Abelian Sheaves and Picard Stacks

Ahmet Emin Tatar

Florida State University www.math.fsu.edu/~atatar

2009 Fall AMS Western Section Meeting Riverside, CA

Motivation

- 2 3-Category of Picard 2-Stacks
- 3 Tricategory of Complexes of Abelian Sheaves
- 4 Structure Theorem for Picard 2-Stacks
- 5 Some Ideas for Future Work

Motivation

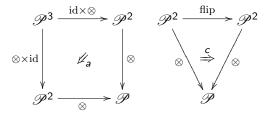
- 2 3-Category of Picard 2-Stacks
- **3** Tricategory of Complexes of Abelian Sheaves
- 4 Structure Theorem for Picard 2-Stacks
- 5 Some Ideas for Future Work

Picard Category

A Picard category is a groupoid $(\mathscr{P}, \otimes, a, c)$ where

 $\otimes:\mathscr{P}\times\mathscr{P}{\longrightarrow}\mathscr{P}$

with natural transformations a and c



satisfying:

- $-\otimes X: \mathscr{P} \rightarrow \mathscr{P}$ is an equivalence for all $X \in \mathscr{P}$,
- pentagon identity,
- hexagon identities,
- $c_{Y,X} \circ c_{X,Y} = \operatorname{id}_{X \otimes Y}$ for all $X, Y \in \mathscr{P}$,
- $c_{X,X} = \operatorname{id}_{X \otimes X}$ for all $X \in \mathscr{P}$.

A Picard stack ${\mathscr P}$ over the site S is a stack associated with a stack morphism

$$\otimes : \mathscr{P} \times \mathscr{P} \longrightarrow \mathscr{P}$$

inducing a Picard structure on \mathcal{P} .

Let $\lambda: A^{-1} \rightarrow A^0$ be a morphism of abelian sheaves. For any $U \in S$, define a groupoid \mathscr{P}_U as

- objects: $a \in A^0(U)$
- morphisms: $(f, a) \in A^{-1}(U) \times A^{0}(U)$ such that $(f, a) : a \rightarrow a + \lambda(f)$.

Let $\lambda: A^{-1} \to A^0$ be a morphism of abelian sheaves. For any $U \in S$, define a groupoid \mathscr{P}_U as

- objects: $a \in A^0(U)$
- morphisms: $(f, a) \in A^{-1}(U) \times A^0(U)$ such that $(f, a) : a \rightarrow a + \lambda(f)$.

 \mathscr{P} is only a pre-stack stackify \mathscr{P}^{\sim} is a stack.

Let $\lambda: A^{-1} \rightarrow A^0$ be a morphism of abelian sheaves. For any $U \in S$, define a groupoid \mathscr{P}_U as

- objects: $a \in A^0(U)$
- morphisms: $(f, a) \in A^{-1}(U) \times A^0(U)$ such that $(f, a) : a \rightarrow a + \lambda(f)$.

 \mathscr{P} is only a pre-stack $\xrightarrow{\text{stackify}} \mathscr{P}^{\sim}$ is a stack. An object of \mathscr{P}_{U}^{\sim} is a descent datum $(V_{\bullet} \rightarrow U, X, \varphi)$ where

• ...
$$V_2 \xrightarrow{\longrightarrow} V_1 \xrightarrow{\delta} U_0$$
 is a hypercover,

- X is an object in \mathscr{P}_{V_0} ,
- $\varphi: d_1^*X {\rightarrow} d_0^*X$ is a morphism in \mathscr{P}_{V_1} ,

satisfying the cocycle condition in \mathscr{P}_{V_2}

$$d_1^*\varphi = d_2^*\varphi \circ d_0^*\varphi.$$

 $(V_{\bullet} \rightarrow U, X, \varphi)$ is effective if there exists $Y \in \mathscr{P}_{U}$ with isomorphism $\psi : \delta^{*}Y \rightarrow X$ in $\mathscr{P}_{V_{0}}$ compatible with φ .

 $(V_{\bullet} \rightarrow U, X, \varphi)$ is effective if there exists $Y \in \mathscr{P}_U$ with isomorphism $\psi : \delta^* Y \rightarrow X$ in \mathscr{P}_{V_0} compatible with φ .

