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Abstra
t. The 
hara
teristi
 numbers for the family of smooth plane 
ubi
s are 
omputed,

verifying results of Maillard and Zeuthen

x1 Introdu
tion. The last few years have witnessed a revived interest in the sear
h

for the `
hara
teristi
 numbers' of families, i.e. the numbers of elements in a family

whi
h are tangent to assortments of linear subspa
es in general position in the ambi-

ent proje
tive spa
e. By the `
onta
t Theorem' of Fulton-Kleiman-Ma
Pherson, these

numbers determine the numbers of varieties in the family that satisfy tangen
y 
ondi-

tions to arbitrary 
on�gurations of proje
tive varieties: this justi�es the 
entral role of

the 
omputation of the 
hara
teristi
 numbers in the �eld of enumerative geometry.

The problem re
eived mu
h attention in the last 
entury, when in fa
t it 
on-

tributed signi�
antly to the development of algebrai
 geometry. S
hubert's \Kalk�ul

der abz�alenden Geometrie" ([S℄), published in 1879, is a 
ompendium of the results

obtained in a span of some de
ades by S
hubert himself, Chasles, Halphen, Zeuthen

and others. The validity of these a
hievements was soon questioned: in requesting

rigorous foundations for algebrai
 geometry, Hilbert's 15th problem (1900) expli
itly

asked for a justi�
ation of the results in S
hubert's book. Algebrai
 geometry found

its foundations in the �fties; the 
hallenge of justifying enumerative geometry had to

wait somewhat longer to be a

epted.

By now, most of the results in the \Kalk�ul der abz�alenden Geometrie" have been

veri�ed or 
orre
ted, but the enterprise is not yet 
ompleted. While ri
h satisfa
tory

theories are now available for quadri
s (Van der Waerden, Vainsen
her, Demazure, De

Con
ini-Pro
esi, Laksov, Thorup-Kleiman, Tyrell, et
.) and triangles (Collino-Fulton,

Roberts-Speiser), and mu
h is known about twisted 
ubi
s (Kleiman-Str�mme-Xamb�o),

the families of plane 
urves still o�er results whi
h were `known' in the last 
entury

and 
annot be 
laimed su
h now.

The a
hievements of the 
lassi
 s
hool are here quite impressive. By 1864 Chasles

(and others) had settled 
oni
s; already in 1871 a student of his, M.S. Maillard, 
om-

puted in his thesis ([M℄) the 
hara
teristi
 numbers for many families of plane 
ubi



urves, in
luding 
uspidal, nodal, and smooth ones. One year later H.G. Zeuthen pub-

lished a series of three amazingly short papers ([Z1℄) again 
omputing the numbers for




uspidal, nodal and smooth 
ubi
s; his results agree with Maillard's. Zeuthen �nally

published in 1873 a long analysis for plane 
urves of any degree ([Z2℄), giving as an

appli
ation the 
omputation of the 
hara
teristi
 numbers for families of plane quarti
s.

Apparently, noone ever tried to expli
itly work out higher degree 
ases.

The problem for 
ubi
s or higher degree 
urves remained untou
hed - and therefore

eventually unsettled- for at least one 
entury. Then Sa

hiero (1984) and Kleiman-

Speiser (1985) veri�ed Zeuthen and Maillard's results for 
uspidal and nodal plane


ubi
s. Kleiman and Speiser's approa
h repli
ates and advan
es Zeuthen and Mail-

lard's, so it is expe
ted to lead eventually to the veri�
ation of the numbers for the

family of smooth 
ubi
s; but that program is not 
ompleted yet. Also, Sterz (1983)


onstru
ted a variety of `
omplete 
ubi
s', by a sequen
e of 5 blow-ups over the IP

9

of

plane 
ubi
s, giving some interse
tion relations ([St℄).

Later, I independently 
onstru
ted the same variety, by the same sequen
e of blow-

ups. My approa
h was in a sense more `geometri
' than Sterz's, and I was able to use

this variety to a
tually 
ompute the 
hara
teristi
 numbers for the family of smooth

plane 
ubi
s. The result on
e more agrees with Zeuthen and Maillard's.

