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ABSTRACT

In Séminaire de Géometrie Algébrique 4 (SGA4), Exposé XVIII, Pierre Deligne proves that
to any Picard stack one can associate a complex of abelian sheaves of length 2. He also
studies the morphisms between such stacks and shows that such a morphism defines a class
of fractions in the derived category of complexes of abelian sheaves of length 2. From these
two preliminary results, he finally deduces that the derived category of complexes of abelian
sheaves of length 2 is equivalent to the category of Picard stacks with morphisms being the
isomorphism classes.

In this dissertation, we generalize his work, following closely his steps in SGA4, to the
case of Picard 2-stacks. But this generalization requires first a clear description of a Picard
2-category as well as of a 2-functor between such 2-categories that respects Picard structure.
Once this has been done, we can talk about category of Picard 2-stacks and prove that the
derived category of complexes of abelian sheaves of length 3 is equivalent to the category
of Picard 2-stacks.
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CHAPTER 1

INTRODUCTION

Let DI=1.0] (S) be the subcategory of the derived category of category of complexes of abelian
sheaves A® over a site S with H*(A®) # 0 only for i = 0,1. Let P1c(S)’(S) denote the
category of Picard stacks over S with 1-morphisms isomorphism classes of additive functors.
In SGA4 Exposé XVIII, Deligne shows the following.

Proposition. [9, Proposition 1.4.15] The functor
@ : DIELO(S)——=P1¢(S)’(S)

given by sending a length 2 complex of abelian sheaves, A® : A~1— A" over S to its as-
sociated Picard stack [A~!— A%~ an isomorphism class of fractions from A® to B® to an
isomorphism class of morphisms of associated Picard stacks is an equivalence.

The purpose of this thesis is to generalize the above result to Picard 2-stacks over S.
Let 2P1¢(S)"(S) denote the category of Picard 2-stacks, whose morphisms are equivalence
classes of additive 2-functors. Let D[=2(S) be the subcategory of the derived category of
category of complexes of abelian sheaves A® over S with H~%(A®) # 0 for i = 0,1, 2.

Theorem I. The functor

20" : DI-20)(S)—=2P1¢(S)"(S)

given by sending a length 3 complex of abelian sheaves, A® : A=2—A~1—= A over S to its
associated Picard 2-stack [A72—A~!1— A%~ an equivalence class of fractions from A® to
B*® to an equivalence class of morphisms of associated Picard 2-stacks is an equivalence.

Basically, it gives a geometric description of the derived category of length 3 complexes
of abelian sheaves. It states that any Picard 2-stack over a site S is biequivalent to a
Picard 2-stack associated to a length 3 complex of abelian sheaves and that any morphism
of Picard 2-stacks comes from a fraction of such complexes. A complex of abelian sheaves,
whose only non-zero cohomology groups are placed at degrees -2,-1, and 0 can be thought
as a length 3 complex of abelian sheaves, and therefore a morphism in DI=2(S) between
any two complexes A® and B*® is given by an equivalence class of fraction

(¢, M®,p) : A*<"—M*—">B*



with ¢ being a quasi-isomorphism.

However, we prove a much stronger statement, so that the latter theorem becomes an
immediate consequence of it. Let 2P1¢(S)(S) be the 3-category of Picard 2-stacks where
1-morphisms are additive 2-functors, 2-morphisms are natural 2-transformations, and 3-
morphisms are modifications. Length 3 complexes of abelian sheaves over S placed in degrees
[—2,0] form a 3-category C[=29(S) by adding to the regular morphisms of complexes, the
degree -1 and -2 morphisms. Then we easily construct an explicit trihomomorphism

20 : C[-20(S)——=2P1¢(S)(S),

that is a 3-functor between 3-categories. Under this construction, length 3 complexes of
abelian sheaves correspond to Picard 2-stacks. Although morphisms of such complexes
induce morphisms between associated Picard 2-stacks, not all of them are obtained in this
way. In this sense, the 1-morphisms of ClI=2%(S) are not geometric and the reason is their
strictness. We resolve this problem by weakening CI=29(S) as follows: We introduce a
tricategory TI=29(S) (a tricategory is a weak version of a 3-category in the sense of [I3])
with same objects as C[=29(S). For any two complexes of abelian sheaves A* and B®,
morphisms between A® and B® in T!=29(S) is the bigroupoid Frac(A®, B*), whose main
property is that it satisfies mo(Frac(A®, B®)) =~ Homp-2,0(5)(A®, B*), where m denotes the
isomorphism classes of objects. Roughly speaking, objects of Frac(A®, B®) are fractions
from A® to B® in the ordinary sense and its 2-morphisms are certain commutative diagrams

(5.2.2) called “diamonds”. Then we prove:

Theorem II. The trihomomorphism

2 : TI=20/(S)——=2P1¢(S)(S)

defined by sending A® a length 3 complex of abelian sheaves to its associated Picard 2-stack
is a triequivalence.

Since in particular a triequivalence is essentially surjective, every Picard 2-stack is
biequivalent to a Picard 2-stack associated to a complex of abelian sheaves. Then by ignor-
ing the 3-morphisms and passing to the equivalence class of morphisms in the triequivalence
of Theorem [T}, we deduce Theorem [I|

The Chapters in this dissertation are organized as follows:

In Chapter [2, we recall the language of 2-categories and 3-categories that is commonly
used through out the thesis.

In Chapter [3| we explain Deligne’s work in SGA4 Exposé XVIIL. We start with a detailed
description of the 2-category P1C(S) of Picard stacks over a site S. We define the bicategory
TI=19(S) of morphisms of abelian sheaves over the site S whose 1-morphism are called
butterflies. We later construct a bifunctor from P1c(S) to TI=1%(S) by sending a morphism
of abelian sheaves A=!1— AY to its associated Picard stack TOrRS(A™!, A%). We finish this
Chapter by enouncing Deligne’s characterization theorem for Picard stacks from which
follows.

In Chapter 4, we construct the 3-category 2P1c(S) of Picard 2-stacks. We give an
example of a Picard 2-stack, namely TORS(.27, A®), where .27 is a Picard stack and A° is an
abelian sheaf. This example is of great importance for the rest since it is equivalent to the



Picard 2-stack associated to A® : [A71—A~1— A% a length 3 complex of abelian sheaves
with @ the Picard stack associated to the morphism A=2—A~!. We call Tors(«, A°)
the Picard 2-stack associated to A®. For any two complexes A®* and B*®, we denote by
Hom(A®, B®) the hom-2-category of the morphisms between the associated Picard 2-stacks.

In Chapter [5] we first construct another 3-category, namely C[_z’o](S) of length 3 com-
plexes of abelian sheaves. By weakening the morphisms of C[~20) (S), we construct a tricat-
egory T[=29(S) that has same objects as Cl=2%(S) and for any two length 3 complexes A®
and B*® of abelian sheaves, Frac(A®, B®) as the hom-bigroupoid.

Chapter [6] is the main Chapter of this thesis. Here, we prove the generalization of
Deligne’s characterization theorem. We first construct an explicit trihomomorphism 2gp
from the 3-category Cl=29(S) to the 3-category 2P1C(S) of Picard 2-stacks. We also show
that for any two length 3 complexes of abelian sheaves A®* and B®, there exists a biequiv-
alence of bigroupoids between Frac(A®, B®) and the 2-category Hom(A®, B®). Using this
biequivalence, we extend the trihomomorphism 2¢ constructed on C[_Q’O](S) to a trihomo-
morphism on T[=20(S). We end this Chapter by proving that the latter trihomomorphism
is a triequivalence (see Theorem .



CHAPTER 2

PRELIMINARY

In this chapter, we are going to recall 2-categories and 3-categories from a perspective that
is needed through out the thesis. We start with a short review of 2-categories. Then we
explain by analogies 3-categories and give list of references for detailed treatment of the
subject.

2.1 Language of 2-Categories

In this section, we revisit 2-categories. We assume familiarity with the category theory.
We ignore any set theoretic problems which can be overcome by standard arguments using
universes . For detailed treatment of 2-categories, we refer to [16], [24], [25], and [26].

Definition 2.1.1. A bicategory C is the collection of the following data:
1. a set of objects ObC.

2. for any two objects X and Y, a category Homc(X,Y) or Hom(X,Y) if there is no
confusion, whose objects are called 1-morphisms and designated by f : X—Y and
whose morphisms are called 2-morphisms and designated by « : f=¢ and whose
composition law, designated by o, is called vertical composition and defined as

/ f

e TN

g—>Y = X U,Boa Y

AN A N

h h

X

3. for any three objects X,Y, Z, a functor

7x,v,z : Hom(X,Y) x Hom(Y, Z) Hom(X, 7).

We write g o f and  x a for 7x y.z(f,9) and 7x v z(e, B), respectively. We call § * a
the horizontal composition.

4. for any object X, a functor

Ix : 1—=Hom(X, X),



defined on the category 1 with one object * and one morphism id, by sending * to
idx.

5. for all X,Y, Z, W objects, there exists a natural isomorphism 6

1
Hom(X,Y) x Hom(Y, Z) x Hom(Z, W) — %% Hom(X, Z) x Hom(Z, W) .
IxXTy, z.w (/0 TX,Z,W
Hom(X,Y) x Hom(Y, W) P——— Hom(X, W)
6. for all X,Y objects, there exits two natural isomorphisms [ and ¢
Hom(X,Y) x 1 Hom(X,Y) 1 x Hom(X,Y) Hom(X,Y)
tX,yﬂ [X,Yﬂ\
1xIy TX,Y,Y Ixx1 TX,X,Y
Hom(X,Y) x Hom(Y,Y) Hom(X, X) x Hom(X,Y)

These data must satisfy E

(i) for every four composable 1-morphisms f, g, h, k, the diagram of 2-morphisms

/(((k‘h)g)f) (2.1.1)
T 71

((k‘h)ﬂ(gf)) O ((k(fﬂq))f)

(k(h(g.[))) Tor (k((hg)f))

commutes.

(ii) for every two composable 1-morphisms X *g>Y*f>Z the diagram of 2-morphisms

(gly)f =———=9(Iv f) (2.1.2)

commute.

n diagrams 1} and 1' o is omitted for compactness.



The stronger version of bicategories in which the composition of 1-morphisms is strictly
associative is called 2-category. Formally,

Definition 2.1.2. A 2-category C is a bicategory in which the natural transformations 6,
t, and [ are identities.

Definition 2.1.3. Let C and D be two 2-categories. A 2-functor (F,e) : C——=0D is
given by the data

1. for all X object of C, F(X) is an object of D,

2. for all X,Y objects of C, there exists a functor Fx y

FX,Y : HomC(X, Y) —_— HOHl]D)(F(X), F(Y)) s

3. for all X,Y,Z objects of C, there exists a functorial 2-isomorphism ex vy, z

TX,Y,Z

Hom¢(X,Y) x Home(Y, 2) Homc¢ (X, Z)

g
Fx yxFy,z A’B’Cﬂ Fx 7

Homp(F(X), F(Y)) x Homp(F(Y), F(Z)) Homp(F(X), F(Z))

TFX,FY,FZ

satisfying that
(1) Fxx(idx) =idpx)
(ii) the diagram expressing the associativity of composition

Ixex v,z (f,9)

Fzw(h)o Fyz(g) o Fxy(f) Fzw(h)oFx z(gof)

ey, z,w(g,h)x1 EX,Z,W

Fyw(hog)oFxy(f) Fxw(hogof)

EX,Y,W

commutes for any X ! y —Ls gt w-.




(iii) the diagrams expressing the composition with identity

ﬁx,x,y(idx,f)
e

Fxy(f)o Fx x(idx Fxy(foidy)

Fxy(f)oidrx) Fxy(f)

. v,y (fidy) .
Fy’y (ldy) (¢] FX7y(f)€X oY e vay(ldX (e] f)

dry y ()

idF(y) o FX’y(f) FX,Y(f)

commute for any X N Y.

Remark 2.1.4. According to the common terminology of the weak 2-functor, we should
have assumed that there exists an isomorphism Fx x(id;) —idr(x) . However due to
the Lemma 2.5 in [I1], we can assume that the latter isomorphism is an identity.

Definition 2.1.5. A 2-functor is a biequivalence F : C—D if

1. F is essentially surjective. That is if for any object Y in D, there exists an object X
in D such that there exists a weakly invertible morphism FX—Y.

2. for every object X, X’ in C, the category Hom¢ (X, X') is equivalent to the category
Homp(FX, FX').

Definition 2.1.6. Let C and D be two 2-categories and F,G : C ——= D be two 2-functors.

