by H

A

(� : �) = 0, where now the

Hessian is taken for A 2 P

d�r

. Pulling ba
k to P

3

, and re
alling again that the

Hessian of a translate is the translate of the Hessian multiplied by the square of the

determinant of the translation, we �nd that equations in P

3

for the inverse image

of the lo
us of pairs (p; (d� r)q) are

(det')

2

H

C

p

('(� : �)) = 0:

Now blow-up P

3

as usual, and study it over the pen
il of all ' whose image is the

r-fold point p of the d-tuple. By arguing as in x1, one sees that the blow-up resolves

the map P

3

- - -

>

P

1

�P

d�r

; pulling ba
k the above equation to the blow-up, we �nd

that (near the pen
il) the inverse image of the lo
us of pairs (p; (d�r)q) is supported

on the proper transform of the determinant hypersurfa
e (with length 2), and on

the 
omponent of the ex
eptional divisor over the pen
il (with length 2+mult. of p

in H

C

p

). Now pairs (p; (d � r)q) with p 6= q don't 
ome from the determinant

hypersurfa
e (whi
h maps to d-fold points only), so the premultipli
ity equals the

length of the part supported on the ex
eptional divisor, and this 
on
ludes the proof

of the last 
laim.

x4. Smooth orbit 
losures and more.

The results of x3, together with a des
ription of the �nite subgroups of PGL(2)

(see [Weber℄, xx67-77), allow us to give an immediate 
lassi�
ation of the smooth

PGL(2)-orbit 
losures.

First we present the following lemma, some instan
es of whi
h appeared already

above. Its proof may be left to the reader.

Lemma 4.1. The map P

d

! P

md

, f 7! f

m

is an embedding.

If the d-tuple 
orresponding to f is supported on s � 3 points, the orbit 
losure

of f

m

has degree equal to m

3

times the degree of the orbit 
losure of f (for exam-

ple by Proposition 1.3), whereas the multipli
ities along 
orresponding boundary


omponents are equal.
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Be
ause of the lemma, in the remainder of this se
tion we will only 
onsider

d-tuples for whi
h the g.
.d. of the multipli
ities of the s points equals one. We will

also assume that s � 3; re
all that the orbit (
losure) of x

d

is smooth and that the

orbit 
losure of x

r

y

d�r

is smooth if and only if d = 2r.

With these assumptions, we have:

Proposition 4.2. The smooth 3-dimensional PGL(2)-orbit 
losures are:

(1) the orbit 
losure of x

3

+ y

3

, with stabilizer D

3

= S

3

;

(2) the orbit 
losure of x

4

+ xy

3

, with stabilizer A

4

;

(3) the orbit 
losure of x

5

y � xy

5

, with stabilizer S

4

;

(4) the orbit 
losure of x

11

y + 11x

6

y

6

� xy

11

, with stabilizer A

5

.

Proof: The orbit 
losure of a d-tuple f is smooth if and only if its multipli
ity

along the orbit of x

d

equals one, i.e., the premultipli
ity along that orbit equals

the order of the stabilizer of f . From Proposition (3.3), this premultipli
ity equals

P

k

2

i

+ 4s � 8, where the k

i

are the multipli
ities of the points of the Hessian

of f external to f . Counted with multipli
ity, there are 2s � 4 su
h points (i.e.,

P

k

i

= 2s� 4), so the premultipli
ity is � 6(s� 2).

Assuming that f has smooth orbit 
losure, it follows that the order of its stabilizer

is � 6(s� 2). In parti
ular, its stabilizer is non-trivial. It now suÆ
es to 
onsider

the a
tion of the �nite subgroups G of PGL(2) on P

1

and the orbits of points with

non-trivial stabilizer. Following [Weber℄, x68, we list these groups and the lengths

of the spe
ial orbits:

(0) G = C

n

; lengths 1, 1;

(1) G = D

n

; lengths 2, n, n;

(2) G = A

4

; lengths 4, 4, 6;

(3) G = S

4

; lengths 6, 8, 12;

(4) G = A

5

; lengths 12, 20, 30.

Determining the d-tuples f with smooth orbit 
losure is now an easy matter:

(0) Assume Stab(f) = C

n

. Then n � 6(s�2) > s. It follows that f is supported

on one or two points, a 
ontradi
tion.