There is an important di�eren
e between this approa
h and the 
lassi
al one. Mail-

lard and Zeuthen were 
omputing the numbers by relating them to 
hara
teristi
 num-

bers of other more spe
ial families (e.g. 
uspidal and nodal 
ubi
s); here, one aims

dire
tly to solving the spe
i�
 problem for smooth 
ubi
s, and other families don't

enter into play. This makes the problem more a

essible in a sense, but it may on the

other hand sa
ri�
e the `general pi
ture' to the spe
i�
 result.

In this note I des
ribe the blow-up 
onstru
tion and the 
omputation of the numbers.

Full details appear, together with partial results for 
urves of higher degree, in my Ph.D.

thesis ([A℄), written at Brown under the supervision of W. Fulton.

Aknowledgements. I wish to thank A. Collino and W. Fulton for suggesting the

problem, and for 
onstant guidan
e and en
ouragement.

x2 The problem and the approa
h. Let n

p

; n

`

be integers, with n

p

+ n

`

= 9. The

question to be answered is:

How many smooth plane 
ubi
s 
ontain n

p

points and are tangent to n

`

lines in

general position?

The set of smooth plane 
ubi
s is given a stru
ture of variety by identifying it with an

open subvariety U of the IP

9

parametrizing all plane 
ubi
s. The 
onditions `
ontaining

a point' and `tangent to a line' determine divisors in U ; 
all them `point-
onditions'

and `line-
onditions' respe
tively. The question then translates into one of 
ardinality

of interse
tion of n

p

point-
onditions and n

`

line-
onditions in U .

One veri�es that for general 
hoi
e of points and lines the 
onditions interse
t

2



transversally in U , so that a
tually the 
ardinality of the interse
tion 
an be 
omputed

as interse
tion number of the divisors.

The �rst impulse is of 
ourse to work in the IP

9

that 
ompa
ti�es U : 
losing the


onditions to divisors of IP

9

(one obtains hyperplanes from point-
onditions, hypersur-

fa
es of degree 4 from line-
onditions), and using B�ezout's Theorem to 
ompute the

interse
tion numbers. This works if n

p

� 5: in this 
ase the interse
tion of the divisors

in IP

9

is in fa
t 
ontained in U , and the result given by B�ezout's Theorem is 
orre
t.

If n

p

� 4, non-redu
ed 
ubi
s appear in the interse
tion of the divisors in IP

9

, sin
e

a 
urve 
ontaining a multiple 
omponent is `tangent' to any line and 
learly one 
an

always �nd non-redu
ed 
ubi
s 
ontaining any 4 or less given points.

The 
on
lusion is that IP

9

is not the `right' 
ompa
ti�
ation of the variety U of

smooth 
ubi
s for this problem, be
ause all line-
onditions in IP

9


ontain the lo
us of

non-redu
ed 
ubi
s.

The interse
tion of all line-
onditions is in fa
t a subs
heme of IP

9

supported over the

lo
us of non-redu
ed 
ubi
s. If we 
ould blow-up IP

9

along this subs
heme, this would

provide us with a 
ompa
ti�
ation of U in whi
h the proper transforms of the point- and

line-
onditions don't interse
t outside U , and taking their interse
tion produ
t would

answer the original question. But performing su
h a task requires mu
h non-trivial

information about the subs
heme, and we are not able to pro
eed dire
tly.

What we 
an perform without losing 
ontrol of the situation is the blow-up of IP

9

along a 
ertain smooth subvariety of the lo
us of non-redu
ed 
ubi
s. The blow-up


reates another 
ompa
ti�
ation of U , in whi
h one 
an again �nd the support of

the interse
tion of the `line-
onditions' (i.e., of the 
losure of the line-
onditions of U).

Again, a smooth subvariety -in fa
t, a 
omponent- of this lo
us 
an be 
hosen as a 
enter

of a new blow-up, 
reating a new 
ompa
ti�
ation. The pro
ess 
an be repeated, under

the heuristi
 prin
iple that at ea
h step, blowing-up the `largest' possible non-singular

subvariety/
omponent of the interse
tion of all line-
onditions should somehow simplify

the situation.

In fa
t, 5 blow-ups do the job in this 
ase: a non-singular 
ompa
ti�
ation of U is

produ
ed in whi
h 9 
onditions interse
t only inside U . The knowledge of the Chern


lasses of the normal bundles of the 
enters of the blow-ups is then the essential ingre-

dient needed to 
ompute the interse
tions and obtain the 
hara
teristi
 numbers. An

interse
tion formula (see x4) that expli
itly relates interse
tions under blow-ups 
an be

used to rea
h the result.