 \mathscr{P}^{\sim} is a Picard stack:

$$(V_{\bullet} \rightarrow U, X, \varphi) \otimes (V'_{\bullet} \rightarrow U, X', \varphi') = (V_{\bullet} \times_{U} V'_{\bullet} \rightarrow U, X + X', \varphi + \varphi')$$

 $(V_{\bullet} \rightarrow U, X, \varphi)$ is effective if there exists $Y \in \mathscr{P}_U$ with isomorphism $\psi : \delta^* Y \rightarrow X$ in \mathscr{P}_{V_0} compatible with φ .

 \mathscr{P}^{\sim} is a Picard stack:

$$(V_{\bullet} \rightarrow U, X, \varphi) \otimes (V'_{\bullet} \rightarrow U, X', \varphi') = (V_{\bullet} \times_{U} V'_{\bullet} \rightarrow U, X + X', \varphi + \varphi')$$

<u>Notation</u>: $\mathscr{P}^{\sim} = [A^{-1} \rightarrow A^0]^{\sim}$.

 $(V_{\bullet} \rightarrow U, X, \varphi)$ is effective if there exists $Y \in \mathscr{P}_U$ with isomorphism $\psi : \delta^* Y \rightarrow X$ in \mathscr{P}_{V_0} compatible with φ .

 \mathscr{P}^{\sim} is a Picard stack:

$$(V_{\bullet} \rightarrow U, X, \varphi) \otimes (V'_{\bullet} \rightarrow U, X', \varphi') = (V_{\bullet} \times_{U} V'_{\bullet} \rightarrow U, X + X', \varphi + \varphi')$$

<u>Notation</u>: $\mathscr{P}^{\sim} = [A^{-1} \rightarrow A^0]^{\sim}$.

<u>Remark</u>: Descent along hypercovers is same as descent along Čech covers - [Artin-Mazur],[Dugger-Hollander-Isaksen].

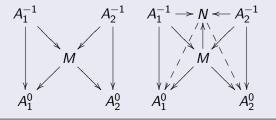
Structure Theorem for Picard Stacks

Theorem (Deligne)

The functor

$$\operatorname{ch}: \operatorname{T}^{[-1,0]}(\mathsf{S}) \longrightarrow \operatorname{Pic}(\mathsf{S})$$

defined by sending $A^{-1} \rightarrow A^0$ to $[A^{-1} \rightarrow A^0]^{\sim}$ is a biequivalence where $T^{[-1,0]}(S)$ is the bicategory of complexes whose 1- and 2-morphisms are



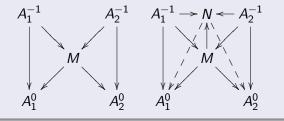
Structure Theorem for Picard Stacks

Theorem (Deligne)

The functor

$$\operatorname{ch}: \operatorname{T}^{[-1,0]}(\mathsf{S}) \longrightarrow \operatorname{Pic}(\mathsf{S})$$

defined by sending $A^{-1} \rightarrow A^0$ to $[A^{-1} \rightarrow A^0]^{\sim}$ is a biequivalence where $T^{[-1,0]}(S)$ is the bicategory of complexes whose 1- and 2-morphisms are



<u>Remark</u>: Butterflies and non-abelian version of the structure theorem by Aldrovandi and Noohi.

Ahmet Emin Tatar (FSU)

Corollary

The functor ch induces an equivalence

$$D^{[-1,0]}(S) \longrightarrow PIC^{\flat}(S)$$

of categories where

- D^[-1,0](S) is the subcategory of the derived category of category of complexes of abelian sheaves A[•] over a site S with H⁻ⁱ(A[•]) ≠ 0 only for i = 0, 1
- PIC^b(S) is the category of Picard stacks over S with 1-morphisms isomorphism classes of additive functors.