F
T T
o
\“_’/
G

A natural 2-transformation C D is the collection of the datum,

1. for all X an object in C, 0x : F(X)—G(X) is a 1-morphism in D,

2. for all f: X—Y l-morphism in C, there exists a 2-morphism 67 in D

Fx) —Y Py
Ox efﬂ Oy
G(X) 5 G(Y)



satisfying the condition,

f
for all X /_{L-:z\ Y 2-morphism in C, the diagram

g

1s commutative.

Definition 2.1.7. Let C and D be two 2-categories and F, G : C—D be two 2-functors and
0, ¢ : F=G be two natural 2-transformations. A modification

F

TN

C 6o 2 U6 D

~__

G

is the collection of

0x

TN

for all X an object in C, F(X) Iy G(X) is a 2-morphism in D

~_ 7

dx
f
T
satisfying that for any morphism X \_@ Y in C, the diagram
7
F(f)
— T
F(X) VF(a) F(Y)
\_/
F(g)
Oy r:; dy 0x Fi( ox
o
G(X) 1G(@) G(Y)
\_/
G(g)

comimutes.



Definition 2.1.8. A 2-groupoid C is a 2-category such that,
e all 2-morphisms of C are isomorphisms,

e all I-morphisms of C are invertible up to a 2-isomorphism, that is for any 1-morphism
f: X—=Y, there exists a 1-morphism ¢ : Y —X and two 2-isomorphisms « and § such
that a: go f=idx and 5 : f o g=-idy.

2.2 Language of 3-Categories

Even though the language of tricategories is going to be extensively used, we are not
going to remind here in full detail tricategories. Just for motivation, a 3-category can be
thought as the category of 2-categories with 2-functors or weak 2-functors in the sense
of Bénabou [4] and a tricategory as a weakened version of a 3-category. For more about
tricategories, we refer the reader to [4], [13], [15], and [22].

Here we only recall the definition of triequivelence since it is the key ingredient of the

main theorem (/6.4.1)).

Definition 2.2.1. [22] A trihomomorphism of tricategories 7' : €—D is called a triequiv-
alence if it induces biequivalences Ty y : €(X,Y)—=D(TX,TY) of hom-bicategories for all
objects X, Y in € (T is locally a biequivalence), and every object in ® is biequivalent in D
to an object of the form T'X where X is an object in €.



CHAPTER 3

2-CATEGORY OF PICARD STACKS AND
DELIGNE’S CHARACTERIZATION THEOREM
FOR PICARD STACKS

3.1 Picard Categories
Definition 3.1.1. A category ¥ with data
1. a functor ® : € x €——%
2. a functorial isomorphism a

®x1

C XCxXE CRE
Ix® Va ®
C®C 2 €
expressing an associativity constraint.
3. a functorial isomorphism c

C xC 2 C xXC

C
e\ — /e

¢

expressing a commutativity constraint where s is the functor

S:EXE — E€XxE
(X,Y) = (V,X)

10



is called Picard if the above data satisfies the following conditions.
(i) for any object X in % the functor X ® —: ¥ ——=% is an equivalence.

(ii) for all objects X,Y, Z, W in % the pentagon below commutes.

(XeY)o2)oW

(XY)o (ZoW) Xe(Yo2Z2)eoW
A(X,Y,ZW) AX,Y Z,W)
XoY®(ZaW)) S Xo(Y®Z)aW)

(iii) for all objects X,Y, Z in ¥ the hexagones below

QY eZ) — _(vyez)e (XoY)eZz 002
a(xy% \sz (XY/
X®Y Z®X Y®Z
Xx /(Z) Yx
YoX)9Z—— =Y o (XoZ2) ®(ZRY)
(Y,X,2)
(XZY)
(iv)
b xE b x €
Yid
b x €

is a commutative tetrahedron, that is for all X, Y objects in €,

cy,x ocxy = idxgy.

11

(Z
(X ®

®(X®Y)
\(zx‘/)
®RX)®
<
7Z)

X,Z)



A o) A
EC xEC > ECxEC
C
® = ®
€

where

A:C — E€x¢€

X — (X, X)
pastes to a commutative diagram
€
A A
€ x € O € x€
® &
€

that is for all X object in €,

CX,X = idX®X.

Notation 3.1.2. We denote a Picard category by (%, ®¢,a,c). In case there is no risk of

confusion we are going to denote a Picard category by (¢, ®).

3.2 Units in Picard Categories

Definition 3.2.1. Let (%,®) be a Picard category. A pair (e, ) is called a unit element

where e is an object in % and ¢ : e ® e—e is an isomorphism.

Definition 3.2.2. Let (%, ®) be a Picard category and let (e1, 1) and (e2, ¢2) be two unit
elements. A morphism (ey, ¢1)—(e2, p2) is given by an isomorphism f : e;—ey in € such

12



that the diagram

e1 ®ep €2 ® eg (3.2.1)
®1 O P2
€1 €9

f
commutes. We call such an isomorphism wunit morphism.

This defines (%) the category of units of the Picard category (%, ®). In fact, U(%) is
a groupoid since a unit morphism is assumed to be an isomorphism. We are going to call
these unit elements Saavedra units following the terminology by J.Kock. In [21], Kock shows
that defining a unit element in a monoidal category as a cancellable-idempotent element - a
definition due to Saavedra [30], is equivalent to the classical definition of a unit - also known
as Left-Right unit. When the category has Picard structure defining unit element and unit
morphism in the sense of Saavedra is even simpler since in this case every object and every
morphism is cancellable. Restricted to the underlying strict monoidal category of %, the
definition coincides with Kock’s definition in [21I]. There are immediate propositions
which follow from the definition of Picard category and the unit element. They are far from
being original. They can be found in the paper by Kock, Saavedra, and Deligne.

Proposition 3.2.3. Let (e, ) be a unit element in the Picard category (¢,®). Then for
all X € Ob € there exists a unique functorial isomorphism ax : e ® X—X compatible with
. In other words, for any morphism f : X—=Y in €, the following diagrams commute

e®X el e®Y (e®e)®@X feeX e®(e® X)
ax ay e®idx eRax
X 7 Y e® X — e® X

Proof. Let (e, ) be a unit element and let X be an object in ¥. The morphism ¢ ® idx is
in the set Homy ((e®e) ® X, e ® X). We pre compose this morphism with the isomorphism
a_ ! to get a morphism (¢ ®idx) oa;!y in the set Homg(e ® (e ® X),e ® X). Since
e® — is an equivalence, there exists a 7b7ijection between the sets Homg (e ® X, X) and
Homy(e® (e®X),e® X). We let ax be the image of (p®idx)oa_! , under this bijection.
By definition, it is clear that it is functorial and compatible with go O

Proposition 3.2.4. A Picard category (¢, ®) has a unit element.

Proof. Let X € €. Since X ® — is an equivalence, for all Z € % there exists Y € ¥ such
that X ®Y ~ Z. In particular when X = Z there exists ex € ¥ such that f: X ®ex ~ ex.
Therefore the composition

f®ex

AX,ex,ex

X ®(ex ®ex) (X ®ex)®ex X ®ex, (3.2.2)

13



is an isomorphism in Homg (X ® (ex ® ex), X ® ex). By the equivalence of ex ® —, we
also know that Homy (X ® (ex ® ex ), X ® ex) is in bijection with Homg (ex ® ex,ex). We
define ¢ as the image of the composition under this bijection. ¢ is an isomorphism
since f is.Hence, the pair (ex, ) is a unit element in %. O

Proposition 3.2.5. Let (¢,®) be a Picard category. The groupoid of units (%) is con-
tractible. That is between any two unit elements (e1, 1) and (ez,p2) there exists a unique
unit morphism.

Proof. We define f : e;—es as the isomorphism that makes the diagram

Ceg,eq
e2Re ——>e1 Qe
Qeq a:52
€1 €2
f

4 N

P1 I

®2

€1 €2

The outer cell is the diagram (3.2.1). The top cell and the triangular cell commute by
naturality. The cell at the bottom left corner and the cell at the right most commute by
the functorialiy of o and o/, respectively. The remaining rectangular cell commutes by

definition of f. O

Definition 3.2.6. Let (¢,®) be a Picard category. For any object X in % the pair
(X™, ax) is called inverse element of X where ayx : X ® X*—e and (e, ¢) is a unit element
with ¢ = a.

14



3.3 Morphisms of Picard Categories

Definition 3.3.1. Let (¢, ®¢,ay,c¢) and (Z,R84,a9,cy) be two Picard categories. An
additive functor (F, Ar) is given by a functor F': ¥— 2 and a natural isomorphism A\p

€ <€ DX

K¢ K//\F Rz

¢ 9

that satisfy the following conditions
(i) The pastings of the natural isomorphisms in the below diagrams are equal.

F3 F3

73 3

Mi?/ Sy n1 rrx1 %Xl 1“?5/ Wor e gxl
F? = F? "/

9? &2
where €* is abbreviation for € x € x €.

\®
“\ /
<
I
NN
g/
§

(ii) The pastings of the natural isomorphisms in the below diagrams are equal.

g2 — g2 g
%2 s |®% M/\F ®g - €2 r 92 s |®2
¢ @ . 2

Definition 3.3.2. A morphism of additive functors 0 : (F, A\rp)=(G, \g) is a natural trans-
formation 6 : F=G that satisfy the following equation of natural transformations.

F2
/\ 2
%2 UGQ @2 %2 @2
~_ 7
G2
K¢ %\G Rap — R %\F Rap (331)
F
TN
C (9 ¢ w9
V
G
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3.4 Picard Stacks

The concept of a stack over a site S is categorical analogue of sheaves. That is a stack is
naively a sheaf of categories. In this section other than stacks and morphisms of stacks, we
define fibered categories over S and Picard stacks over S which are categorical analogues of
presheaves and abelian sheaves. Our main references for this section are [§], [14], [33].

3.4.1 Fibered Categories

In this section, we study the categories over a fixed site S, that is categories € equipped
with a functor

pg: € —=S.
Definition 3.4.1. Let % be a category over S and let U be an object of S. A fiber of ¥

over U, denoted by %7y, is a subcategory of & such that py maps its objects and morphisms
to U and idy, respectively.

Definition 3.4.2. Let % be a category over S and let f: X—Y be a morphism in % such
that

pe(X)=U  pe(Y)=V  pg(f) =i

f is called cartesian if for any object X’ and for any morphism f’ : X’—Y in ¢ such that
pe(X') = U and pg(f') = i, there exists a unique morphism ¢ : X'—X in ¢ satisfying
pz(g9) =idy and fog=f".

Remark 3.4.3. The definition (3.4.2)) can be equivalently expressed as follows. A morphism
f: X—=Y in € is cartesian if for any object X’ in ¢ the map Homg, (X', X )—Hom;(X,Y")
defined by g — f o g is a bijection where Hom;(X,Y") denotes the set of morphisms in &
from X to Y that are mapped to i by p¢.

Definition 3.4.4. Let & be a category over S. We say that € is fibered over S if

(i) for every i : U—V morphism in S and for every object Y in %y, there exists an object
X in %y and a cartesian morphism f : X—Y in € such that pg(f) = i.

(ii) composition of cartesian morphisms is cartesian.

Definition 3.4.5. Let ¥ and Z be two fibered categories over S. A functor F : ¥— 9% is
called a morphism of fibered categories or a cartesian functor if

(i) F preserves the base, that is if the diagram

cominutes.
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(ii) F maps cartesian morphisms to cartesian morphisms.

Even though we have defined fibered categories and functors between them in general,
in the rest of the thesis we will only deal with fibered categories in groupoids, that is fibered
categories where each fiber is a groupoid.

3.4.2 Sheaf Axiom for Fibered Categories

In this section, we define the analog of the sheaf axiom for fibered categories which were
introduced as the categorical analogues of presheaves. In general, sheaf axiom describes
how to obtain a global information from local data. In case of fibered categories, local data
are objects and morphisms of fibers. Therefore sheaf axiom for fibered categories consists
of the following conditions.

(i) Axiom on Morphisms: for any two objects X,Y in €y, the presheaf Home, (X,Y) is
a sheaf on S/U.

(ii) Axiom on Objects: every decent datum is effective.

A decent datum is a collection (Vo—U, X, ¢) where

do do
— s 0 .
o .. Vo-di—=>V; — Vo —— U is a hypercover over U,
d2 1

e X is an object in 6y,
e ¢ :djX—djX is a morphism in 4y,
satisfying the cocycle condition in 6y,
dip = dyp o dyep.
A decent datum (Vo—U, X, ¢) is effective if there exists an object Y € 4y together with
isomorphism 1 : 6*Y —X in %y, compatible with ¢.
3.4.3 Picard Stacks

Finally, we define the analog of a sheaf in a categorical context. A stack is a fibered
category % over S that satisfies both axioms . If € satisfies only the first axiom
, then ¥ is called prestack. A (pre)stack € is fibered in groupoids over S if for every
object U € S 6y is a groupoid, that is a category whose morphisms are isomorphisms. In
this thesis, we assume that all (pre)stacks are fibered in groupoids.