Apparently, this step (the 
omputation of the Chern 
lasses of the normal bundles

and their utilization to get the 
hara
teristi
 numbers) is the only one missing in Sterz's

work.
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Alternatively, one 
an use the same information to 
ompute the Segre 
lass of the

s
heme-theoreti
 interse
tion of all line-
onditions in IP

9

, and apply Fulton's interse
-

tion formula ([F, Proposition 9.1.1℄). This Segre 
lass has interesting symmetries, whi
h

may shed some light on the internal stru
ture of this s
heme.

x3 The blow-ups. In this se
tion I will brie
y des
ribe the varieties obtained via the

5 blow-ups. Details are provided in [A, Chapter 2℄.

The diagram

e

V = V

5

?

?

y
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?
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(

�
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2

) = B

0

����! IP

9

= V

0

 ���� S = S

0

 ����

�

IP

2

�

�

IP

2


ontains most of the notations that will be explained in this se
tion.

S

0

is the lo
us of non-redu
ed 
ubi
s, B

0

= v

3

(

�

IP

2

) ,! IP

9

is the Veronese of triple

lines. B

i

will be the 
enters of the blow-ups, V

i

will be the blow-up B`

B

i�1

V

i�1

of V

i�1

along B

i�1

, S

i

will be the proper transforms of S

i�1

under the i-th blow-up.

L is a 
ertain sub-line bundle of the normal bundle N

B

3

V

3

of B

3

in V

3

. � is the

diagonal in

�

IP

2

�

�

IP

2

.

Also, E

i

will be the ex
eptional divisor of the i-th blow-up, and `line-
onditions in

V

i

' will be the 
losure in V

i

of the line-
onditions of U : i.e., the line-
onditions in V

i

will be the proper transforms of the line-
onditions in V

i�1

.

For ea
h blow-up I will des
ribe the interse
tion of all line-
onditions and indi
ate

the 
hoi
e of the 
enter of the next blow-up. The basi
 strategy is to blow-up along

the `largest possible' non-singular subvariety/
omponent of the interse
tion of all line-


onditions. In fa
t, the �rst three blow-ups desingularize the support of this interse
-

tion, the last two separate the 
onditions.
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x3.0 The IP

9

of plane 
ubi
s. We noti
ed already that the interse
tion of all line-


onditions in IP

9

is supported on the lo
us S

0

of non-redu
ed 
ubi
s. This lo
us is the

image of a map

�

IP

2

�

�

IP

2

�

�! IP

9

sending the pair of lines (�; �) to the 
ubi
 
onsisting of the line � and of a double line

supported on �.

The map

�

IP

2

�

�

IP

2

�

�! S

0

is an isomorphism o� the diagonal � in

�

IP

2

�

�

IP

2

; therefore

S

0

is non-singular o� the (smooth) lo
us B

0

= �(�) of triple lines. In fa
t S

0

is singular

along B

0

.

B

0

is the 
enter of the �rst blow-up.

x3.1 The �rst blow-up. Let V

1

be the blow-up of IP

9

along B

0

, E

1

the ex
eptional

divisor, S

1

the proper transform of S

0

.

S

1

is isomorphi
 to the blow-up B`

�

�

IP

2

�

�

IP

2

of

�

IP

2

�

�

IP

2

along the diagonal (
all e

the ex
eptional divisor of this blow-up); in parti
ular, it is non-singular.

The line-
onditions in V

1

interse
t along the smooth 4-dimensional S

1

and along a

smooth 4-dimensional subvariety of E

1

.

To see this, noti
e that the line-
ondition in IP

9


orresponding to a line ` has multi-

pli
ity 2 along B

0

, and tangent 
one at a triple line �

3

supported on the hyperplane of


ubi
s 
ontaining � \ `. Thus, the tangent 
ones at �

3

to all line-
onditions in IP

9

in-

terse
t along the 5-dimensional spa
e of 
ubi
s 
ontaining �. It follows that the normal


ones to B

0

in the line-
onditions interse
t in a rank-3 ve
tor subbundle of N

B

0

IP

9

, and


orrespondingly that the line-
onditions in V

1

interse
t also along a IP

2

-bundle over B

0


ontained in E

1

.