Motivation

2 3-Category of Picard 2-Stacks

3 Tricategory of Complexes of Abelian Sheaves

4 Structure Theorem for Picard 2-Stacks

5 Some Ideas for Future Work

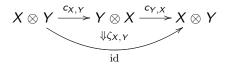
- A 2-category is strict and a 2-functor is a weak homomorphism.
- A 2-functor F : C→D is a biequivalence if it induces equivalences Hom_C(X, Y)→Hom_D(FX, FY) for every X, Y ∈ C and every object Y' in D is equivalent to an object of the form F(X).
- A natural 2-transformation is a strong transformation.
- A 2-groupoid is a 2-category whose 1-morphisms are invertible up to a 2-morphism and whose 2-morphisms are strictly invertible.
- A bigroupoid is a weak 2-groupoid.

- A 3-category is strict and a tricategory is a weak 3-category.
- A trihomomorphism is a weak 3-functor.
- A trihomomorphism F : C→D is a triequivalence if it induces biequivalences Hom_C(X, Y)→Hom_D(FX, FY) for every X, Y ∈ C and every object Y' in D is biequivalent to an object of the form F(X).

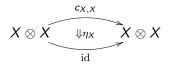
Picard 2-Category

A Picard 2-category is a 2-groupoid $(\mathbb{P}, \otimes, a, c, \pi, \mathfrak{h}_1, \mathfrak{h}_2, \zeta, \eta)$ where

- $\otimes : \mathbb{P} \times \mathbb{P} \longrightarrow \mathbb{P}$ is a 2-functor,
- *a* is the natural 2-transformation and π is the modification defining the monoidal structure,
- c is the natural 2-transformation and
 ^h₁,
 ^h₂ are the modifications
 defining the braiding structure,
- ζ is the modification defining the functorial 2-morphism of symmetry,



• η is the modification defining the functorial 2-morphism of Picard,



satisfying conditions

• $-\otimes X: \mathbb{P} \rightarrow \mathbb{P}$ is a biequivalence for all $X \in \mathbb{P}$,

•
$$X \otimes Y \xrightarrow{c} Y \otimes X$$

 $\downarrow \downarrow \zeta \\ \downarrow \zeta \\$

• $\eta_X * \eta_X = \zeta_{X,X}$ for every $X \in \mathbb{P}$

• There is an additive relation between η_X, η_Y and $\eta_{X\otimes Y}$, for every $X, Y \in \mathbb{P}$,

• . . .

$\otimes: \mathbb{P} \times \mathbb{P} {\longrightarrow} \mathbb{P}$

inducing a Picard structure on \mathbb{P} .

$\otimes:\mathbb{P}\times\mathbb{P}{\longrightarrow}\mathbb{P}$

inducing a Picard structure on \mathbb{P} .

An additive 2-functor is a cartesian 2-functor compatible with the monoidal, group-like, and braiding structures.

$\otimes:\mathbb{P}\times\mathbb{P}{\longrightarrow}\mathbb{P}$

inducing a Picard structure on \mathbb{P} .

An additive 2-functor is a cartesian 2-functor compatible with the monoidal, group-like, and braiding structures.

Picard 2-stacks over S form a 3-category, denoted by 2Pic(S), whose

- 1-morphisms are additive 2-functors,
- 2-morphisms are natural 2-transformations,
- 3-morphisms are modifications.

$\otimes:\mathbb{P}\times\mathbb{P}{\longrightarrow}\mathbb{P}$

inducing a Picard structure on \mathbb{P} .

An additive 2-functor is a cartesian 2-functor compatible with the monoidal, group-like, and braiding structures.

Picard 2-stacks over S form a 3-category, denoted by 2Pic(S), whose

- 1-morphisms are additive 2-functors,
- 2-morphisms are natural 2-transformations,
- 3-morphisms are modifications.

Observation: natural 2-transformations are invertible up to a modifications and modifications are strictly invertible.