Definition 3.4.6. A Picard stack &7 over the site S is a stack equipped with a morphism
of stacks

R:PXP—F
inducing a Picard structure (3.1.1)) on £2.

Definition 3.4.7. A morphism of Picard stacks F : &1— %P5 is an additive (3.3.1) and
cartesian (3.4.5)) functor. By abuse of language, we call F' additive functor.

17



Definition 3.4.8. Picard stacks over S form a 2-category, denoted by P1c(S), whose
e l-morphisms are additive functors (3.3.1)),

e 2-morphisms are natural transformations compatible with the additive structure (3.3.2]).

3.5 Associated Picard Stack

In this section, we define the Picard stack associated to a morphism of abelian sheaves.
We also give an equivalent but more geometric realization of the associated stack in terms
of torsors.

Let A : A='— A" be a morphism of abelian sheaves. For any U € S, we define a groupoid
Py as

e objects: a € A°(U)
e morphisms: (f,a) € A=Y(U) x AY(U) such that (f,a) : a—a + A(f).
Proposition 3.5.1. & is a pre-stack.

Proof. Let U € S and a1, az be two objects in &7;. We want to show that Hom g, (a1, a2)
is a sheaf over S/U. Homg,, (a1, az) is a pre-sheaf (i.e a fibered category over S/U) defined
by

e for any object o : V—U in S/U,
Hom g, (a1, a2)(a) := Hom g, (a*(a1), a*(az))
where o™ is the restriction functor onto £y,

e for any morphism

Vi

B v
A }A
U

in S/U, Hom g, (a1, a2)(B) is the set map
Hom gy, (a3(a1), a5(az))=Homa,, (a7(a1), a1 (az))
defined by post composing * : Py, — Py,

Let (We—V, (f,0* o a*(a))) be a collection where v : V—U is an object in S/U, f €
A=Y (Wy), We—V is a hyper-cover, and § : Wy—V is an augmentation map that satisfies
§*oa*(a1) + Aw, (f) = 0% o a*(az). Since A~! is a sheaf, there exists g € A~!(V) such that
0*(g) = f. By the facts that A is a functor and § is a local epimorphism, g satisfies the
relation

a*(a1) + Av(g) = o (a2).
That is (g,a*(a1)) is a morphism in &y from a*(a1) to a*(az2) such that §*(g,a*(ay)) =
(f, 0% oa*(a1)). This shows that Homg, (a1, az) is a sheaf. O
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We recall the stack associated to a prestack. Let ¥ be a prestack. There exits a stack
€~ with a morphism of prestacks a : € —%" which satisfy the following universal property:
For any stack 2 and prestack morphism F' : €— % there exists a unique prestack morphism
F~ €~ —92 such that

a

¢

%N
V4

Jaa

7

There is also an explicit way of constructing the associated stack which involves “adding
the descent data”. This method is explained in [3] and [23].

We denote the stack associated to the morphism A~1— A% by [A=1— A%~. An object of
[A=1— A"~ over U is a decent datum (Vo—U, a, (f,a)). We remark that in fact [A~!1— A%~
is a Picard stack where the Picard structure is defined by

(VerUsa, (f,0)) @ (Ve=U,d, () = (Ve xu Vi=Usa+d, (f + fa + d))

3.6 (A, B)-torsors

In this section, we give a geometric description of the associated Picard stack. Let A be
a sheaf over the site S, not necessarily abelian. A (right) A-torsor is a space L—S over S
with a right group action

m: LxA——sA

such that the morphism

(pr,m): Lx A——=L x L

defined by (I,a) — (I,m(l,a)) is an equivalence. Moreover we require that there exists a
collection of local sections s; : U;— L for an open cover {U;} of S.

Let A— B be a morphism of, not necessarily abelian, sheaves. An (A, B)-torsor is a pair
(L,z), where L is an A-torsor and = : L—B is an A-equivariant morphism of sheaves (see
[10]). A morphism between two pairs (L, z) and (K, y) is a morphism of sheaves F': L—K
compatible with the action of A such that the diagram

I F

K

commutes.

19



(A, B)-torsors form a stack denoted by TORrS(A, B). If A and B are abelian sheaves, we
can also define a group-like structure on TORS(A, B) as follows:

(L,z) ® (K,y) = (LAY K,z Ay)

where LA4 K is the contracted product and zAy is the A-equivariant morphism from LA4 K
to B given by z(1)y(k) where (k) is in L A K. This group-like structure on TORS(A, B)
is Picard, that is TORS(A, B) is a Picard stack. It provides a geometric realization of the
associated Picard stack.

Theorem 3.6.1. [5, Théoréme 4.6] There is an equivalence of Picard stacks

Tors(A~1, A% == [A~ 15 A0~

3.7 Length 2 Complexes of Abelian Sheaves

In the section we looked at the relation between morphism of abelian sheaves and
Picard stacks. We have already defined morphisms of Picard stacks. In this section, we
define the morphisms between the morphisms of abelian sheaves which are called butterflies
(see [3], [27], and [28]). Moreover, we show that morphisms of abelian sheaves, that is
length 2 complexes of abelian sheaves form a bicategory T[_l’o](S) whose 1-morphisms are
butterflies (3.7.1) and 2-morphisms are morphisms of butterflies

Let A* = [Aq : A= A% and B®* = [A\g : B"'—=BY] be two length 2 complexes of
abelian sheaves.

Definition 3.7.1. A butterfly from A® to B® is a commutative diagram of abelian sheaf
morphisms of the form

A1 B! (3.7.1)
A FE AB
N
A0 BY

where E is an abelian sheaf, the NW-SE sequence is a complex, and the NE-SW sequence
is an extension. [A®, E, B®] will denote a butterfly from A® to B®.

A butterfly is called flippable or reversible if both diagonals of (3.7.1)) are extensions. A
strong butterfly is a butterfly equipped with a global section s : A= FE such that pos = id.

Definition 3.7.2. A morphism of butterflies ¢ : [A®, E, B*|—[A®, E’, B*] is an abelian
sheaf isomorphism E—E’ satisfying the commutative diagrams below.
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A_l . B—l (372)

A

Two such morphisms (3.7.2]) compose in an obvious way. Therefore butterflies from A®
to B® form a groupoid denoted by B(A®, B®).
We can also compose butterflies. Given two butterflies

-1 Bfl B*l C*l (373)
Aa E AB AB F Ac
A° BY BY (o
their composition is the butterfly
(3.7.4)

e T

1

where the center E x Bl F is given by the pushout-pullback construction (see [3]). From the
definitions [3.7.1], -, 3.7.2) and the definition of composition of butterflies, it follows

Theorem 3.7.3. [3, Theorem 5.1.4] Length 2 complexes of abelian sheaves equipped with
butterflies as 1-morphisms and morphisms of butterflies as 2-morphisms form o bicategory

TI=1L0(S).

TI=10(S) has a full sub 2-category CI=10)(S) that has same objects as TI=10(S) but
whose 1-morphisms are strong butterflies. To be precise,

e objects of CI=19(S) are same as objects of TI=10(S), that are morphisms of abelian
sheaves A® = [\4 : A~1—AY).

e for any two objects A®* and B®, a 1-morphism f* : A*>—B® in C[=10/(S) is a complex
morphism from A® to B®. That is f*® consists of two morphisms of abelain sheaves
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f~! and fO° such that the diagram

AL A0 (3.7.5)
7 O o
— 0
B! ———B

commutes.
e for any two parallel 1-morphisms f® ¢* : A*—B®, a 2-morphism s* : f*=g¢°® in
cl=10 (S) is a homotopy between f® and ¢g®. That is s® consists of a degree -1 mor-

phism of abelian sheaves s” given by the diagrams

Aa

N
ye

satisfying ¢° — f' = Agposand ¢! — fl =s%0 A4

A1 (3.7.6)

B
()

oS —

Q
o

S

Said differently, C[_l’o](S) is a 2-category of morphisms of abelian sheaves whose hom-
category Homp(—1,9 (S)(A’, B*) for any two morphisms A® and B*® is the groupoid associated
to the complex
17}

Hom™'(A°*, B*) Z%(Hom(A®, B*))

of abelian groups, where elements of Hom™!(A®, B®) are morphisms of complexes from A®
to B* of degree -1 and where Z°(Hom"(A®, B*)) is the abelian group of cocycles of degree
0 morphisms. The differential 9 is defined as

(") P =Ag" Tos P4 s PToAP

for any s* € Hom !(A®, B*) and p = 0, 1.

3.8 Characterization Theorem for Picard Stacks

We finish this chapter by recalling Deligne’s characterization theorem for Picard stacks
[9, §1.4]. This result is also revisited by Aldrovandi and Noohi in [3]. In order to be
consistent with the rest of the thesis, we recall them as they are enounced in [3].

The characterization theorem states the following;:
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Theorem. [3, Proposition 8.4.3] The functor

T=10(S)

defined by sending a morphism of abelian sheaves A® = [Aa : A=1— A% to Tors(A~!, AY)
s a biequivalence of bicategories.

P1o(S) (3.8.1)

The bifunctor (3.8.1)) in this theorem is first constructed on the strict sub 2-category
Cl=10(S) as follows.

e An object in CI=1Y(S) that is a morphism of abelian sheaves A® = [A4: A~ =A%) is
sent to its associated Picard stack which is equivalent to Tors(A™1, A?). (see Section

(3-5))-
e A 1-morphism f*: A*—B*® (3.7.5) in C[=19(S) is sent to a morphism of torsors

Tors(A~1, A%)

Tors(B~1, BY)

which sends an (A~1, A%)-torsor (L, ) to (L /\?:11 B~ fOoz + \p) where L/\j};1 B!
denotes the contracted product of the A~!-torsors L and B! such that the A~'-torsor
structure of B~! is induced by f~L.
e A 2-morphism s* : f*=¢°* (3.7.6) in C[=19(S) is sent to a 2-morphism of torsors 6
/‘__—\\\

Tors(A™1, A%) % Tors(B~1, BY)
\_‘/

that assigns to any object (L,z) in Tors(A~!, A%) a 1-morphism 0(L.2)

01 : (L /\‘]?__11 Bl f% x + Ap) (L /\;]4__11 Bl g%z + \p),
defined by sending (,b) to (I,b — s o 2(1)).
This construction extends to T[=19(S) by the following theorem

Theorem. [3, Theorem 8.3.1] For any two length 2 complezes of abelian sheaves A® and
B®, there is an equivalence of groupoids

Hom(A®, B®) = B(A*, B*),

where Hom(A®, B®) is the groupoid of additive functors between the Picard stacks associated
to A® and B°.

which shows that the bifunctor (3.8.1)) is fully-faithful. To show that it is a biequivalence,
one needs to show that it is essentially surjective which is the following statement.

Proposition. [3, Proposition 8.3.2] Let o/ be a Picard stack. Then there exists a length
2 complex of abelian sheaves A® : A™1—A® such that </ is equivalent to Picard stack
[A~1— A%,
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Remark 3.8.1. In the paper [3], the authors also generalize the theorem (3.8 to non-abelian
context by not assuming that stacks and sheaves are necessarily Picard or abelian.

Theorem has an immediate consequence.

Corollary 3.8.2. The functor induces an equivalence
DI-LY(§)————P1c’(S)

of categories where D[*LO](S) is the subcategory of the derived category of category of com-
plezes of abelian sheaves A® over a site S with H=*(A®) # 0 only for i = 0,1 and PICI’(S)
is the category of Picard stacks over S with 1-morphisms isomorphism classes of additive
functors.

Proof. The proof follows from the observation that isomorphism classes in P1c’(S) corre-
spond to isomorphism classes of flippable butterflies. A flippable butterfly from A® to B®
corresponds to a zig-zag of complexes

2N

where both p and g are quasi-isomorphisms. O
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CHAPTER 4

3-CATEGORY OF PICARD 2-STACKS

Itroduction paragraph

4.1 Picard 2-Categories

In this section, following [6] and [19], we define Picard 2-categories, additive 2-fuctors,
natural 2-transformations, and modifications. Since our fundamental object of study is
Picard 2-stack fibered in 2-groupoids, from now on, unless otherwise stated, we assume
that all 2-categories are 2-groupoids . For compactness, in large diagrams we omit
®.

Definition 4.1.1. A 2-category C with the data
1. a 2-functor ® : C x C——=C
2. a 2-natural transformation a,

cxexec—2L .cxc

1x® A ®

CxC C

expressing the associativity constraint.