Call this subvariety B

1

, and 
hoose it as the 
enter for the next blow-up. B

1

interse
ts

S

1

�

=

B`

�

�

IP

2

�

�

IP

2

along the ex
eptional divisor e.

x3.2 The se
ond blow-up. Let V

2

be the blow-up of V

1

along B

1

, E

2

the ex
eptional

divisor,

e

E

1

; S

2

the proper transforms of E

1

; S

1

respe
tively.

S

2

is the blow-up of S

1

along a divisor, thus it is isomorphi
 to S

1

and hen
e to

B`

�

�

IP

2

�

�

IP

2

.

A 
oordinate 
omputation shows that the line-
onditions in V

1

are generi
ally smooth

along B

1

, and tangent to E

1

. As a 
onsequen
e, their proper transforms interse
t in

E

2

along

e

E

1

\ E

2

, whi
h is a IP

3

-bundle over B

1


ontained in E

2

.

Therefore the line-
onditions in V

2

interse
t along the smooth 4-dimensional S

2

and

along a smooth 7-dimensional subvariety of E

2

.

Choose this subvariety as the new 
enter, 
all it B

2

.
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x3.3 The third blow-up. Let V

3

be the blow-up of V

2

along B

2

, E

3

the ex
eptional

divisor, S

3

the proper transform of S

2

.

Again, S

3

is isomorphi
 to B`

�

�

IP

2

�

�

IP

2

.

E

3

is a IP

1

-bundle over B

2

. In ea
h �ber of this bundle there are two distinguished

distin
t points r

1

; r

2

: namely the interse
tions with the proper transforms of

e

E

1

and

E

2

. Now, over any point in B

2

away from S

3

\ E

3

, one 
an �nd line-
onditions that

hit the �ber pre
isely at r

1

or pre
isely at r

2

. This implies that over su
h points the

line-
onditions in V

3


annot interse
t.

Thus the line-
onditions in V

3

interse
t only along the smooth 4-dimensional S

3

.

This 
ompletes the `desingularization of the support' of the interse
tion of all line-


onditions, and we are ready to 
hoose B

3

= S

3

as the next 
enter.

x3.4 The fourth blow-up. Let V

4

be the blow-up of V

3

along B

3

, E

4

the ex
eptional

divisor.

The line-
onditions in V

4

meet along a subvariety of the ex
eptional divisor E

4

=

IP(N

B

3

V

3

). Noti
e that above B

3

� E

3

�

=

S

0

� B

0

, E

4

restri
ts to IP(N

S

0

�B

0

IP

9

).

Now, the tangent hyperplanes to the line-
onditions in IP

9

at a non-redu
ed 
ubi


��

2

2 S

0

� B

0

interse
t in the 5-dimensional spa
e of 
ubi
s 
ontaining �. It follows

that the line-
onditions in V

4

meet above B

3

�E

3

along the proje
tivization of a line-

subbundle of IP(N

B

3

�E

3

V

3

). This fa
t holds on the whole of B

3

: the line-
onditions in

V

4

interse
t along a smooth 4-dimensional subvariety of E

4

= IP(N

B

3

V

3

), whi
h is the

proje
tivization IP(L) of a line-subbundle of N

B

3

V

3

.

Choose IP(L) to be the next 
enter B

4

.

x3.5 The �fth blow-up. Let V

5

be the blow-up of V

4

along B

4

, E

5

the ex
eptional

divisor,

e

E

4

the proper transform of E

4

.

Finally, the interse
tion of all line-
onditions is empty in V

5

.

The veri�
ation of this fa
t is similar to the one in 3.3. Here, ea
h �ber of E

5

over

a point of B

4

is a 4-dimensional proje
tive spa
e; in this IP

4

lies a distinguished IP

3

,

namely the interse
tion of the �ber with

e

E

4

. Now, one 
an produ
e line-
onditions

whose interse
tion is disjoint from this IP

3

, and a line-
ondition whi
h interse
ts the

�ber pre
isely along this IP

3

. Thus the interse
tion of the line-
onditions must be

empty.

V

5

is the 
ompa
ti�
ation of U we were looking for.

By slightly re�ning the arguments, one sees that the interse
tion of 9 point/line-


onditions in general position in V

5

must be 
ontained in U . The 
hara
teristi
 numbers

are then the interse
tion numbers of the 
onditions in V

5

, and one 
an pro
eed with

the a
tual 
omputation.