Let $A^{\bullet}: A^{-2} \xrightarrow{\delta} A^{-1} \xrightarrow{\lambda} A^{0}$ be a complex of abelian sheaves. For any $U \in S$, define a 2-groupoid \mathbb{P}_U as

- objects: $a \in A^0(U)$,
- 1-morphisms: $(f, a) \in A^{-1}(U) \times A^0(U)$ such that $(f, a) : a \rightarrow a + \lambda(f)$,
- 2-morphisms: $(\sigma, f, a) \in A^{-2}(U) \times A^{-1}(U) \times A^{0}(U)$ such that $(\sigma, f, a) : (f, a) \Rightarrow (f + \delta(\sigma), a).$

Let $A^{\bullet}: A^{-2} \xrightarrow{\delta} A^{-1} \xrightarrow{\lambda} A^{0}$ be a complex of abelian sheaves. For any $U \in S$, define a 2-groupoid \mathbb{P}_U as

- objects: $a \in A^0(U)$,
- 1-morphisms: $(f, a) \in A^{-1}(U) \times A^0(U)$ such that $(f, a) : a \rightarrow a + \lambda(f)$,
- 2-morphisms: $(\sigma, f, a) \in A^{-2}(U) \times A^{-1}(U) \times A^{0}(U)$ such that $(\sigma, f, a) : (f, a) \Rightarrow (f + \delta(\sigma), a).$

An object of \mathbb{P}_U^{\sim} is a 2-descent datum $(V_{\bullet} \rightarrow U, X, \varphi, \alpha)$

• ...
$$V_2 \xrightarrow{\longrightarrow} V_1 \xrightarrow{\delta} V_0 \xrightarrow{\delta} U$$
 is a hypercover,

- X is an object in \mathbb{P}_{V_0}
- $\varphi: d_0^*X {\rightarrow} d_1^*X$ is a 1-morphism in \mathbb{P}_{V_1}
- $\alpha: d_1^* \varphi \Rightarrow d_2^* \varphi \circ d_0^* \varphi$ is a 2-morphism in \mathbb{P}_{V_2}

satisfying the 2-cocycle condition in \mathbb{P}_{V_3}

$$((d_2d_3)^*\varphi * d_0^*\alpha) \circ d_2^*\alpha = (d_3^*\alpha * (d_0d_1)^*\varphi) \circ d_1^*\alpha$$

An object of \mathbb{P}_U^{\sim} is a 2-descent datum $(V_{\bullet} \rightarrow U, X, \varphi, \alpha)$

• ...
$$V_2 \xrightarrow{\longrightarrow} V_1 \xrightarrow{\delta} V_0 \xrightarrow{\delta} U$$
 is a hypercover,

- X is an object in \mathbb{P}_{V_0}
- $\varphi: d_0^*X {\rightarrow} d_1^*X$ is a 1-morphism in \mathbb{P}_{V_1}
- $\alpha: d_1^* \varphi \Rightarrow d_2^* \varphi \circ d_0^* \varphi$ is a 2-morphism in \mathbb{P}_{V_2}

satisfying the 2-cocycle condition in \mathbb{P}_{V_3}

$$((d_2d_3)^*\varphi * d_0^*\alpha) \circ d_2^*\alpha = (d_3^*\alpha * (d_0d_1)^*\varphi) \circ d_1^*\alpha$$

 $(V_{\bullet} \rightarrow U, X, \varphi, \alpha)$ is effective if there exists $Y \in \mathbb{P}_U$ and $\psi : \delta^* Y \rightarrow X$ in \mathbb{P}_{V_0} compatible with φ and α .

An object of \mathbb{P}_U^{\sim} is a 2-descent datum $(V_{\bullet} \rightarrow U, X, \varphi, \alpha)$

• ...
$$V_2 \xrightarrow{\longrightarrow} V_1 \xrightarrow{\delta} V_0 \xrightarrow{\delta} U$$
 is a hypercover,

- X is an object in \mathbb{P}_{V_0}
- $\varphi: d_0^*X {\rightarrow} d_1^*X$ is a 1-morphism in \mathbb{P}_{V_1}
- $\alpha: d_1^* \varphi \Rightarrow d_2^* \varphi \circ d_0^* \varphi$ is a 2-morphism in \mathbb{P}_{V_2}

satisfying the 2-cocycle condition in \mathbb{P}_{V_3}

$$((d_2d_3)^*\varphi * d_0^*\alpha) \circ d_2^*\alpha = (d_3^*\alpha * (d_0d_1)^*\varphi) \circ d_1^*\alpha$$