3. a 2-natural transformation c,

CxC > CxC

expressing the commutativity constraint.
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4. a modification 7

Rx1x1

(C4—>(cS C4 C3
1x1iy \1>®><1 Jax1 Yl IXIy . X®/ le
®x1 7f ®x1
(C3 1<><:a /C?’ %CQ = CS ——C
\ d Is / \ \ /
1x® ya ® Ix®
C? ® C
5. two modifications h1 and bho
(C3
sx1 1xs / \
(C?) O (C3
\ C ®X1 ®//’I
IX® ®x1
N e
®x1 22— (2 1x®
CQ é (CQ
\@\( A// ® ®
® o ® C
(C3
1xs sx1 / \
3 O C3
\®><1 1><®/ c 1x® ®X1ﬂ
1x® C2—— (2 ®x1
7 \ / N
CQ é (CQ
\Q\\ L// ® ®
® ¥ ® C
6. a modification (
C (4.1.1)
y ‘Y / \
¢ s e § el ¢
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7. a modification n

(4.1.2)

YN /\

N

where A is the diagonal 2-functor.

U=

These data must satisfy the conditions:

(i) for any object X in C the functor X ® —: C——=C is a biequivalence.
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(ii) for all X, Y, Z, W, T objects in C, the equation of 2-morphisms hold.

XY (2(WT)))

(XY)Z)W)T y&YZMWT) N ?«gmwm
(X(Y2))W)T (X((YZ)W)T
X(Y(Z(WT)))

(((XY)ZQ i, (X(Y(ZW)\))T\N X(Y2)w)T)
(XY 2))W)T (X (Y 2)W)T

The natural 2-isomorphisms ~ are due to the functoriality of ®.



(iii) For any objects X,Y, Z, W, the equation of two 2-morphisms hold.

X((YZ2)w) (X(YZ)Ww
/ Uﬂ'* \
XY (Zzw)) (XY)(ZW) (XY)Z2)W
X(Y(WZz)) (XY)(WZ) {b2 W((XY)Z)
7

X(YW)Z) (XY W)z (W(XY))Z
(X(YW))Z\ {b2 /((j/VX) )

X(WY))Z (XW)Y)

||

X((YZ)w) (XY Z)Ww
X(Y(Zzw)) X(W(YZ)) e W(X(Y )) ~ (XY)2)W
X(Y(wz)  X((WY) — - (WX)(YZ) 2. W(XY)Z)
X((YW)2) \XY))Z
(X(YW))Z WX) \Z

(X(WY))Z

1

The modification 7* is defined in the same way as m using a— instead of a.
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(iv) for any objects X,Y, Z, W, the equation of two 2-morphisms hold.

(X(YZ))W X((YZ)W)

/ uﬁ \
(XY)Z)W (XY)(ZW) X(Y(ZW))
(YxX)z)w (YX)(ZW) o1 Y(Zw))X

’ |
(Y(XZ))W Y (X(ZW)) Y ((ZW)X)
Y((XZ)W)\ o1 /{(Z(WX))
Y((ZX)W) (Z(XW))
I
(X(YZ))W X((YZ)W)
(XY)Z)W (Y Z) X)W e (YZ)W)X =~ X(Y(ZW))
%)1 \ i
(Y X)Z)W (Y(ZX))W (YZ ZYWX) ¢ (Y(ZW)X

N
»

<=
W =
N N
= =
=
i}:}
% %
= =

W)

30



(v) for any objects X, Y, Z, W, the equation of two 2-morphisms hold.

< = = o
= S ~_ &
= < = =
S S N /N
T £
< =
=
E 2 >
< =
S S
o <
S s}
> =
S S
= s ]
= = =
= : =
o = D
N S <

(ZX)Y)W)
(X2)Y)w)
(X(2Y))W)
(XY 2))W)
(XY)Z2)W)
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I

(AM)x)z) =— (AMm)(x2))

(M(Z(AX)))

The modification 7’ is obtained from 7 by inverting one or more a’s.
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(vi) for all X,Y,Z objects in C, the equation of two 2-morphisms hold.

(YX)Z Y(XZ) Y(ZX) (YZ)X

(ZY)X

Z(YX)
X(zY) (XZ)Y (ZX)Y Z(XY)

[
(YX)Z Y(XZ) Y(ZX) (YZ)X
b2 2
(XY)Z (2Y)X
X(YZ) Z(YX)
¥ by
X(zY) (XZ)Y (ZX)Y Z(XY)
(vii) for all X,Y,Z objects in C
C /"LLN ,/"’"l'é"‘“*'& C
Xy ———vyx_ | "vyx = xy__ ¢ Xy ———VYX

(viii) n*n = (.

(ix) for all X,Y objects in C, there is an additive relation between 7nx,ny and nxgy. That
is nxgey is equal to the pasting of the below diagram.
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4 I

A(AX)X) (A(AX))X
Alx(Ax)) h&c@% (x2)x)x (Ax) X)X
ENHV___QS

(AX) ﬁc@f \\z\m@ﬁv (XX)

A(AX)X)
A(XA)X)
\ J
\_ J

(AX)
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Notation 4.1.2. We denote a Picard 2-category by (C, ®c, ac, cc, 7c, bic, hac, (¢, nc)- In
case there is no risk of confusion we are going to denote a Picard category by (C, ®).

Lemma 4.1.3. Let (C,®) be a Picard 2-category and f : X—Y be a morphism in C. If f
is weakly invertible then f @ — : Homc (A, B)—Homc(X ® A, Y ® B) is an equivalence of
categories for all objects A, B in C.

Proof. Assume that f is weakly invertible. The functor f ® — is defined as composition of
the following two functors,

Hom(A, B)
Hom(X ® A, X ® B)

Hom(X ® A, X ® B) (4.1.3)
Hom(X ® A,Y ® B)

Since the functor (4.1.3) is multiplication by X, it is an equivalence. The functor (4.1.4) is
post composition by f ® Y. It is an equivalence since f is weakly invertible. Thus f ® — is
an equivalence. O

4.2 Units in Picard 2-Categories

We define unit element in Picard 2-categories. The only original result in this section
is the Proposition [4.2.5) which says that every Picard 2-category possesses a unit element.
All the definitions and other results can be found in the paper by Joyal and Kock [I§].
The reason why we restate these results here is because originally they are given for strict
monoidal 2-categories and in this thesis we interpret them for Picard 2-categories where the
associativity is assumed to be non-strict.

Definition 4.2.1. Let (C,®) be a Picard 2-category. A pair (e, ¢) is called a unit element
in C where e is an object in C and ¢ : e ® e—e is a weakly invertible 1-morphism.

Definition 4.2.2. Let (C,®) be a Picard 2-category and (e1, 1) and (e, ¢2) be two unit
elements. A 1-morphism (eq, p1)—(e2, p2) is given by a pair (f,6f) where f : e;—es is a
weakly invertible 1-morphism and 6; is the 2-isomorphism

e1 ®eqp L €2 X es (4.2.1)
1 ef/ﬂ P2
e (&
1 7 2

We call such a pair (f,0¢) a unit morphism.

Definition 4.2.3. Let (C, ®) be a Picard 2-category, and (f,6) and (g, 64) be two unit mor-
phisms from (e1, ¢1) to (e2,p2). A 2-morphism (f,07)=(g,0,) is given by a 2-isomorphism
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0 : f=¢g in C such that

gRg
m
e1 ®ey 7Y s ® eo e1 ® e €2 @ eg (4.2.2)
1 Gf/ﬂ P2 = 1 99/71 2
(&) €9 el J €2
f W
f

We call such a 2-isomorphism unit 2-morphism.

Unit elements, unit morphisms, and unit 2-morphisms of a Picard 2-category (C,®)
form a 2-category denoted by U(C) where

the composition of 1-morphisms (f,0y) : (e1, p1)—(e2, p2) and (g,8,) : (e2, p2)—(e3, ¢3)
is the pair (h,60) : (e1,p1)—(es, ¢3) where h = go f and 6}, is the pasting of the 2-
isomorphisms given in the diagram below.

(gof)®(gof)
- N
Ef,gﬂ
®
e1®ep 62®62L>63®63
1 ef/ﬁ P2 09/% 3
€1 7 €9 g €3

the vertical and the horizontal compositions are induced from the ones in C.
We remark that U(C) is in fact a 2-groupoid and call it unit 2-groupoid.

Proposition 4.2.4. Let (e, ) be a unit element in a Picard 2-category (C,®). For every
object X in C, there exists a pair (ax,px) where ax : e @ X—X is a weakly invertible
1-morphism, ux is the 2-isomorphism,

e@e)@ X —=X L@ (e®X) (4.2.3)
pRidx %UX ide®ax
e® X — e®X
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Also for any object X in C, the pair (ax, px) is unique in the following sense. If there
exists another pair (ox, i) then there exists a unique 2-isomorphism vx : ax=-a'y such
that the diagram

id id
(6®6)®Xml—x>e®X (e®e)®X¢®l—X>e®X
Ae.e, X H’/X/ﬂ = = Ace, X IU'X/7{ —

® !
e® (e®X) —" e® X e® (e® X) e® X
eRax

Proof. The main ideas of the proof are given in [18, §5]. However we want to give a detailed
proof since we assume different from Joyal and Kock non-strict associativity.

FEzistence of (ax,ux): Let (e,¢) be a unit element and let X be an object in C. The
1-morphism p®idy is an object in the category Hom((e®e)® X, e® X ). This hom-category
is equivalent to the hom-categories

Hom((e®e) ® X,e® X) ~ Hom(e ® (e ® X),e® X) ~ Hom(e ® X, X).

The first equivalence follows from the Lemma m since ac e x is weakly invertible and the
second follows from the biequivalence of the 2-functor e ® —. Under these equivalences,
there exists ax : e ® X—X in Hom(e ® X, X) whose image in Hom((e ® ) ® X, e ® X) is
ide ® ax 0 ac e, x and is 2-isomorphic to ¢ ® idx. That is there exists also a modification g
whose component at X is the 2-isomorphism px as in diagram .

Naturality of (ax,px): In order to show that ay is functorial, we need to define for
any l-morphism X—Y in C, a 2-isomorphism o

e X —2 ooy, (4.2.4)
ax K/af ay
X - Y

that is compatible with another choice of 1-morphism g : X—Y. We let o be the inverse
image of the 2-isomorphism « under the biequivalence e® —. « is defined as the 2-morphism
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that makes the two different pastings of the 2-morphisms in the below diagram equal.

(ee) X % (ee) (@) (ee)Y
W®V N \EY ®V @14 ey
\ e®(e
eX ﬁ
\ /@mx %ay \ %ay
eX
Mz@

« is a uniquely defined 2-isomorphism since the other 2-morphisms in the diagram
are 2-isomorphisms.

The fact that the two different pastings in the diagram are equal shows that py
is functorial. To verify that oy is compatible with another choice of 1-morphism g : X =Y,
we have to show that for any 2-morphism

f
TN
X Uy Y,
~_
g
the two different pastings in the diagram
e® X ax X e® X ox

e®f <;> e®g 7 g = edf afﬂ \

e®Y

Y e®Y

ay

are equal. Since the 2-isomorphisms on the right half of the diagram (4.2.5)) are independent
of the morphism from X to Y, f and g satisfy the same diagram (4.2.5)).
Uniqueness of (ax, px): Let (ax, pux) and (o/y, i'y) be two pairs such that

e®ay =2 p ®idy (4.2.6)
:_\\ N,X
N
e® oy

Since px and py are 2-isomorphisms, there exists a 2-isomorphism 7 : e® ax=e® o'y that
makes the diagram (4.2.6) commutative. Using the equivalence Hom(e ® (e ® X),e ® X)) ~
Hom(e® X, X), we deduce there exists a 2-isomorphism o : ax=-¢/y such that eQo =7. [
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Proposition 4.2.5. A Picard 2-category (C,®) has a unit element.

Proof. Let X be an object in C. Since X ® — is a biequivalence, for all Y € C there
exists Z € C such that X ® Z is equivalent to Z. That is there exists a weakly invertible
1-morphism X ® Z—Y in C. In particular, we take X =Y and there exists f : ex € C with
a weakly invertible 1-morphism X ® ex—X. We claim that there exists ¢ : ex ® ex—ex
such that (ex,¢) is a unit element in C. The hom-categories

Homc((X ® ex)®ex, X ® ex) ~ Home(X ® (ex ® ex), X ® ex) ~ Homc(ex ® ex,ex)

are equivalent. The first equivalence is defined by whiskering with the weakly invertible 1-
morphism ax ... The second equivalence follows from the fact that X ® — is a biequivalence.
Now f ® ex is a l-morphism in the category Homc((X ® €) ® e, X ® €). We define ¢ :
ex ® ex—ex as the image of f ® ex under these equivalences. ¢ is weakly invertible since
f is. Hence, the pair (ex, ) is a unit element in C. O

Proposition 4.2.6. [18, Thereom C] Let (C,®) be a Picard 2-category. The 2-groupoid of
units U(C) is contractible. That is between any two units there exists a unit morphism and
between any parallel two unit morphisms there exists a unique unit 2-morphism.

