Complexes of Abelian Sheaves and Picard 2-Stacks

Department of Mathematics, Ahmet Emin Tatar $\begin{aligned} & \text { Farda State University, Tallahassee, FL, USA }\end{aligned}$

Introduction

In SGA4 Exposé XVIII, Deligne studies the relation between Picard stacks and length 2 complexes of abelian sheaves, as well as the relation between the morphisms of such objects. He proves ([3], Proposition 1.4.15) that the functor

$$
\mathrm{D}^{[-1,0]}(\mathrm{S}) \longrightarrow \operatorname{Pic}^{b}(\mathrm{~S})
$$

is an equivalence where $\mathrm{D}^{[-1,0]}(S)$ is the subcategory of the derived category of category of complexes of abelian sheaves A^{\bullet} over a site S with $H^{-i}\left(A^{\bullet}\right) \neq 0$ only for $i=0,1$ and $\operatorname{PIC}^{b}(S)$ is the category of Picard stacks over S with 1 -morphisms isomorphism classes of additive functor
Goal
Our purpose is to generalize the above result to Picard 2 -stacks.
Method

1) Define the 3 -category of Picard 2 -stacks 2 PIC($($
2) Define the tricategory of length 3 complexes of abelian sheaves $\mathrm{T}^{[-2,0]}(\mathrm{S})$.
3) Construct a trihomorphism 2ς from $\mathrm{T}^{[-2,0]}(\mathrm{S})$ to $2 \operatorname{PIC}(\mathrm{~S})$
4) Prove that the trihomomorphism $2 \wp$ is a triequivalence
5) Deduce a generalization of Deligne's result for Picard stacks to Picard 2-stacks

3-category of Picard 2-Stack

The detailed definition of Picard 2-stack over a site S as a fibered 2-category in 2-groupoids equipped with monoidal, braiding, group-like, and Picard structures can be found in Breen ([2], §8). For our purposes, we will define it as follow
Let $A^{\bullet}=\left[A^{-2} \rightarrow A^{-1} \rightarrow A^{0}\right]$ be a complex of abelian sheaves where \mathscr{A} is the Picard stack associated to $A^{-2} \rightarrow A^{-1}$, that is $\operatorname{Tors}\left(A^{-2}, A^{-1}\right)$. We define Tors $\left(\mathscr{A}, A^{0}\right)$ as Picard 2 -stack associated to the A^{\bullet}. It consists of objects, 1 -morphisms, and 2 -mophisms defined as

- A 1-morphism from $\left(\mathscr{L}_{1}, s_{1}\right)$ to $\left(\mathscr{L}_{2}, s_{2}\right)$ is a pair (F, γ)

$$
(F, \gamma):\left(\mathscr{L}_{1}, s_{1}\right) \longrightarrow\left(\mathscr{L}_{2}, s_{2}\right),
$$

where F is a \mathscr{A}-torsor morphism compatible with the torsor structure up to γ and $s_{2} \circ F=s_{1}$. - A 2-morphism from (F, γ) to (G, β) is a natural 2-transformation θ

$$
\left(\mathscr{L}_{1}, s_{1}\right)_{(G, \delta)}^{\frac{(F, \gamma)}{\psi \theta}}\left(\mathscr{L}_{2}, s_{2}\right)
$$

hat makes the diagram commute

We will see that $\operatorname{TORS}\left(\mathscr{A}, A^{0}\right)$ is in a sense the only example of Picard 2 -stacks.
An additive 2 -functor is a cartesian 2 -functor between the underlying fibered 2 -categories compatible with the monoidal, braided, and Picard structures carried by the fibers.

Picard 2-stacks over S form an obvious 3-category which we denote by $2 \operatorname{PIC}(\mathrm{~S})$. $2 \operatorname{PIC}(\mathrm{~S})$ has a hom-2-groupoid consisting of additive 2 -functors, weakly invertible natural 2 -transformations, an strict modifications. For any two Picard 2 -stacks \mathbb{P} and \mathbb{Q}, associated respectively to complexes A

Tricategory of Complexes of Abelian Sheaves $\mathrm{T}^{[-2,0]}(\mathrm{S})$

$\mathrm{T}^{[-2,0]}(S)$ is a tricategory of length 3 complexes of abelian sheaves placed in degrees $[-2,0]$. Fo any two such complexes A^{\bullet} and B^{\bullet}, its hom-bicategory $\operatorname{Frac}\left(A^{\bullet}, B^{\boldsymbol{\bullet}}\right)$ is the bigroupoid that consist
of objects, 1 -morphisms, and 2 -morphisms where

- An object is an ordered triple $\left(q, M^{\bullet}, p\right)$ called fraction

$$
.^{q}{ }_{M^{\bullet}}^{p}
$$

ith M^{\bullet} a complex of abelian sheaves, p a morphism of complexes, and q a quasi-isomorphism.