 $(V_{\bullet} \rightarrow U, X, \varphi, \alpha)$ is effective if there exists $Y \in \mathbb{P}_U$ and $\psi : \delta^* Y \rightarrow X$ in \mathbb{P}_{V_0} compatible with φ and α .

$$\begin{split} &\mathbb{P}^{\sim} \text{ is a Picard 2-stack: } (V_{\bullet} \rightarrow U, X, \varphi, \alpha) \otimes (V'_{\bullet} \rightarrow U, X', \varphi', \alpha') = \\ &(V_{\bullet} \times_{U} V'_{\bullet} \rightarrow U, X + X', \varphi + \varphi', \alpha + \alpha') \end{split}$$

An object of \mathbb{P}_U^{\sim} is a 2-descent datum $(V_{\bullet} \rightarrow U, X, \varphi, \alpha)$

• ...
$$V_2 \xrightarrow{\longrightarrow} V_1 \xrightarrow{\delta} V_0 \xrightarrow{\delta} U$$
 is a hypercover,

- X is an object in ℙ_{V0}
- $\varphi: d_0^*X {\rightarrow} d_1^*X$ is a 1-morphism in \mathbb{P}_{V_1}
- $\alpha: d_1^* \varphi \Rightarrow d_2^* \varphi \circ d_0^* \varphi$ is a 2-morphism in \mathbb{P}_{V_2}

satisfying the 2-cocycle condition in \mathbb{P}_{V_3}

$$((d_2d_3)^*\varphi * d_0^*\alpha) \circ d_2^*\alpha = (d_3^*\alpha * (d_0d_1)^*\varphi) \circ d_1^*\alpha$$

 $(V_{\bullet} \rightarrow U, X, \varphi, \alpha)$ is effective if there exists $Y \in \mathbb{P}_U$ and $\psi : \delta^* Y \rightarrow X$ in \mathbb{P}_{V_0} compatible with φ and α .

$$\begin{split} \mathbb{P}^{\sim} \text{ is a Picard 2-stack: } (V_{\bullet} \rightarrow U, X, \varphi, \alpha) \otimes (V'_{\bullet} \rightarrow U, X', \varphi', \alpha') = \\ (V_{\bullet} \times_{U} V'_{\bullet} \rightarrow U, X + X', \varphi + \varphi', \alpha + \alpha') \end{split}$$

<u>Notation</u>: $\mathbb{P}^{\sim} = [A^{\bullet}]^{\sim}$

1 Motivation

2 3-Category of Picard 2-Stacks

3 Tricategory of Complexes of Abelian Sheaves

- 4 Structure Theorem for Picard 2-Stacks
- 5 Some Ideas for Future Work

We are going to define...

the tricategory of length 3 complexes of abelian sheaves

$$A^{\bullet}: A^{-2} \longrightarrow A^{-1} \longrightarrow A^{0}$$

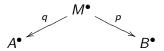
denoted by $T^{[-2,0]}(S)$.

For any A^{\bullet} and B^{\bullet} , the hom-bicategory of $T^{[-2,0]}(S)$ is the bigroupoid denoted by $Frac(A^{\bullet}, B^{\bullet})$ whose

- objects,
- 1-morphisms,
- 2-morphisms,

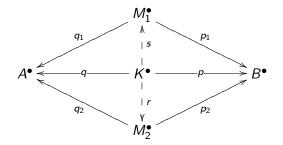
are defined as ...

• Objects are ordered triples (q, M^{\bullet}, p)



 M^{\bullet} complex, p morphism of complexes, and q quasi-isomorphism.

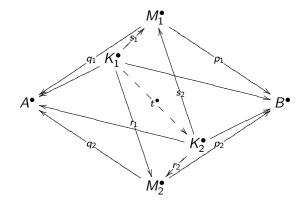
• 1-morphisms $(q_1, M_1^{\bullet}, p_1) \rightarrow (q_2, M_2^{\bullet}, p_2)$ are ordered triples (r, K^{\bullet}, s) such that the diagram commutes.



 K^{\bullet} complex, r and s quasi-isomorphisms.