Proof. The proof is given in [I8, §5]. However one has to be careful since in [I8] the
associativity is assumed to be strict. O

The unit element in a Picard 2-category is first extracted from the definition of a tri-
category. In [18], Joyal and Kock give another definition for the unit element They
show that

Theorem 4.2.7. [18, Theorem E] The notion of unit element s equivalent to the
notion of the unit element extracted from the definition of tricategry.

By the above theorem, the notion of unit element is not part of the Picard 2-category
data, but it is already part of the Picard structure. This reduces significantly the number
of compatibility conditions in the definition of Picard 2-category. As we are going to see in
the next section, this simplifies the definition of the morphism of Picard 2-stacks. Before
we want to point out some differences between the definitions and results given above and
the same definitions and results enounced in [1§].

1. We assume that the 2-functors are weak(i.e. the composition is defined up to a 2-
isomorphism) whereas in [I8] a 2-functor means strong.

2. In the definition of unit 2-morphism, we assumed that the 2-morphism § is an iso-
morphism, whereas Joyal and Kock only assumed that ¢§ is a cancellable 2-morphism.
That is a 2-morphism that induces bijection on the Hom sets of the Hom categories.

4.3 Morphisms of Picard 2-Categories
Definition 4.3.1. Let (C7 ®(C7 ac, Cc, e, tha b?@? C(C7 77(C) and (Dv ®D7 am, Cp, 7D, []1]]])7 h2]DJ7 C]DN n]DJ)

be two Picard 2-categories. An additive 2-functor (F,A\p,wp,ep) : C=D is given by the
following data:
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1. a 2-functor F': C——=D,
2. a natural 2-transformation A\g

F2

C2 ]D2
®c //\F [29))
C - D
3. a modification wg
= D3 C3 = D3
lxy g@{ U//\FX1 @xl lxy le,\p 1><®§ &xl
2 w 2
Ll D2 = 2 r D2 < D2
®(c/ Ar e
Qc / Rn Qc () Rn
D C = D
4. a modification eg
CQ F? ]D2 (C2 F? ]D2
2
2 £ lec 4, |o L ¢ d D2 & |e
C F

that satisfy the following conditions:

(i) For all X,Y,Z, W objects in C, the equation of 2-morphisms holds in D.
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F(XY)2)W)

Urr
F(X(YZ))FW

F(X(¥Y2))w)

F(XY)Z)FW

(F(XY)FZ)FW

=
N
=

W\m

= &

N

> X

< N

= =

SEE
S
=
o

€3
EY

S

B

N

S

=

F(XY)F(ZW)

F(XY)(FZFW)

{Jro

(F(XY)FZ)FW
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(ii) for all X,Y,Z objects in C, the equation of 2-morphisms holds in D.

FX(FYFZ)

(FXFY)FZ

FZ(FXFY)

FXF(YZ)

1

(FZFX)FY

FZF(XY) L

F(Z(XY))

FX(FYFZ) (FXFY)FZ FZ(FXFY)

AT

FXF(YZ) FX(FZFY) (FXFZ)FY (FZFX)FY

\

FXF(ZY) ¢, F(XZ)FY 7

P((XY)Z)

F(Z(XY))

F((ZX)Y)

The modification wy, is defined in the same way as wr using ag Land aﬁl except ac and ap.
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(iii) for all X,Y,Z objects in C, the equation of 2-morphisms holds in D.

(FXFY)FZ FX(FYFZ) (FYFZ)FX
F(XY)FZ ~ FY(FZFX)

F((XY)Z) erf) FYF(ZX)
F(X(YZ)) F(Y2)X) F(Y(ZX))
I
(FXFY)FZ FX(FYFZ) (FYFZ)FX

AT

F(XY)FZ £  (FYFX)FZ FY(FXFZ) FY(FZFX)
F(YX)FZ 4 FYF(XZ) 7
F((XY)Z) F((YX)Z) F(Y(XZ)) &%  FYF(ZX)
\ JF(b1c) \ /
F(X(YZ)) F(YZ)X) F(Y(ZX))
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(iv) for all X,Y objects in C, the pasting of the 2-morphisms in the below diagram is 1.

a I
I
FXFY FYFX FXFY
ﬂé‘p ﬂsF
F(XY) F(YX) F(XY)
F(Ce)
\ J

(v) for all X object in C, the pasting of the 2-morphisms in the below diagram is 1.

T N\

FXFX FXFX

Vep

FX X

Definition 4.3.2. A morphism of additive 2-functors (F,\p,wp,ep)=(G, A\g,wa,eq) is
given by a pair (6,I") where § : F=G is a natural 2-transformation (2.1.6) and I' is a

modification (2.1.7))

F2
/“'\ 2
C? 462 D? C? D2
~_ 7
G2
®c %\G Rn r Qc /)\F b
= F
N
C G D C 4o D
\/
G

where I' satisfies two equations of modifications, one that involves wr and wg and another
one that involves ep and e¢.

Definition 4.3.3. A modification between two morphisms of additive 2-functors (61,1'1) =
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(02,T'2) is given by a modification (2.1.7) X : ; = 63 such that the diagram of modifications

I
Ag * 0% s 01 % A\p
Ag*ZZ O E*)\F

Ag*(‘)%FEZGQ*)\F

commute.

4.4 Picard 2-Stacks

In this section, we are going to extend the discussion in Section from categories
to 2-categories. That is we investigate the naive notion of sheaf of 2-categories, namely
2-stacks over a site S. We discuss also fibered 2-categories over S which are analogues of
presheaves of 2-categories. Lastly, we define Picard 2-stacks over S which are categorical
analogues of abelian sheaves. Our main references for this section are [7], [§], and [16].

4.4.1 Fibered 2-Categories

In this Section, we study the 2-categories over a fixed site S, that is 2-categories C
equipped with a strict 2-functor
pc: C—=S.
Definition 4.4.1. Let C be a 2-category over S and let U be an object of S. A fiber of C
over U, denoted by Cy; is a sub 2-category of C such that pc maps its objects, 1-morphisms,
and 2-morphisms to U, idy, and idiq,,, respectively.

Let C be a 2-category over S and let f: X—Y be a 1-morphism in C such that
pc(X)=U  pc(Y)=V  pc(f) =i
Post composing by f defines a natural 2-transformation f
f : Homg,, (—, X)—=Hom;(—,Y).
For any object A in Cy7, the component of f at X is the functor
fa : Home, (A, X)——=Hom;(A,Y), (4.4.1)
defined by f4(g) = fog. Hom;(A,Y) denotes the subcategory of Home (A,Y) whose objects

are mapped to ¢ by pc. For any morphism « : A—B, the component of f at « is the natural
transformation between the following composition of functors.

Homc, (B, X) Hom;(B,Y)

Z

Homcg, (A, X) Hom;(A,Y)
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For any g : B—X, fa(g9) : (fog) oa=fo(goa). However, in 2-categories composition of
1-morphisms is associative. Hence f, is a trivial natural transformation.

Definition 4.4.2. A morphism f : X—Y as above is called cartesian if f is a weakly
invertible 1-morphism in the 2-category of contravariant 2-functors from Cy to Cat the
2-category of categories. Equivalently by the above discussion, we say that f : X—Y is
cartesian if for any object A in C the functor (4.4.1)) is an equivalence.

Definition 4.4.3. Let C be a 2-category over S. We say that C is fibered over S if

(i) for every i : U—V morphism in S and for every object Y in Cy, there exists an object
X in Cy and a cartesian morphism f : X—Y in C such that pc(f) = i.

(ii) composition of cartesian morphisms is cartesian.

We observe that if C is a fibered 2-category over S, than for any object U in S Homc,, (X,Y)
is a fibered category for all X,Y objects in Cy. In fact let ¢ : U—V morphism in S and
f : X—=Y be a morphism in Homc,, (X,Y"). Since C is a fibered 2-category, we can pullback
J to a morphism fi; : X|y—Yjy where X|;; and Y|y are pullbacks of X and Y into Cy.
This pullback f; is defined up to 2-isomorphism « as shown in the diagram

X‘U 9x X .

fiv g f

Yiu

Y

gy

where gx and gy are cartesian morphisms. Let f’ : X’—Y’ be another morphism in Cy;
such that

P X
fl Oclﬂ f
Y’ Iy Y

The unique 2-morphism S from f’ to fiv is defined as the 2-morphism that makes the
diagram
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X|U 9x X
f’l
fiu Y’ X f
Ve
»
U —4y Y

commute. The dotted arrows and the 2-isomorphisms on the top and bottom faces exist
due to the fact that gx and gy are cartesian arrows. Uniqueness of 3 follows from that fact
that other 2-morphisms are isomorphisms.

Definition 4.4.4. Let C and D be two fibered 2-categories over S. A functor F' : C—D is
called a morphism of fibered 2-categories or a cartesian 2-functor if

(i) F preserves the base, that is if the diagram

commutes.

(ii) F maps cartesian morphisms to cartesian morphisms.

4.4.2 Sheaf Axiom for Fibered 2-Categories

Next, as we have done for fibered categories, we will talk about the analog of the sheaf
axiom for fibered 2-categories. Since fibers are 2-categories, this axiom consists of conditions
about objects, 1-morphisms, and 2-morphisms.

1. Axiom on 1-Morphisms and 2-Morphisms: for any two objects X, Y in Cy, the fibered
category Homc,, (X,Y) is a stack over S/U.

2. Axiom on Objects: every decent 2-datum is effective.
A decent 2-datum is a collection (Vo—U, X, ¢, )

do d

0 Fy .
1. ... Vo-di—>V; Z Vo ——= U is a hypercover over U,
d2 dl

2. X is an object in Cy,
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3. ¢ :djX—diX is a 1-morphism in Cy,
4. o dip=d5p o dip is a 2-morphism in Cy,
satisfying the 2-cocycle condition in Cys
((dad3)* ¢ * djar) o dyav = (dja * (dody)* ) o djav.
A decent 2-datum (Vo—U, X, p, «) is effective if there exists an object Y € Cy together

with weakly invertible 1-morphisms v : 6*Y =X in Cy; compatible with ¢ and o.

4.4.3 Picard 2-Stacks

The analog of a sheaf in 2-categorical context is a 2-stack. Hence, a 2-stack over the
site S is a fibered 2-category C that satisfies both axioms . If C satisfies only the first
axiom, then C is called pre 2-stack. A (pre) 2-stack is fibered in 2-groupoids over S if for
every U € S, Cy is a 2-groupoid . In this thesis, we assume that every (pre) 2-stack
is fibered in 2-groupoid.

Definition 4.4.5. A Picard 2-stack P is a 2-stack equipped with a morphism of 2-stacks
Q:PxP——=P

inducing a Picard structure (4.1.1) on P. A morphism of Picard 2-stacks F : P1—P is an
additive (4.3.1)) and cartesian (4.4.4) 2-functor. By abuse of language, we call F' additive
2-functor.

Picard 2-stacks over S form a 3-category, denoted by 2P1¢(S), whose
e l-morphisms are additive 2-functors,

e 2-morphisms are pairs (6,I") of the form ([4.3.2)),

e 3-morphisms are modifications of the form .

Additive 2-functors between Picard 2-stacks P and Q form a 2-groupoid that we denote by
Hom(P, Q).

4.5 Associated Picard 2-Stack

An immediate example of a Picard 2-stack is the Picard 2-stack associated to a complex
of abelian sheaves. It is already explained in [27] and in [3] how to associate a 2-groupoid
to a length 3 complex. However, this 2-groupoid is not a 2-stack. It is not even a 2-prestack
(i.e. 1-morphisms only form a prestack but not a stack and 2-descent data are not effective).
Therefore to obtain a 2-stack one has to apply the stackification twice. Instead, we are going
to use a torsor model for associated stacks. It is more geometric, intuitive, and can be found
in [I] for the abelian case, and in [3] for the non-abelian case.