6



x4 The numbers. The essential ingredients to obtain the 
hara
teristi
 numbers from

the 
onstru
tion in x3 are the Chern 
lasses of the normal bundles of the 
enters of

the blow-ups. In fa
t this information would be enough to determine the whole Chow

ring of the blow-ups; but we don't need that mu
h. We have 9 divisors in IP

9

, and we

wish to 
ompute the interse
tion numbers of their proper transforms in some blow-up

of IP

9

, on
e the Chern 
lasses of the normal bundles of the 
enters are known.

This task 
an be a

omplished dire
tly, by repeatedly applying the

Proposition. Let V be a non-singular n-dimensional variety, B

i

,! V a non-singular


losed subvariety of V , X

1

; : : : ; X

n

divisors on V . Let

e

V = B`

B

V , and

e

X

1

; : : :

e

X

n

the

proper transforms of X

1

; : : :X

n

. Moreover, let e

i

= e

B

X

i

be the multipli
ity of X

i

along B. Then

Z

e

V

e

X

1

� � �

e

X

n

=

Z

V

X

1

� � �X

n

�

Z

B

(e

1

[B℄ + i

�

[X

1

℄) � � � (e

n

[B℄ + i

�

[X

n

℄)


(N

B

V )

:

This spe
ializes to well-known formulas when B is a point, and is itself a spe
ialization

of a more general relation among Segre 
lasses (see [A, Chapter 1℄). An elementary

proof of the form stated here 
an be obtained by expanding

Z

V

X

1

� � �X

n

=

Z

e

V

([

e

X

1

℄ + e

1

[E℄) � � � ([

e

X

n

℄ + e

n

[E℄)

(E is the ex
eptional divisor) and re
alling that

P

i�0

[E℄

i

pushes forward to 
(N

B

V )

�1

by Corollary 4.2 and Proposition 4.1(a) in [F℄.

What we need to 
ompute the interse
tion numbers of the 
onditions in V

5

is then,

for ea
h V

i

:

(1) The Chern 
lasses of N

B

i

V

i

;

(2) The multipli
ities of the 
onditions in V

i

along B

i

;

(3) The Chow ring of B

i

.

We will now indi
ate how this information 
an be obtained.

As for the multipli
ities, they are obtained along the 
onstru
tion: the line-
onditions

in IP

9

have multipli
ity 2 along the lo
us B

0

of triple lines, while line-
onditions in

V

i

, i > 0, are generi
ally smooth (hen
e have multipli
ity 1) along B

i

. Also, point-


onditions never 
ontain B

i

, so their multipli
ities along the 
enters are always 0.

The Chow rings and the normal bundles of the 
enters 
an be obtained as follows.

B

0

is the lo
us of 
ubi
s 
onsisting of `triple lines', hen
e it is isomorphi
 to IP

2

; 
all

h the hyperplane 
lass in B

0

. In fa
t B

0

is the third Veronese imbedding of IP

2

in IP

9

:

it follows that


(N

B

0

IP

9

) =

(1 + 3h)

10

(1 + h)

3

:

7



B

1

is a IP

2

-bundle over B

0

, thus its Chow ring is generated by the pull-ba
k h of

h from B

0

and the 
lass � of the universal line bundle O

B

1

(�1). A 
loser analysis of

the situation (see x3.1) reveals that B

1

is a
tually isomorphi
 to the proje
tivization

of the normal bundle to the lo
us of double lines in the IP

5

of 
oni
s. This determines

the relations between h and �, and gives substantial information about the imbedding

B

1

,! E

1

. N

B

1

V

1

is an extension of N

B

1

E

1

and N

E

1

V

1

, and one obtaines


(N

B

1

V

1

) = (1 + �)

(1 + 3h� �)

10

(1 + 2h� �)

6

:

B

2

is a IP

3

-bundle over B

1

: its Chow ring is generated by the pull-ba
ks h; � of h; �

from B

1

and by the 
lass ' of O

B

2

(�1). Re
all from 3.2 that B

2

=

e

E

1

\ E

2

: i.e., B

2

is the ex
eptional divisor in the blow-up of E

1

along B

1

, and hen
e it is isomorphi
 to

IP(N

B

1

E

1

). This observation gives relation among h; �; '. Also, B

2

=

e

E

1

\E

2

gives at

on
e


(N

B

2

V

2

) = (1 + ')(1 + �� '):

B

3

= S

3

is isomorphi
 to the blow-up B`

�

�

IP

2

�

�

IP

2

of

�

IP

2

�

�

IP

2

along the diagonal.