- A 1-morphism from the fraction $\left(q_{1}, M_{1}^{\bullet}, p_{1}\right)$ to the fraction $\left(q_{2}, M_{2}^{\boldsymbol{\bullet}}, p_{2}\right)$ is an ordered triple $\left.r, K^{\bullet}, s\right)$ with K^{\bullet} a complex of abelian sheaves, r and s quasi-isomorphisms making the dia gram

commutative
- A 2 -morphism from the 1 -morphism $\left(r_{1}, K_{1}^{\mathbf{\bullet}}, s_{1}\right)$ to the 1 -morphism $\left(r_{2}, K_{2}^{\mathbf{\bullet}}, s_{2}\right)$ is an isomor phism $t^{\bullet}: K_{1}^{\bullet} \rightarrow K_{2}^{\bullet}$ of complexes of abelian sheaves such that the diagram that we will call

ommute.

Subtricategory of $\mathrm{T}^{[-2,0]}(\mathrm{S})$
$\mathrm{T}^{[-2,0]}(\mathrm{S})$ has a well known subtricategory $\mathrm{C}^{[-2,0]}(\mathrm{S})$. It has same objects as $\mathrm{T}^{[-2,0]}(\mathrm{S})$. For a pai of complexes of abelian sheaves A^{\bullet}, B^{\bullet}, its hom-2-groupoid $\operatorname{Hom}_{\mathrm{Cl}-2,0,(S)}\left(A^{\bullet}, B^{\bullet}\right)$ is the 2-groupoii associated to the complex

$$
\operatorname{Hom}^{-2}\left(A^{\bullet}, B^{\bullet}\right) \longrightarrow \operatorname{Hom}^{-1}\left(A^{\bullet}, B^{\bullet}\right) \longrightarrow Z^{0}\left(\operatorname{Hom}^{0}\left(A^{\bullet}, B^{\bullet}\right)\right)
$$

of abelian groups. Explicitly $\mathrm{C}^{[-2,0]}(\mathrm{S})$ has same objects as $\mathrm{T}^{[-2,0]}(\mathrm{S})$ and for any two complexes of abelian sheaves A^{\bullet}, B^{\bullet} its hom-2-groupoid has objects, 1 -morphisms, and 2 -morphisms define respectively as:

with relations

$$
\begin{aligned}
& g^{0}-f^{0}=\lambda_{B} \circ s^{0}, \\
& g^{-2}-f^{-2}=s^{-1} \circ \delta_{A}, \\
& g^{-1}-f^{-1}=\delta_{B} \circ s^{-1}+s^{0} \circ \lambda_{A}, \\
& s^{0}-t^{0}=\delta_{B} \circ v, \\
& s^{-1}-t^{-1}=-v \circ \lambda_{A} .
\end{aligned}
$$

It is easy to observe that $\mathrm{C}^{[-2,0]}(\mathrm{S})$ is a 3 -category

Main Theorem

Theorem. ([4], Theorem 6.4) There is a triequivalence

$$
2 \wp: \mathrm{T}^{[-2,0]}(\mathrm{S}) \longrightarrow 2 \operatorname{PIC}(\mathrm{~S}) .
$$

defined by sending A^{\bullet} to $\operatorname{Tors}\left(\mathscr{A}, A^{0}\right)$.
Proof. (Outline) The method that we adopt to prove our results is going to use mostly the language and techniques developed in [1] the paper of Aldrovandi and Noohi such as butterflies, torsors, etc. The main steps of the proof are:

- Construct the trihomomorphism $2 \wp$ on $\mathrm{Cl}^{-2,0_{J}}(\mathrm{~S}$
- For any two complexes of abelian sheaves A^{\bullet} and $B^{\boldsymbol{\bullet}}$, show that the hom-bigroupoid $\operatorname{Frac}\left(A^{\boldsymbol{\bullet}}, B^{\bullet}\right)$ is biequivalent to the hom-2-groupoid $\operatorname{Hom}\left(A^{\bullet}, B^{\bullet}\right)$. In particular, this means that for any morphism $F: \operatorname{TORS}(\mathscr{A}, A) \rightarrow \operatorname{TORS}(\mathscr{A}, B)$, there exists a fraction (q, M, p) such that $F \circ 2 \wp(q) \simeq$ $2 \wp(p)$.
- Use the $2^{\text {nad }}$ step and the observation that $2 \wp$ sends quasi-isomorphisms to equivalences, to extend $2 \wp$ onto $\mathrm{T}^{[-2,0]}(\mathrm{S})$
- Verify that $2 \wp$ is essentially surjective, that is for any Picard 2 -stack \mathbb{P}, there exists a complex of abelian sheaves A^{\bullet} such that \mathbb{P} is equivalent to $\operatorname{Tors}\left(\mathscr{A}, A^{0}\right)$

Remark

The trihomomorphism 2ζ on $\mathrm{Cl}^{[-2,0]}(\mathrm{S})$ is not a triequivalence. A morphism of complexes of abelian The trinomomorphism 2ℓ on
sheaves $f \in Z^{0}\left(\operatorname{Hom} \mathrm{H}^{0}\left(A^{\bullet}, B^{\bullet}\right)\right.$) is sent to a $\operatorname{morphism} 2 \wp(f): \operatorname{Torss}\left(\mathscr{A}, A^{0}\right) \rightarrow \operatorname{Toxs}\left(\mathscr{B}, B^{0}\right)$ beThis means $2^{\text {nd }}$ step of the proof does not hold with the hom-2-groupoid Hom reason is the strictness of the 1 -morphisms in $\mathrm{C}^{[-2,0]}(\mathrm{S})$ an-2-groupoid $\mathrm{Hom}_{\mathrm{C}}\left(-2,0,(\mathrm{~S})(A, B)\right.$. ${ }^{4}$.

Consequence of the Main Theorem

From the theorem, we deduce a generalization of Deligne's analogous result about Picard stacks in SGA4, Exposé XVIII to Picard 2-stacks.
Corollary. ([4],Corollary 6.5) The functor $2 \wp$ induces an equivalence

$$
28^{\text {bb }}: \mathrm{D}^{[-2,0]}(\mathrm{S}) \longrightarrow 2 \mathrm{PIC}^{\mathrm{bb}}(\mathrm{~S})
$$

of categories.
Proof. Denote by
2 PIC ${ }^{\text {l }}$ (S) : the category of Picard 2-stacks obtained from 2PIC (S by ignoring the modifications and aking as morphisms the equivalence classes of additive 2 -functors.
$D^{[-2,0]}(S)$: the subcategory of the derived category of category of complexes of abelian sheaves A^{\bullet} ver S with $H^{-i}\left(A^{\bullet}\right) \neq 0$ for $i=0,1,2$
Now, it is enough to observe from the definition of $\operatorname{Frac}\left(A^{\bullet}, B^{\bullet}\right)$ that

$$
\pi_{0}\left(\operatorname{Frac}\left(A^{\bullet}, B^{\bullet}\right)\right) \simeq \operatorname{Hom}_{\mathrm{D} \mid-2,0 / \mathrm{S})}\left(A^{\bullet}, B^{\bullet}\right),
$$

where π_{0} denotes the isomorphism classes of objects. Since the objects of $\mathrm{D}^{[-2,0]}(\mathrm{S})$ are same as the objects of $\mathrm{T}^{[-2,0]}(\mathrm{S})$, the essential surjectivity follows from the fact that $2 \wp$ is essentially surjective.
Acknowledgement
would like to thank my advisor Ettore Aldovandi and Behrang Noohi.

Reference

11 Ettore Aldrovandi and Behrang Noohi. Butterflies I: Morphisms of 2-group stacks. Advances in Mathematics, 221(3):687-773, 2009.
[2] Lawrence Breen. On the classification of 2-gerbes and 2-stacks. Astérisque, (225):160,1994
3] Pierre Deligne. La formule de dualité globale, 1973. SGA 4 III, Exposé XVIII.
4] A. Emin Tatar Length 3 complexes of abelian sheaves and picard 2-stacks. ArXiv:0906 2393v1