We start with a recall on torsors. Let &/ be a gr-stack, not necessarily Picard. A stack
Z is an (right) o7 -torsor if there exists a morphism of stacks
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m: ¢xogd—L

compatible with the group laws in 7, and the morphism

(prym): L x o —=L x L

is an equivalence, and for all U € S, %y is not empty. [5, §6.1]

Let &7 —2 be a morphism of gr-stacks. An (7, Z)-torsor is a pair (£, x), where .Z is
an o -torsor, and x : £ —% is an o/ -equivariant morphism of stacks [1} §6.1], [3], §6.3.4]. A
1-morphism of (<, B)-torsors is a pair

(FMU’) : (f,x)—>(t%/,y),

where F': X — ¢ is a morphism of stacks such that

& D
Zor
x y

B

and p is a natural transformation of stacks
L xd —s o
z
Z 7 H

expressing the compatibility of F' with the torsor structure. Let (F, p), (G,v) : (Z,2)—=(% ,y)
be two parallel 1-morphisms of (&, #)-torsors. A 2-morphism of (<, B)-torsors (F, u)=(G,v)
is given by a natural transformation ¢ : F=G satisfying

F F

e £ H
Zoc = \4’/
T Yy x Yy
B
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and

Fx1
/’l_}:”l\ Fx1
ZX,Q{T%X@% L x o H X A
Z, B Y
F
A e T < H
N~ b o
G

(o, B)-torsors with 1- and 2-morphisms as defined above form a 2-stack over the site S
denoted by ToRs(«7, %). Moreover, if &/ and % are Picard stacks, we can define a Picard
group like structure on TORS(.o7, A) as follows:

(L, x) @ (H,y) = (LN H,xNy)

where .2 A7 X is the contracted product and = A y is the o/-equivariant morphism from
L N H to B given by x(1)y(k) where (I, k) is in L N7 A .

Now, consider A® : [A=2—A~1— A% a complex of abelian sheaves. Let </ be the Picard
stack associated to A72—A~! that is & = [A72—A71]~ ~ Tors(A 2, A1) and let
Ay @ o/ —A° be an additive functor of Picard stacks, where A° is considered as a discrete
stack (no non-trivial morphisms). It associates to an object (L,s) in TORS(A72, A71) an
element \4(s) in A%, It follows from the above discussion that Tors(«/, A%) is a Picard
2-stack. Thus, we define

Definition 4.5.1. For any length 3 complex of abelian sheaves A® : [A72—A~1— A9,
the Picard 2-stack associated to A® is Tors(«, A?). The hom-2-groupoid between two
associated Picard 2-stacks Tors(«7, A?) and Tors(%, BY) is denoted by Hom(A®, B®).

4.6 Homotopy Exact Sequence

Let Tors(«, AY) be the associated Picard 2-stack to A®, then there is a sequence of
Picard 2-stacks

Ay

o 2 A0 T2 Tors (o, A?), (4.6.1)

where A° is considered as discrete Picard 2-stack (no non-trivial 1-morphisms and 2-
morphisms). The morphism 74 assigns to an element a of A°(U) the pair (<7, a), where a
is identified with the morphism &7 — A° sending 1, = (A72,8,4) to a. is homotopy
exact in the sense that 7 satisfies the pullback diagram.
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o 0 (4.6.2)

Aa 7

A0 — Tors(a, A%)
Since 7 is the Picard stack associated to the morphism of abelian sheaves §4 : A=2— A1,
it fits into the commutative pullback square of Picard stacks (see the proof of non-abelian

version of Proposition 8.3.2 in [3]).

A2 0 (4.6.3)
oA Vi
A1 o

4

Then pasting the diagrams and at @7, we obtain

A2 0 (4.6.4)
5a Vi
A*i - of 0
AN
N\ . Ay ﬂ
Aa N
~N N ; .
A - Tors(«, A”)

o1



CHAPTER 5

TRICATEGORY OF LENGTH 3-COMPLEXES
OF ABELIAN SHEAVES

In the previous Chapter [4] we have seen the relation between Picard 2-categories and length
3-complexes of abelian sheaves. Now, we look at the category of such complexes more in
details. In this Chapter, we define TI=2(S) the tricategory of A® : [A~'—A~1— A%] length
3-complexes of abelian sheaves. In T[_Q’O}(S) a morphism between any two complexes A®
and B*® is called a weak morphism and we show that they form a bigroupoid denoted by
Frac(A®, B®).

5.1 3-category of Complexes of Abelian Sheaves

The main purpose of this thesis is to construct a trifunctor from the tricategory
TI=29(S) to the 3-category 2P1c(S). This construction (see Lemma is going to be
first performed on CI=2(S) a strict sub 3-category of TI=20(S) and extended to TI=29(S).
Although C[=29(S) is very well known, in order to setup our notation and terminology,
we start this chapter with its explicit description. The objects of Cl=20 (S) are length 3
complexes of abelian sheaves placed in degrees [—2,0]. For a pair of objects A® ,B®, the
hom-2-groupoid Home(-2,0)(g)(ae pe) 18 defined as follows:

e A l-morphism f®: A*—B® is a degree 0 map given by strictly commutative squares.

04

A2 A1l A0 (5.1.1)
f—2 f—l fO
B?—— =B B°
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e A 2-morphism s°® : f®*=-¢°® is a homotopy map given by the diagram

A0 (5.1.2)

satisfying the relations
= f0=2pos’, gt—flt=bpost+s0hs, gF-f=5"0da

e A 3-morphism v°® : s®* = t°® is a homotopy map between homotopies s® and t* given

by the diagram
0A

A2 (5.1.3)

Do // y
w///w// )

-1 0
OB B AB B

satisfying the relations

sO—tO:(SBov, sTh—t7 1= _—poAg.

Remark 5.1.1. In fact, the hom-2-groupoid Homc[fg,o](s)(A.yB.) is the 2-groupoid associated
to 7=0(Hom®(A®, B*)), the smooth truncation of the hom complex Hom®(A®, B®), that is
to the complex

Hom™2(A*, B*)-2—>Hom™ ' (A*, B*)—2~ Z°(Hom(A*, B*))

of abelian groups, where for i = 1,2 the elements of Hom *(A®, B®) are morphisms of
complexes from A® to B® of degree —i, and where Z°(Hom’(A®, B*)) is the abelian group
of cocycles. The differentials ' are defined as

(07 (s*) P = AP o sP 4 (—1)iTls P o AP

for any s* € Hom *(A®, B*) and p =0, 1,2.

5.2 Weak Morphisms of Complexes of Abelian Sheaves

We fix two complexes of abelian sheaves A®* and B°®. We define Frac(A®, B®) a weakened
analog of the hom-2-groupoid Homc[_z,o](s)(A', B*®). We also prove that Frac(A®, B®) is a
bigroupoid.
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5.2.1 Definition of Frac(A*, B*)

Frac(A®, B®) is a consists of objects, 1-morphisms, and 2-morphisms such that

e An object is an ordered triple (g, M*,p), called fraction

(g, M*,p) : A<y P o pe

with M*® a complex of abelian sheaves, p a morphism of complexes, and ¢ a quasi-
isomorphism.

e A 1-morphism from the fraction (¢, M7, p1) to the fraction (ga2, M3, p2) is an ordered
triple (r, K*®,s) with K*® a complex of abelian sheaves, r and s quasi-isomorphisms
making the diagram

My (5.2.1)

commutative.

e A 2-morphism from the 1-morphism (71, K7, s1) to the 1-morphism (rg, K3, s2) is an
isomorphism ¢* : K7— K3 of complexes of abelian sheaves such that the diagram that
we will call “diamond”

(5.2.2)

comimutes.

Remark 5.2.1. For reasons of clarity, we will represent the above 2-morphism by the follow-
ing planar commutative diagram
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N
/

/
4 \ / P2

where we have ignored the maps from K*®’s to A® and B°®.

Remark 5.2.2. From the definition of 2-morphisms, it is immediate that all 2-morphisms
are isomorphisms.

5.2.2 Frac(A*, B*) is a bigroupoid

Proposition 5.2.3. Let A® and B® be two complexes of abelian sheaves. Then Frac(A®, B®)
s a bigroupoid.

Proof. We will describe the necessary data to define the bigroupoid without verifying that
they satisfy the required axioms.

e For any two composable morphisms (71, K7, s1) : (q1, M7, p1)—(q2, M3, p2) and (2, K3, s2) :
(g2, M3, p2)— (g3, M3, p3) shown by the diagram

y4 \ 52 q
| /
{ ]
q3 ‘K|2 P3
| T2
Y
[ ]
M3

the composition is defined by the pullback diagram.
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My M3 Mz
That is the composition is the triple (r2 o pry, KT x93 K3, 51 0 pry).

e For two 2-morphisms t{ : (11, K7, s1)=(re, K3, s2) and t§ : (ro, K3, s2)=(r3, K3, s3)
shown by the diagram

M3

the vertical composition is defined by ¢35 o 7.

e For two 2-morphisms ¢* : (r1, K3}, s1)=(re, K3,s2) and u® : (1}, L}, s})=(r), L3, sb)
shown by the diagram

the horizontal composition is given by the natural morphism K7 X e LY— K35 X prs L3
between the pullbacks of pairs (r1,s]) and (re, s5) over Ms.
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Any three composable 1-morphisms (71, K7, s1), (r2, K3,s2), and (r3, K3,s3) can be
pictured as a sequence of three fractions

K} K3 K3
PONC N N
M M3 M2 M

simply by ignoring the maps to A®* and B®. They can be composed in two different ways,
either first by pulling back over M3 then over M3 or vice versa. The resulting fractions
will be (r, (KT x5 K3) X ns K3, 8) and (7', KT X s (K3 X3 K3), 8'), respectively, where r
and 1’ (resp.s and §') are equal to r3 (resp.s;) composed with appropriate projection maps.
The 2-isomorphism between these fractions is given by the natural isomorphism between
the pullbacks. Thus, the associativity of composition of 1-morphisms is weak.

We also observe that 1-morphisms are weakly invertible. Let (r, K®,s) be a 1-morphism
from (q1, M7, p1) to (g2, M3, p2), then (s, K®,r) is a weak inverse of (r, K®, s) in the sense
that the composition (r o pr, K* x My K* 1o pr) is equivalent to the identity, that is there
is a natural 2-transformation € : r o pr=-id o (r o pr) as shown in the below diagram.

p1
e .
T’ T & i
q1 \:>/ p1
My
Thus, Frac(A®, B®) is a bigroupoid. O

Remark 5.2.4. In the terminology of [2], what we have called fractions are called in the
non-abelian context weak morphisms of 2-crossed modules or butterflies of gr-stacks or bats
of sheaves.

5.3 Tricategory of Complexes of Abelian Sheaves

We define the tricategory T[_Q’O](S) of length 3 complexes of abelian sheaves promised
at the beginning of the section. To define a tricategory, one has to first define the data
given in [15, Definition 3.3.1] and then verify that these data satisfy the axioms also given
in [I5 Definition 3.3.1]. Since this is a very long and dull procedure, we give here the some
of the important data and leave the rest.

T(=20] (S) is a tricategory equipped with the data
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e Objects are length 3 complexes of abelian sheaves.

e For any two complexes of abelian sheaves A® and B°®,

bicategory.

Frac(A®, B®) is the hom-

e For any three complexes of abelian sheaves A®, B®, and C*, the composition is given

by the weak functor

®7 : Frac(A®, B®) x Frac(B®,C*)——Frac(A*,C*),

which is defined on

1. objects, by

M7 My
y & QT 7 Y
AO BO B. C.

2. 1-morphisms, by

M? M3
AN N

A® <z1— K®* —y1> B®* ®r PB®<w2— [* —y2>('®

\ / \ \ /
k TJ Py 5 f Ph
NY Ny

3. 2-morphisms, by

VAN //\\

A* K=K B* er B* LI—Ly C*

I\ // \\//
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CHAPTER 6

CHARACTERIZATION THEOREM FOR
PICARD 2-STACKS

This is the main chapter of the thesis where we prove the generalization of the theorem
(3.8]) to Picard 2-stacks. So far we have defined 2P1¢(S) the 3-category of Picard 2-stacks
and TI=20(S) the tricategory of length 3 complexes of abelian sheaves.

6.1 Definition of the Trihomomorphism

We construct a trihomomorphism from C[=2%(S) to 2P1¢(S).

Lemma 6.1.1. There is a trihomomorphism

20 : Cl-201(S)—=2P1c(S) (6.1.1)

between the 3-category CI=29(S) of complexes of abelian sheaves and the 3-category 2P1¢(S)
of Picard 2-stacks.

Proof. We will give a step by step construction of the trihomomorphism and leave the
verification of the axioms to the reader.

e Using the notations in section given a complex A®, we define 2p(A®) as the
associated Picard 2-stack, that is 2p(A®) := Tors(«/, AY).

e For any morphism f® : A*—B® of complexes (see diagram (5.1.1))), there exists a
commutative square of Picard stacks

Ag

o A° (6.1.2)
F = fo
% o B

where F is induced by f*<%: A*<0—B*<0 From the square (6.1.2), we construct a
I-morphism 2p(f*) in 2P1¢(S)
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20(f*) : Tors(«, AY)——=Tors(%, B®)

that sends an (7, A%)-torsor (&, z) to (LAY B, fOox+ Ap). For details, the reader
can refer to [II, §6.1].