(1) Assume Stab(f) = D

n

. Then 2n � 6(s � 2) so n � 3(s � 2) � s. Again,

if n > s it follows that s = 2, a 
ontradi
tion; so we get n = s = 3 and

Stab(f) = D

3

= S

3

. Clearly the multipli
ities of the 3 points are all equal,

thus by our assumption they are all one. So this is the orbit 
losure of x

3

+y

3

,

whi
h is P

3

. Of 
ourse smoothness also follows from 
onsidering the Hessian

of f .

(2) Assume Stab(f) = A

4

. Then 12 � 6(s� 2) so s � 4. It follows that s = 4

and that all multipli
ities are equal (to one). This is the orbit 
losure of

x

4

+ xy

3

; 
omputing the Hessian, we see that it is indeed smooth.

(3) Assume Stab(f) = S

4

. Then 24 � 6(s�2) so s � 6. It follows that s = 6 and

that all multipli
ities are equal to one. This is the orbit 
losure of x

5

y�xy

5

,

whi
h is indeed smooth, as its Hessian has simple zeros.

(4) Assume Stab(f) = A

5

. Then 60 � 6(s � 2) so s � 12. It follows that

s = 12 and that all multipli
ities are equal to one. This is the orbit 
losure

of x

11

y + 11x

6

y

6

� xy

11

([Weber℄, x74). It is smooth as its Hessian has 20

simple zeros.
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It turns out that it is also possible to 
lassify the orbit 
losures that are smooth

in 
odimension one. The answer is parti
ularly pretty in 
ase the multipli
ities of

the s points of the d-tuple are all equal. In that 
ase we may and will assume that

they are all equal to one, so that d = s; 
all su
h a d-tuple simple. Note that the

orbit 
losure of a simple d-tuple has at most one boundary 
omponent.

Proposition 4.3. The orbit 
losure of a simple d-tuple f is smooth in 
odimension

one if and only if f is a spe
ial orbit for the a
tion of a �nite subgroup G of PGL(2)

on P

1

(i.e., f is an orbit of length smaller than the order of G).

Proof: Let f be a simple d-tuple (so d = s). If d = 1 (resp. 2) the orbit 
losure

of f is smooth; take G = C

n

(resp. D

n

) for an n � 2. So we assume d �

3. From Proposition (3.4), the premultipli
ity of the orbit 
losure of f along its

only boundary 
omponent equals

P

(2 + mult. of p in H

C

p

), where the summation

runs over the d points p of f . Assuming that the orbit 
losure of f is smooth in


odimension one, it follows that the stabilizer of f has order � 2d. The \only if"

part of the proposition follows. It remains to 
he
k that the orbit 
losures of the

spe
ial orbits are indeed smooth in 
odimension one. This is an easy veri�
ation

(see below).

It is perhaps worthwhile to remark that the proposition above seems to 
onsti-

tute an answer to the question raised in [Mukai-Umemura℄, Remark (3.6): the

PGL(2)-orbit 
losures of spe
ial G-orbits (G � PGL(2) �nite) may be 
hara
terized

as the orbit 
losures of simple d-tuples that are smooth in 
odimension one.

The general 
ase is somewhat harder. Let f be a d-tuple supported on s �

3 points, and assume that the orbit 
losure of f is smooth in 
odimension one.

Suppose that there are s

a

points with multipli
ity a. Then the stabilizer of f has

order at least 2s

a

. We 
on
lude that f is supported on the spe
ial orbits for the

a
tion of its stabilizer G on P

1

. Clearly G is not 
y
li
, so there are 3 su
h orbits.

Call them A, B and C, and write f = A

a

B

b

C




with a, b and 
 positive integers.

Call A-multipli
ity the 
ontribution of the points of A to the multipli
ity of the

orbit 
losure of f along the orbit of x

a

y

d�a

. By Proposition (3.4), this equals

d

A

(2 + mult. of p in the Hessian of A

a

p

B

b

C




)

order of G

where d

A

is the degree of A, p a point of A and A

p

the residual (d

A

� 1)-tuple.

Similarly we de�ne the B-multipli
ity and the C-multipli
ity. The following result

is an immediate 
onsequen
e.

Proposition 4.4. Let G be a �nite, non-
y
li
 subgroup of PGL(2). Denote by

A, B and C the three spe
ial orbits for the a
tion of G on P

1

. Let f = A

a

B

b

C




,

with a, b and 
 positive integers. Assume that G is the PGL(2)-stabilizer of f . The

PGL(2)-orbit 
losure of f is smooth in 
odimension one if and only if a, b and 
 are

mutually distin
t and the A-multipli
ity, the B-multipli
ity and the C-multipli
ity

are equal to one.