Its Chow ring is then generated by the pull-ba
ks `;m of the hyperplanes from the

fa
tors, and by the ex
eptional divisor e. One obtaines the relations

Z

B

3

`

2

m

2

= 1;

Z

B

3

e

2

`

2

= �1;

Z

B

3

e

2

m

2

= �1;

Z

B

3

e

3

` = �3;

Z

B

3

e

3

m = �3;

Z

B

3

e

4

= �6:

The total Chern 
lass of N

B

3

V

3


an be obtained as


(TV

3

)


(TB

3

)

: both 
(TV

3

) and 
(TB

3

)


an be 
omputed using the formula for Chern 
lasses of blow-ups (Theorem 15.4 in

[F℄). The result is


(N

B

3

V

3

) = 1 + 7`+ 17m� 16e+ 126m

2

+ 99`m+ 21`

2

� 315e`+ 105e

2

+ 582`m

2

+ 237`

2

m� 2517e`

2

+ 1611e

2

`� 358e

3

+ 1026`

2

m

2

+ 9174e

2

`

2

� 3912e

3

`+ 652e

4

:

Finally, B

4

= IP(L) is also isomorphi
 to B`

�

�

IP

2

�

�

IP

2

; the Chern 
lasses of N

B

4

V

4

are easily obtained from 


1

(L), whi
h 
an be 
omputed dire
tly as 3`+ 3m� 4�. One

gets


(N

B

4

V

4

) = 1� 5`+ 5m+ 18m

2

� 27`m+ 3`

2

+ 21e`� 7e

2

� 30`m

2

+ 75`

2

m

� 225e`

2

+ 135e

2

`� 30e

3

+ 75`

2

m

2

:
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On
e this information is obtained, 5 appli
ations of the proposition for ea
h number

n

p

of points and n

`

of lines give the 
orresponding 
hara
teristi
 number. For example,

the reader may now enjoy 
he
king by hand that

numbers of smooth 
ubi
s through 4 points and tangent to 5 lines =

= 4

5

� 0� 0� 0� 24� 24 = 976;

or that

numbers of smooth 
ubi
s through 3 points and tangent to 6 lines =

= 4

5

� 0� 0� 0� 390� 282 = 3424:

The �nal result is the list

1 n

p

= 9; n

`

= 0

4 n

p

= 8; n

`

= 1

16 n

p

= 7; n

`

= 2

64 n

p

= 6; n

`

= 3

256 n

p

= 5; n

`

= 4

976 n

p

= 4; n

`

= 5

3424 n

p

= 3; n

`

= 6

9766 n

p

= 2; n

`

= 7

21004 n

p

= 1; n

`

= 8

33616 n

p

= 0; n

`

= 9

for the number of 
urves 
ontaining n

p

points and tangent to n

`

lines, agreeing with

Maillard and Zeuthen.

x5 Con
luding remarks. It seems plausible that the same pro
edure worked out here

for 
ubi
s 
ould in prin
iple be exe
uted to get the 
hara
teristi
 numbers for smooth

quarti
s or for higher degree plane 
urves, but the usefulness of su
h an endeavor is

questionable at this point. Until these `blow-up 
onstru
tions' are part of a general

theory, the 
ompli
ation of the te
hni
al details is bound to keep the work at the level

of brute for
e 
omputation. Part of the 
onstru
tion (essentially the last two blow-ups)


an in fa
t be 
arried out, giving the �rst `non-trivial' 
hara
teristi
 number for smooth

plane 
urves of any degree (see [A, Chapter 3℄), but this seems to be in some sense

a spe
ial 
ase. The next `non-trivial' number 
an still be 
omputed for quarti
s (the

results agree with Zeuthen's!), but not via a straightforward generalization from the


omputation for 
ubi
s ([A, Chapter 4℄).

Perhaps Kleiman and Speiser's approa
h, pointing in the dire
tion of Zeuthen's mon-

umental `general theory', will strike more deeply into the heart of the problem.
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