For any 2-morphism s® : f®=-¢® of complexes (see diagram , there exists a
diagram of Picard stacks

A0 (6.1.3)

such that for any (L, a) in &7, we have the relation

G(L,a) — F(L,a) = 80 Ag(L,a) with §%°a)= (B2 s%)).

From the relation, we construct a natural 2-transformation 6

2p(f*)
B ———
TORS(<, AO)\&MTORS(@, BY)
2¢(9°%)

in 2P1C(S) that assigns to any object (£, ) in TORs(«/, A°) a 1-morphism 6 & ;)
Oz (L N

in Tors(%, BY), where vp = flox+Ap and g = ¢°ox+Ap. The morphism (6.1.4)
is defined by sending (1,b) to (I,b — s o z(1)).

For any 3-morphism v® : s* = t* of complexes (see diagram , there exists a
modification T’

20(f*)
A
Tors(«/,A%) 64 2 46  TORsS(%,B)
\\J
20(f°)

in 2P1¢(S) that assigns to any (., z) object of TORS(.7, AY) a natural 2-transformation
Lz
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02 2)

M
(L NE B, xr) UL (2 a) (L NE B, xc)
\\‘\n‘*—‘w’/
AL ,z)

in Tors(%, B®), where 0( 2 2)> P(2,2) are of the form l) The natural 2-transformation
['(,4) is defined by assigning to any object (I,b) in (£ AY %, ) a morphism

Liga(l,0): (1,b— sYox(l))—=(,b—t° o (1))
in (& /\‘g A, xrq) given by the triple (id;, 1./, 3) with 8 being the isomorphism

b—s%ox(l)—=b—sox(l)+ g ovoxl),

and id; the identity of [ in .Z, and 1, the unit element in <.

6.2 Biequivalence of Frac(A°®, B*) and Hom(A*, B*)

We fix two length 3 complexes of abelian sheaves A® and B®. In this Section, we prove
that the bigroupoid Frac(A®, B®) of fractions defined in Section is biequivalent to the
2-groupoid Hom(A®, B®) of additive 2-functors from 2p(A®) to 2p(A®) defined in Section

[4.5((see Definition ([4.5.1))).

6.2.1 Morphisms of Picard 2-Stacks as Fractions

Lemma 6.2.1. Let P be a Picard 2-stack and A, B be two abelian sheaves with additive
2-functors ¢ : A——P andvy: B——P . Then A xp B is a Picard stack.

Proof. Proof of this technical lemma will be given in the Appendix (A.1.1]). O

Lemma 6.2.2. A morphism f : A*—B*® is a quasi-isomorphism if and only if

20(f) : 2p(A*) —2p(B°)
s a biequivalence.

Proof. Given f : A®*—B® a morphism of complexes, we know how to induce a morphism
of Picard 2-stacks (see construction of trihomomorphism 2p(f)). It is also known that
a 2-stack (not necessarily Picard) can be seen as a 2-gerbe over its own 7y bounded by
the stack </ut(I) of automorphisms of identity [7, §8.1]. In particular, the Picard 2-stacks
Tors(«7, A”) and ToRrs(%, BY) are 2-gerbes over their own my bounded by Zut(Iy,(4e)) ~
[A=2 = ker(d4)]” and dut(lygpey) =~ [B=2— ker(dp)]”, respectively. Furthermore, if f is
a quasi-isomorphism, then H*(A®) ~ H~(B®) for ¢ = 0,1,2 and thus, m;(2p(A®)) ~
7;(2p(B*)) for i = 0,1,2. So Tors(«7, A%) and Tors(%, BY) are 2-gerbes with equivalent
bands. Therefore they are equivalent. O
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Given an additive 2-functor F' in Hom(A®, B®), we will show in the next lemma that
there is a corresponding object in Frac(A®, B®).

Lemma 6.2.3. For any additive 2-functor F : 2p(A®)—2p(B®), there exists a fraction
(g, M*,p) such that F o 2p(q) ~ 2p(p).

Proof. From the sequences

A A
o —> A0 "> 2p(A%) and B —"> B) —>20(B*)
we can construct the commutative diagram

o X B (6.2.1)

RN
e [l

1222
F §F
Aag @@F Ap
pro
2
F

A

AO

TA

BO
Fomy
TR

2p(A®) p(B*)
where & = A° x F.B BO. Tt follows from the commutativity of the above diagram that
wr = (Aa,Ap). The sequence

B g P 0 (6.2.2)

is homotopy exact since it is the pullback of the exact sequence #—B%—2p(B®). From
Lemma it follows that & is a Picard stack. Therefore by [3, Proposition 8.3.2], there
exists a length 2 complex E® = [ : E;1—>E%] of abelian sheaves such that the associated
Picard stack TORS(ER', E%) is equivalent to &r. Then by [3, Theorem 8.3.1], there exists
a butterfly representing up

A2 x E;! (6.2.3)

B—2
\ /
daX0p Pr )
RN
B—l

A7 x EY.
T oy XT g TR
o X B o Er



with Pp ~ (A~! x B71) X & E%. From a different perspective, this butterfly can be seen as

0 Ep! EY, (6.2.4)
Lk
A2 x B2 " Pp—— EY
idl pl i
A2xB2—=A1xB1——0

where each column is an exact sequence of abelian sheaves. The only non-trivial sequence

is the second column and its exactness follows from the definition of a butterfly (3.7.1). So
we have a short exact sequence of complexes of abelian sheaves

0 Ly M, A*<0 x B*<0 ——, (6.2.5)
where
My = A2x B 2—=Pp——=EY, (6.2.6)
EY = 0——=E,'——=EY,
AV x B*<0 = A 2x B2 —sAlx Bl —>0.

From the lower part of the diagram (6.2.4) and the definition of Pp, we deduce that
there are morphisms of complexes
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A2 x B2 (6.2.7)

pry pro
A2 K B2
(SA PF 5B
Al 7 B!

)\A /\B

AO/ Eg\
A'/M%\B'

We claim that ¢ is a quasi-isomorphism, that is

BO

H2(Mp) ~ker(64), H Y(Mp)~ker(Aa)/im(d4), HO(Mp) ~ coker(As).

Indeed, from the exact sequence (6.2.5), we obtain the long exact sequence of homology
sheaves
0 H™2(Mp)

[

H_l(M;v) 4>H—1(A0<0) % H—l(Bo<0)

H72(A0<0> X HfQ(Bo<O) s Hil(E;,) ]

H(EY,) HO(M}) —0
(6.2.8)
On the other hand, by [3 Proposition 6.2.6] applied to the exact sequence (6.2.2)), we

get a long exact sequence of homotopy groups

0 7T1(93) 71(5)}?)*>7T1(A0)HFQ(%)HW()((?F)H?T()(AO)*>0.
(6.2.9)
Since m(A%) = H=1(A%) = 0 and 7(A°%) = HY(A%) = A°, it follows from that
we have an isomorphism
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H %(B*<%) == H~Y(E}) (6.2.10)

and an exact sequence
0 H~1(B*<0) 5 HO(E}) —> A0 —— . (6.2.11)
(6.2.10) implies that & = 0 in (6.2.8)). Therefore from ([6.2.8) again, we obtain a short

exact sequence
0 —= H2(Mp) —= H 2(A"<0) x H-*(B*<") —> H~}(E}) —>0

from which we deduce that H2(Mp) ~ H2(A*<%) = ker(d4).
Now, apply the snake lemma to the short exact sequence ((6.2.11)) and to

0 5 Hfl(BO<O> s H*l(A0<0) X H*l(B0<O) s H*l(AO<O) > ()

in order to get the dashed exact sequence

0 H_I(Ml}) ker()\A)/im((SA) \

&,, —>0 HO(M;,) coker(\4)

from which it follows H (M) ~ ker(A4)/im(64), and HO(Mp) ~ coker(A°) as wanted.
We end this proof by showing that F' o 2p(q) ~ 2p(p). (6.2.7) induces a diagram of
Picard 2-stacks

Qp(M;\ . (6.2.12)
2p(q) 20(p)
20(4°) - 20(B°)
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We claim that commutes up to a natural 2-transformation. To show that, it is
enough to look at 2p(M}p.) locally. Given U € S, 2p(My)y is the 2-groupoid associated to
the complex of abelian groups (for the definition of the 2-groupoid associated to a complex
see [3] or [27])
AZ2(U) x B7(U) —"= Pp(U) == E(U)

Then, an object of 2p(Mp)y is an element e of E%(U). Since &r = A° xpp B? ~
Tors(ER', E%), e can be taken as (a, f,b), where a € A°(U), b € BY(U), and f : F(a)—b
is a 1-morphism in 2p(B®)y.

A 1-morphism of 2p(Mp)y from e; to ey is given by an element p of Pp(U) such that
A(p) + e1 = ey in E%(U). We can again take A(p), e1, and ey as (a, f,b), (a1, f1,b1),
and (az, fa, ba), respectively. Therefore, the addition in E%(U) should be replaced by the
monoidal operation on & between the triples, that is (a, f,b) ®g, (a1, f1,b1) = (a2, f2, b2).
This monoidal operation is described in the proof of the technical Lemma It creates
a diagram commutative up to a 2-isomorphism in 2P1¢(S)(B*®)y that defines f.

F(ag) f2 b2
~ 9/71 ~
F(a) ®p F(a1) fonh b®p b

The collection (f,0) gives the natural 2-transformation between 2p(q) o F' and 2p(p).

Remark 6.2.4. Since g is a quasi-isomorphism in C[~29(S), the technical lemma implies

that 2p(q) is a biequivalence in 2P1¢(S)(S). Therefore, by choosing an inverse of 2p(q) up

to a natural 2-transformation we can write F as F' ~ 2¢p(p) o 2p(q) " .

O]

6.2.2 Hom-categories of Frac(A®, B*) and Hom(A*, B*)

In the next two lemmas, we are going to explore the relation between 1-morphisms (resp.
2-morphisms) of Frac(A®, B*) and natural 2-transformations (resp. modifications) of Picard
2-stacks.

Suppose we have a natural 2-transformation 6

F
20(4%) " o 2p(B*) (6.2.13)

e ———e T

G

between the two additive 2-functors F,G : 2p(A®)—2p(B®). By Lemma we know
that there are fractions (¢r, M3, pr) and (qq, M&, pg) associated to F and G.

Lemma 6.2.5. For any natural 2-transformation 6 as in , there is a 1-morphism
in Frac(A®, B®) between the fractions (qr, My, pr) and (qa, M&,pa).
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Proof. For F' and G, we have the following diagrams similar to (6.2.1))

g X PB ad X B
» MF\ P o MG\ 2
Aa Er Agp Aa Ve A
! / \ ! j / \ I
N N\
TA B TA B
20(A%) . 20(B") 20(A*) . 20(B*)

where & := A% x F.B BY and &5 := AY X@G,B B are Picard stacks by Lemma Therefore
by [3, Proposition 8.3.2], there exist E;1—>E% and E51—>Eg morphisms of abelian sheaves
such that the Picard stack associated to them are respectively 7 and &g. The natural
2-transformation 6 : F'=G induces an equivalence H : §g—&F of Picard stacks defined as
follows:

e For any (a, g,b) object of (6¢)v, H((a,g,b)) := (a, f,b), where f fits into the commu-
tative diagram

Fla) — b
fa = ~
G(a) 7 b

e For any ((I, 9,0, glv b) morphism of (éaG)U7 H((a7 9,0, 9/7 b)) = ((I, [T f/7 b)7 where T
is defined by the following whiskering.

9
F(a) "~ G(a) __ §o b

By [3, Theorem 8.3.1], H corresponds to a butterfly [E2, N, E}]. Since H is an equivalence,
this butterfly is flippable.
We compose H and ug by composing their corresponding butterflies
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_ _ —1
A2XB2 EF

\ /
fopt.
daXdp Pa XEg N )
el
/ K
-1 -1 0
A " x B E%
T oy XT g TR
o x B e Er

1
where Pg xgo N is pull-out/pull-back construction as defined in [3, §5.1].
G

There is also a direct morphism pup from & x & to &r. up is equivalent to H o ug
since they both map an object of & x % to an object in & which is isomorphic to the unit
object in 2p(B*®). Then by [3, Theorem 8.3.1], there exists an isomorphism k between the

corresponding butterflies of ur and H o ¢, that is the dotted arrow in the diagram below
such that all regions commute.

