

Introduction

In SGA4 Exposé XVIII, Deligne studies the relation between Picard stacks and length 2 complexes of abelian sheaves, as well as the relation between the morphisms of such objects. He proves ([3], Proposition 1.4.15) that the functor

$$D^{[-1,0]}(S) \longrightarrow PIC^{\flat}(S)$$

is an equivalence where $D^{[-1,0]}(S)$ is the subcategory of the derived category of category of complexes of abelian sheaves A^{\bullet} over a site S with $H^{-i}(A^{\bullet}) \neq 0$ only for i = 0, 1 and PIC^b(S) is the category of Picard stacks over S with 1-morphisms isomorphism classes of additive functors.

Goal

Our purpose is to generalize the above result to Picard 2-stacks.

Method

1) Define the 3-category of Picard 2-stacks 2PIC(S).

2) Define the tricategory of length 3 complexes of abelian sheaves $T^{[-2,0]}(S)$.

3) Construct a trihomorphism $2\wp$ from $T^{[-2,0]}(S)$ to 2PIC(S).

4) Prove that the trihomomorphism $2\wp$ is a triequivalence.

5) Deduce a generalization of Deligne's result for Picard stacks to Picard 2-stacks.

3-category of Picard 2-Stacks

The detailed definition of *Picard 2-stack* over a site S as a fibered 2-category in 2-groupoids equipped with monoidal, braiding, group-like, and Picard structures can be found in Breen ([2], \S 8). For our purposes, we will define it as follows:

Let $A^{\bullet} = [A^{-2} \rightarrow A^{-1} \rightarrow A^{0}]$ be a complex of abelian sheaves where \mathscr{A} is the Picard stack associated to $A^{-2} \rightarrow A^{-1}$, that is $\text{TORS}(A^{-2}, A^{-1})$. We define $\text{TORS}(\mathscr{A}, A^0)$ as Picard 2-stack associated to the A^{\bullet} . It consists of objects, 1-morphisms, and 2-mophisms defined as:

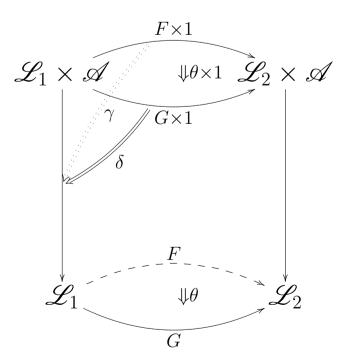
- An object is pair a (\mathscr{L}, s) where \mathscr{L} is an \mathscr{A} -torsor and $s : \mathscr{L} \to A^0$ is an \mathscr{A} -equivariant map.
- A 1-morphism from (\mathscr{L}_1, s_1) to (\mathscr{L}_2, s_2) is a pair (F, γ)

$$(F, \gamma) : (\mathscr{L}_1, s_1) \longrightarrow (\mathscr{L}_2, s_2),$$

where F is a \mathscr{A} -torsor morphism compatible with the torsor structure up to γ and $s_2 \circ F = s_1$. • A 2-morphism from (F, γ) to (G, β) is a natural 2-transformation θ

$$(\mathscr{L}_1, s_1) \underbrace{ \begin{array}{c} (F, \gamma) \\ \Downarrow \theta \\ (G, \delta) \end{array}} (\mathscr{L}_2, s_2)$$

that makes the diagram commute.



We will see that $TORS(\mathscr{A}, A^0)$ is in a sense the only example of Picard 2-stacks. An *additive 2-functor* is a cartesian 2-functor between the underlying fibered 2-categories compati-

ble with the monoidal, braided, and Picard structures carried by the fibers.

Picard 2-stacks over S form an obvious 3-category which we denote by 2PIC(S). 2PIC(S) has a hom-2-groupoid consisting of additive 2-functors, weakly invertible natural 2-transformations, and strict modifications. For any two Picard 2-stacks \mathbb{P} and \mathbb{Q} , associated respectively to complexes A^{\bullet} and B^{\bullet} , we denote this hom-2-groupoid by $Hom(A^{\bullet}, B^{\bullet})$.