2-morphisms of $Frac(A^{\bullet}, B^{\bullet})$

2-morphisms (r₁, K[•]₁, s₁)⇒(r₂, K[•]₂, s₂) are isomorphisms t[•]: K[•]₁→K[•]₂ of complexes such that the diagram commutes.



Strict Subcategory of $T^{[-2,0]}(S)$

 $T^{[-2,0]}(S)$ has a strict subcategory $C^{[-2,0]}(S)$ whose objects are same as $T^{[-2,0]}(S)$ and whose hom-bicategory $Hom_{C^{[-2,0]}(S)}(A^{\bullet}, B^{\bullet})$ is the 2-groupoid associated to the complex

$$\operatorname{Hom}^{-2}(A^{\bullet}, B^{\bullet}) \longrightarrow \operatorname{Hom}^{-1}(A^{\bullet}, B^{\bullet}) \longrightarrow Z^{0}(\operatorname{Hom}^{0}(A^{\bullet}, B^{\bullet}))$$

Explicitly, $C^{[-2,0]}(S)$ has

- objects: complexes of abelian sheaves,
- 1-morphisms: morphism of complexes
- 2-morphisms: homotopies
- 3-morphisms: homotopies of homotopies

$C^{[-2,0]}(S)$ is a 3-category.

1 Motivation

- 2 3-Category of Picard 2-Stacks
- 3 Tricategory of Complexes of Abelian Sheaves
- 4 Structure Theorem for Picard 2-Stacks
 - 5 Some Ideas for Future Work

Structure Theorem for Picard 2-Stacks

Theorem (A.E.T.)

The trihomomorphism

defined by sending A^{\bullet} to $[A^{\bullet}]^{\sim}$ is a triequivalence.

Proof.

- \bullet Construct the trihomomorphism 2ch on $\mathrm{C}^{[-2,0]}(\mathsf{S}).$
- For any A[•] and B[•], and for any morphism F : [A[•]][~]→[B[•]][~], there exists a fraction (q, M[•], p) such that F ∘ 2ch(q) ≃ 2ch(p).
- Use the 2^{nd} step and the observation that 2ch sends quasi-isomorphisms to equivalences, to extend 2ch onto $T^{[-2,0]}(S)$.
- Verify that 2ch is essentially surjective.

Derived Category

Corollary

The functor 2ch induces an equivalence

$$2\mathrm{ch}^{\flat\flat}:\mathrm{D}^{[-2,0]}(\mathsf{S})\longrightarrow 2\mathrm{Pic}^{\flat\flat}(\mathsf{S})$$

of categories where

- 2PIC^{bb}(S): the category of Picard 2-stacks obtained from 2PIC(S) by ignoring the modifications and taking as morphisms the equivalence classes of additive 2-functors.
- D^[-2,0](S): the subcategory of the derived category of category of complexes of abelian sheaves A[•] over S with H⁻ⁱ(A[•]) ≠ 0 for i = 0, 1, 2.

Proof.

$\pi_0(\operatorname{Frac}(A^{\bullet}, B^{\bullet})) \simeq \operatorname{Hom}_{\operatorname{D}^{[-2,0]}(\mathsf{S})}(A^{\bullet}, B^{\bullet})$

30

 The trihomomorphism 2ch on C^[-2,0](S) is not a triequivalence. Not all morphisms of Picard 2-stacks are obtained from a morphism of complexes of abelian sheaves. Therefore the 1-morphisms in C^[-2,0](S) are not geometric.

 The trihomomorphism 2ch on C^[-2,0](S) is not a triequivalence. Not all morphisms of Picard 2-stacks are obtained from a morphism of complexes of abelian sheaves. Therefore the 1-morphisms in C^[-2,0](S) are not geometric.

	$T^{[-2,0]}(S)$	2 Pic(S)
3-categorical structure	weak	strict
objects	simple	complicated
morphisms	complicated	simple

1 Motivation

- 2 3-Category of Picard 2-Stacks
- **3** Tricategory of Complexes of Abelian Sheaves
- 4 Structure Theorem for Picard 2-Stacks

5 Some Ideas for Future Work

- Tensor product of Picard 2-stacks.
- Extensions of gr-stacks by gr-stacks.
- Biextensions of length 3 complexes of abelian sheaves.