When one or two of a, b and 
 are zero, the proposition remains true, mutatis

mutandis.

Computing the multipli
ity of the Hessian at p be
omes simpler when one 
hooses

the right 
oordinates. Namely, p is one of the two �xed points of an element of G

12



(of order m = (order of G)=d

A

). Choose 
oordinates x, y so that p and the other

�xed point are given by x = 0 and y = 0 respe
tively. Writing out A

p

, B and C in

these 
oordinates, we see that only powers of x

m

o

ur:

A

p

= y

d

A

�1

+ A

1

y

d

A

�1�m

x

m

+A

2

y

d

A

�1�2m

x

2m

+ : : : ;

B = y

d

B

+B

1

y

d

B

�m

x

m

+ B

2

y

d

B

�2m

x

2m

+ : : : ;

C = y

d

C

+ C

1

y

d

C

�m

x

m

+ C

2

y

d

C

�2m

x

2m

+ : : : :

Now one immediately 
he
ks that the multipli
ity of the Hessian of A

a

p

B

b

C




at p is

m� 2 when

A

1

a+ B

1

b+ C

1


 6= 0;

that it is 2m� 2 when

A

1

a+ B

1

b+ C

1


 = 0 and

(A

2

1

� 2A

2

)a+ (B

2

1

� 2B

2

)b+ (C

2

1

� 2C

2

)
 6= 0;

et
. Thus the A-multipli
ity is 1, 2, : : : , 
orrespondingly.

Finally we list for ea
h of the �nite, non-
y
li
 subgroups G of PGL(2) the spe-


ial orbits and the relevant equations. (Some of these results were obtained using

Maple.)

(1) G = D

n

: A = xy, B = x

n

+ y

n

, C = x

n

� y

n

; the A-multipli
ity is 1 i�

b 6= 
;

the B-multipli
ity is 1 i�

�a+

(n� 1)(n� 2)

6

b+

n(n� 1)

2


 6= 0;

the C-multipli
ity is 1 i�

�a+

n(n� 1)

2

b+

(n� 1)(n� 2)

6


 6= 0:

(2) G = A

4

: A = x

4

+2

p

�3x

2

y

2

+y

4

, B = x

4

�2

p

�3x

2

y

2

+y

4

, C = x

5

y�xy

5

;

the A-multipli
ity is 1 i�

a� 8b+ 20
 6= 0;

otherwise it is 2; the B-multipli
ity is 1 i�

8a� b� 20
 6= 0;

otherwise it is 2; the C-multipli
ity is 1 if

a 6= b;
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it is 2 when a = b (unless 
 = 14a = 14b, in whi
h 
ase it is 4); note

however that when a = b the stabilizer is S

4

, so the a
tual multipli
ities are

1, respe
tively 2 (see also below).

(3) G = S

4

: A = x

5

y�xy

5

, B = x

8

+14x

4

y

4

+y

8

, C = x

12

�33x

8

y

4

�33x

4

y

8

+y

12

;

the A-multipli
ity is 1 i�

a� 14b+ 33
 6= 0;

otherwise it is 2; the B-multipli
ity is 1 i�

20a� 7b� 88
 6= 0;

otherwise it is 2; the C-multipli
ity is 1 i�

45a� 84b� 11
 6= 0;

it is 2 when 45a�84b�11
 = 0, unless (a; b; 
) � (5852; 561; 19656), in whi
h


ase it is 3.

(4) G = A

5

:

A = x

11

y + 11x

6

y

6

� xy

11

;

B = x

20

� 228x

15

y

5

+ 494x

10

y

10

+ 228x

5

y

15

+ y

20

;

C = x

30

+ 522x

25

y

5

� 10005x

20

y

10

� 10005x

10

y

20

� 522x

5

y

25

+ y

30

;

the A-multipli
ity is 1 i�

11a� 228b+ 522
 6= 0;

otherwise it is 2; the B-multipli
ity is 1 i�

88a� 57b� 580
 6= 0;

otherwise it is 2; the C-multipli
ity is 1 i�

99a� 285b� 58
 6= 0;

it is 2 otherwise, unless (a; b; 
) � (26864005; 431607; 43733250), in whi
h


ase it is 3.
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