Complexes of Abelian Sheaves and Picard 2-Stacks Ahmet Emin Tatar

Department of Mathematics, Florida State University, Tallahassee, FL, USA

Tricategory of Complexes of Abelian Sheaves $T^{[-2,0]}(S)$

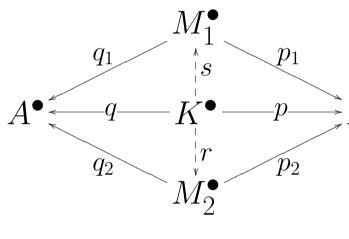
 $T^{[-2,0]}(S)$ is a tricategory of length 3 complexes of abelian sheaves placed in degrees [-2,0]. For any two such complexes A^{\bullet} and B^{\bullet} , its hom-bicategory $Frac(A^{\bullet}, B^{\bullet})$ is the bigroupoid that consists of objects, 1-morphisms, and 2-morphisms where

• An object is an ordered triple (q, M^{\bullet}, p) called fraction

$$q \xrightarrow{M^{\bullet}} p$$

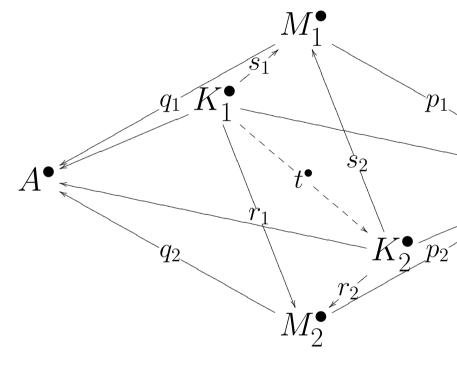
 $A^{\bullet} \xrightarrow{p} B$

with M^{\bullet} a complex of abelian sheaves, p a morphism of complexes, and q a quasi-isomorphism. • A 1-morphism from the fraction $(q_1, M_1^{\bullet}, p_1)$ to the fraction $(q_2, M_2^{\bullet}, p_2)$ is an ordered triple (r, K^{\bullet}, s) with K^{\bullet} a complex of abelian sheaves, r and s quasi-isomorphisms making the diagram



commutative.

• A 2-morphism from the 1-morphism $(r_1, K_1^{\bullet}, s_1)$ to the 1-morphism $(r_2, K_2^{\bullet}, s_2)$ is an isomorphism t^{\bullet} : $K_1^{\bullet} \to K_2^{\bullet}$ of complexes of abelian sheaves such that the diagram that we will call "diamond"



commutes.

Subtricategory of $T^{[-2,0]}(S)$

 $T^{[-2,0]}(S)$ has a well known subtricategory $C^{[-2,0]}(S)$. It has same objects as $T^{[-2,0]}(S)$. For a pair of complexes of abelian sheaves A^{\bullet} , B^{\bullet} , its hom-2-groupoid $\operatorname{Hom}_{C^{[-2,0]}(S)}(A^{\bullet}, B^{\bullet})$ is the 2-groupoid associated to the complex

$$\operatorname{Hom}^{-2}(A^{\bullet}, B^{\bullet}) \longrightarrow \operatorname{Hom}^{-1}(A^{\bullet}, B^{\bullet}) \longrightarrow$$

of abelian groups. Explicitly $C^{[-2,0]}(S)$ has same objects as $T^{[-2,0]}(S)$ and for any two complexes of abelian sheaves A^{\bullet} , B^{\bullet} its hom-2-groupoid has objects, 1-morphisms, and 2-morphisms defined respectively as:

$$A^{-2} \xrightarrow{\delta_{A}} A^{-1} \xrightarrow{\lambda_{A}} A^{0}$$

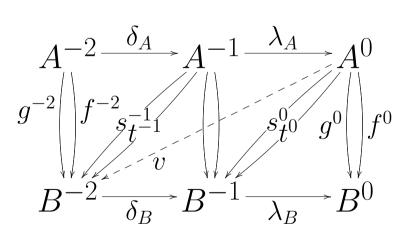
$$\begin{vmatrix} f^{-2} & & \\ f^{-1} & & \\ f^{0} & \\ B^{-2} \xrightarrow{\delta_{B}} B^{-1} \xrightarrow{\lambda_{B}} B^{0}$$

with relations

It is easy to observe that $C^{[-2,0]}(S)$ is a 3-category.

$$B^{\bullet}$$

 $Z^0(\operatorname{Hom}^0(A^{\bullet}, B^{\bullet}))$



 $\begin{array}{l} g^0 - f^0 = \lambda_B \circ s^0, \\ g^{-2} - f^{-2} = s^{-1} \circ \delta_A, \\ g^{-1} - f^{-1} = \delta_B \circ s^{-1} + s^0 \circ \lambda_A, \\ s^0 - t^0 = \delta_B \circ v, \\ s^{-1} - t^{-1} = -v \circ \lambda_A. \end{array}$

Main Theorem

Theorem. ([4], Theorem 6.4) There is a triequivalence

defined by sending A^{\bullet} to $TORS(\mathscr{A}, A^0)$.

Proof. (Outline) The method that we adopt to prove our results is going to use mostly the language and techniques developed in [1] the paper of Aldrovandi and Noohi such as butterflies, torsors, etc. The main steps of the proof are:

- Construct the trihomomorphism $2\wp$ on $C^{[-2,0]}(S)$.
- $2\wp(p)$
- $2\wp$ onto $T^{[-2,0]}(S)$.
- abelian sheaves A^{\bullet} such that \mathbb{P} is equivalent to $TORS(\mathscr{A}, A^0)$.

Remark

The trihomomorphism $2\wp$ on $C^{[-2,0]}(S)$ is not a triequivalence. A morphism of complexes of abelian sheaves $f \in Z^0(\operatorname{Hom}^0(A^{\bullet}, B^{\bullet}))$ is sent to a morphism $2\wp(f) : \operatorname{TORS}(\mathscr{A}, A^0) \to \operatorname{TORS}(\mathscr{B}, B^0)$ between associated Picard 2-stacks, but not all morphisms of Picard 2-stacks are obtained in this way. This means 2^{nd} step of the proof does not hold with the hom-2-groupoid $\operatorname{Hom}_{C^{[-2,0]}(S)}(A^{\bullet}, B^{\bullet})$. The reason is the strictness of the 1-morphisms in $C^{[-2,0]}(S)$ and in this sense, they are not geometric.

Consequence of the Main Theorem

From the theorem, we deduce a generalization of Deligne's analogous result about Picard stacks in SGA4, Exposé XVIII to Picard 2-stacks. **Corollary.** ([4], Corollary 6.5) The functor 2^{to} induces an equivalence

of categories.

Proof. Denote by,

 $2PIC^{pp}(S)$: the category of Picard 2-stacks obtained from 2PIC(S) by ignoring the modifications and taking as morphisms the equivalence classes of additive 2-functors.

over S with $H^{-i}(A^{\bullet}) \neq 0$ for i = 0, 1, 2.

Now, it is enough to observe from the definition of $Frac(A^{\bullet}, B^{\bullet})$ that

 $\pi_0(\operatorname{Frac}(A^{\bullet}, B^{\bullet})) \simeq \operatorname{Hom}_{\mathcal{D}^{[-2,0]}(\mathsf{S})}(A^{\bullet}, B^{\bullet}),$

where π_0 denotes the isomorphism classes of objects. Since the objects of $D^{[-2,0]}(S)$ are same as the objects of $T^{[-2,0]}(S)$, the essential surjectivity follows from the fact that $2\wp$ is essentially surjective.

Acknowledgements

I would like to thank my advisor Ettore Aldrovandi and Behrang Noohi.

References

[1] Ettore Aldrovandi and Behrang Noohi. Butterflies I: Morphisms of 2-group stacks. Advances in Mathematics, 221(3):687-773, 2009.

- [3] Pierre Deligne. La formule de dualité globale, 1973. SGA 4 III, Exposé XVIII.

 $2\wp: T^{[-2,0]}(\mathsf{S}) \longrightarrow 2\mathsf{PIC}(\mathsf{S}).$

• For any two complexes of abelian sheaves A^{\bullet} and B^{\bullet} , show that the hom-bigroupoid $Frac(A^{\bullet}, B^{\bullet})$ is biequivalent to the hom-2-groupoid $Hom(A^{\bullet}, B^{\bullet})$. In particular, this means that for any morphism $F : \text{TORS}(\mathscr{A}, A^0) \to \text{TORS}(\mathscr{B}, B^0)$, there exists a fraction (q, M^{\bullet}, p) such that $F \circ 2\wp(q) \simeq 1$

• Use the 2^{nd} step and the observation that $2\wp$ sends quasi-isomorphisms to equivalences, to extend

• Verify that $2\wp$ is essentially surjective, that is for any Picard 2-stack \mathbb{P} , there exists a complex of

 $2\wp^{\flat\flat}: \mathbb{D}^{[-2,0]}(\mathsf{S}) \longrightarrow 2\operatorname{Pic}^{\flat\flat}(\mathsf{S})$

 $D^{[-2,0]}(S)$: the subcategory of the derived category of category of complexes of abelian sheaves A^{\bullet}

[2] Lawrence Breen. On the classification of 2-gerbes and 2-stacks. *Astérisque*, (225):160,1994. [4] A. Emin Tatar. Length 3 complexes of abelian sheaves and picard 2-stacks. ArXiv:0906.2393v1