A2 x B2 a Pg xgg N<" Eq! (6.2.14)
N\
54x0p y va y oE
/ \
A=l x B! Ep
oy XT R Hope TER

A e——
HE

Let My, : A2 x B_2—>PF—>E% and M, : A2 x B_2—>Pg—>Eg. We claim that, there
exists a complex K*® with quasi-isomorphisms rr and r¢ such that all regions in the diagram

M, (6.2.15)

Mg,
commute.
Proof of the claim: Let K® : A=2x B~ 2—Pg X g0, N—N and define r by the composition

68



K* A2 x B2 FPo xpo, N N (6.2.16)
quotient quotient
-1
TR A2 x B2 Pq ng N N/Eél
Mz, A2 x B2 Pr EY
and rg by the diagram
K* A—2 % B—2 PG XE% N N (6217)
Mg A 2x B2 Pg Eg,

The commutativity of the diagram ((6.2.16)) follows from composition of butterflies. Since
-1
P xgg N ~ Pp and the butterfly [E,, N, E}] is flippable, rr is a quasi-isomorphism. The

G
diagram ([6.2.17) commutes because its left square is a pullback. This implies that rg is a
quasi-isomorphism.

It remains to show that qr o rp = qg o rg, that is in the diagram below each column
closes to a commutative square.

A® A2 A1 A°
My, A2 x B2 Pr E%‘
TR

K* A2 x B2 P xXgo, N N
TG

M, A2 x B2 Pg EY,
A® A2 A1 A0

It is obvious for the first column. The commutativity of the triangles
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EG!
PG XEO N

0
A"l x B! A

imply that the middle and last columns close to a commutative square, respectively (the
first triangle is extracted from diagram (|6.2.14)).
In the same way, we also show that pr orp = pg o rg. O

Now, suppose we have a modification I

F
N
20(A%) o4 T Vo 2p(B°) (6.2.18)
\T/

between two natural 2-transformations 6, ¢ : F'=G. We have proved in Lemmas [6.2.3] and
that both 6 and ¢ correspond to a 1-morphism in Frac(A®, B®).

Lemma 6.2.6. Given a modification I' as in , there exists a 2-morphism between
the two 1-morphisms corresponding to 6 and ¢.

Proof. Using the same notations as in Lemmal6.2.5, we construct a diagram of Picard stacks

where T' is a natural transformation. For any object (a,g,b) in &g, T(a,9,) is @ morphism
in & defined by

fo
fo
where
0a
T
F(a)  ra G(a),
\“T/

and Hy(a,g,b) = (a, fo,b), Hg(a,g,b) = (a, fy,b) . By [3, Theorem 5.3.6], the natural
transformation 7' corresponds to an isomorphism ¢ between the centers of the butterflies
associated to Hy and Hy.
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EY, E.! (6.2.19)

W ty

o o

22N\

WgG 7TgF
Hy
M
fofe R 2 S ——

EY

Hg

t induces an isomorphism of complexes ¢°.

K(; A2 x B2 Pq XE% N¢ N¢
t'l \LidXt lt
Kg. A2 x B2 Pq XE% Ny Ny

The proof finishes by showing that all the regions in the diagram ([5.2.2) commute. The
only regions, whose commutativity are non-trivial, are the triangles in the middle sharing
an edge marked by the isomorphism ¢*. They commute as well since in the diagram below

Mg A2x B2 Pg Eg,
TG, pry Pe
K3 A2« B2 Pa xpo. Ny Ny
t® idxt t
K3 A2 x B2 Pe x gy, No N
rG,6 pry Po
Mg A2 x B2 P EY,

each column closes to a commutative triangle. This is immediate for the first two columns.
The triangle formed by the last column commutes as well, since it is a piece of the commu-

tative diagram ((6.2.19)). O

For any two complexes of abelian sheaves A®* and B®, the proofs of Lemmas and
[6.2.5] define us a 2-functor

2¢(4e,pe) © Frac(A®, B®)——Hom(A®, B*) (6.2.20)

between the bigroupoid Frac(A®, B®) and the 2-groupoid Hom(A*, B®) of additive 2-functors
between 2p(A°®) and 2p(B*®) considered as a bigroupoid. In fact, we have proved:
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Theorem 6.2.7. For any two complexzes of abelian sheaves A® and B®, 2p(qe ey is a
biequivalence of bigroupoids.

The trihomomorphism (6.1.1]) extends to a trihomomorphism
2p 1 T-20/(S) ——= 2P1¢(S) (6.2.21)

on the tricategory TI=20] (S) as follow It sends any length 3 complex of abelian sheaves to
the associated Picard 2-stack. The biequivalence (6.2.20)) defines it on 1-,2-,3-morphisms.

6.3 From Picard 2-Stacks to Complexes of Abelian Sheaves

In this Section, we show that for any Picard 2-stack IP, there exists a length 3 complex
of abelian sheaves whose associated Picard 2-stack (see Section is equivalent to P. Said
differently, we prove (Lemma that the trifunctor is essential surjectivity. This
proof depends on the following technical result, which is similar to Lemme 1.4.3 in [9]. We

give its proof in the Appendix (A.2.1]).

Proposition 6.3.1. For any set E, denote by Z(E) the free abelian group generated by E.
Let C be a Picard 2-category and Fy : E—C be a set map. Then Fy extends to an additive
2-functor F : Z(E)—C where Z(E) is considered as a 2-category (trivially Picard).

Lemma 6.3.2. Let P be a Picard 2-stack, then there exists a complex of abelian sheaves A®
such that 2p(A®) is biequivalent to P.

Proof. There is a construction analogous to the skeleton of categories. For any 2-category P,
we construct 2sk(P) a 2-category that has one object per equivalence class in P. We observe
that 2sk(PP) is a full sub 2-category of IP, that is the inclusion 2sk(P)—P is a biequivalence.
Let P be a Picard 2-stack. We note that Ob 2sk(IP) : U— Ob(2sk(Py)) is a presheaf of sets.
We consider A° the abelian sheaf over S associated to the presheaf {U—Z(Ob(2sk(Py)))}
where Z(Ob(2sk(Py))) is the free abelian group associated to Ob(2sk(PPy)). By Proposition
the inclusion 7 : Ob 2sk(P) =P extends to

mp: AO——>P

an essentially surjective additive 2-functor on A°.
Define &7 by the pullback diagram

o 0 (6.3.1)
Aa Vi
A ————P

'We commit an abuse of notation by calling both functors 46.1.1D and QG.Z.QID by 2¢.
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of morphisms of Picard 2-stacks, which is similar to (4.6.2]). Then, the sequence of Picard
2-stacks
o —= A0 ——P

is exact sequence in the sense of Section [4.6]

On the other hand, from Lemma [6.2.1] it follows that <7 is a Picard stack. Therefore
by [3, Proposition 8.3.2], there exists a morphism of abelian sheaves d4 : A2 A7 where
A~? is defined by the pullback diagram

A2 0 (6.3.2)
oA Vi
At - of
and &7 := Tors(A72, A71).
Now putting the diagrams (6.3.1) and (6.3.2)) together,
A2 0 (6.3.3)
5a 7
At - o 0
N\
AN
N . A 7
Ad N
h EN
A P

P

we have a diagram of Picard 2-stacks. It implies that A® : A_2A>A_1/\—A>AO is a
complex.

The Picard 2-stack associated to A®, that is 2p(A®) := Tors(«/, A%), verifies by defini-
tion the above diagram (see [4.6.4).

The biequivalence 2p(A®) ~ P is almost immediate. Essential surjectivity follows from
the definition of 7p and equivalence of hom-categories from the fact that A° and 0 pull back
to o over 2p(A®) and over P. O

6.4 The Main Theorem

Considering 2P1¢(S) as a tricategory, our main result follows from Theorem and
Lemma [6.3.21

Theorem 6.4.1. The trihomomorphism (6.2.21]) is a triequivalence.
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An immediate consequence of the Theorem [6.4.1] which was also the motivation for this
work, is the following.

Let 2P10(S)” denote the category of Picard 2-stacks obtained from 2P1¢(S) by ignoring
the modifications and taking as morphisms the equivalence classes of additive 2-functors.
Let D[=20] (S) be the subcategory of the derived category of category of complexes of abelian
sheaves A® over S with H~%(A®) # 0 for i = 0,1,2. We deduce from Theorem the
following, which generalizes Deligne’s result [9, Proposition 1.4.15] from Picard stacks to
Picard 2-stacks.

Corollary 6.4.2. The functor (6.2.21]) induces an equivalence

20" : DI=20(S)—=2P1¢(S)” (6.4.1)
of categories.

Proof. It is enough to observe from the calculations in Section that mo(Frac(A®, B®))
Homyp-2,0)(sy(4e, ge)- Since the objects of DI=20(S) are same as the objects of T[=20)(S
the essential surjectivity follows from the Lemma [6.3.2]

12

~—

i

O
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CHAPTER 7

CONCLUSION

The purpose of this thesis is to generalize Deligne’s characterization theorem for Picard
stacks which is recalled in Chapter [3|to Picard 2-stacks. For that, we closely follow Deligne’s
proof in [9].

In Chapter 4} we first define the 3-category 2P1¢(S) of Picard 2-stacks. Our definition of
Picard 2-stacks differs from the usual definition (see [7, Chapter 8]). The difference
is that, we assume the multiplication by an object in a Picard 2-category is a biequivalence.
This implies existence of a unit object in the sense of Joyal-Kock [18] and an inverse of an
object. The advantage of this definition is that we do not need to add any data about unit
objects or inverses to the definition of Picard 2-stack which therefore reduces significantly
the number of coherence conditions. This definition of Picard 2-stacks also makes easier
to define the morphism of Picard 2-stacks (4.4.5). In Chapter |5 we introduce length 3
complexes of abelian sheaves and their tricategory TI=2%(S). In Chapter |§|7 we show that
the tricategory T[=29(S) is triequivalent to the 3-category 2P1¢(S) (Theorem .

We want to conclude this thesis with an informal discussion of stack versions of some of
our results. We will assume that all structures are strict unless otherwise stated. Through-
out the thesis, we dealt with 2- and 3-categories and their weakened versions bi- and tri-
categories. They can be stackified.

2-stacks over a site are well known [7]. The collection of 2-stacks over S, denoted
by 2STACK(S), comprise a 3-category structure. We can consider the fibered 3-category
26TACK(S), whose fiber over U is the 3-category 2STACK(S/U) of 2-stacks over S/U. In [T,
Remark 1.12], Breen claims that 26TACK(S) is a 3-stack. Hirschowitz and Simpson in [17],
generalize this result to weak n-stacks.

Theorem. [I7, Théoréme 20.5] The weak (n+ 1)-prestack of weak n-stacks nW STACK(S)
is a weak (n + 1)-stack over S.

We can use the above facts to deduce that the 3-prestack of Picard 2-stacks 2931¢(S)
with fibers 2P1¢(S)(S/U) over U is a 3-stack.

Claim. Hom(A®, B®) fibered over S in 2-groupoids is a 2-stack where for any U € S, the 2-
groupoid Hom(A"U, B"U) of additive 2-functors from 2p(A®)|y to 2p(B®)y defines the fiber
over U.

We have also fibered analogs for each hom-bicategory Frac(A®, B®) and for TI=20(S).
It follows from the above claim and Theorem that the bi-prestack Frac(A®, B®) of
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fractions from A® to B® with fibers defined by Frac(ArU, Bl'U) is a bistack. Then, once an
appropriate notion of 3-descent has been specified and all descent data are shown to be
effective, we conclude by the characterization proposition [I7, Proposition 10.2] for n-stacks
that the tri-prestack of complexes TI=2%(S) with fibers TI=20(S)(S/U) is a tristack. The
characterization proposition cited above briefly says that 3 is an n-stack over S if and only
if all descent data are effective and for any X,Y objects of By, Homgyp,, (X,Y) is ann — 1
stack over S/U.

Remark 7.0.3. The characterization proposition in [I7), Proposition 10.2] is originally enounced
for Segal n-categories, n-prestacks, and n-stacks. But again in the same paper, it has been
remarked that the proposition holds for non Segal structures [I7, §20] where in this case,
the weak structure is assumed to be the one defined by Tamsamani. Its definition can be
found in [3I] and [32]. However, we are being very informal and not discussing here the
connection of the weak structure of our categories, pre-stacks and, stacks with the ones
mentioned above.

Finally, we define the trihomomorphism of tristacks by localizing the triequivalence

(6.2-21).

T[=20/(5)——=291¢(S) (7.0.1)
where 291¢(S) is considered naturally as a tristack. We deduce then its stack analog

Theorem 7.0.4. is a triequivalence of tristacks.
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APPENDIX A

TECHNICAL LEMMAS

A.1 Lemmal

In the appendix we give the proof of two technical lemmas.

Lemma A.1.1. Let P be a Picard 2-stack and A, B be two abelian sheaves with additive
2-functors ¢ : A——P andv: B——P . Then A xp B is a Picard stack.

Proof. The fibered category A xp B with fibers (A xp B)|y consisting of

e objects (a, f,b), where a € A(U), b € B(U), and f : ¢(a)—(b) is a 1-morphism in

Py;
/’WL»X“&
e morphisms (a, f, @, g,b), where ¢(a) \ﬁﬂ@b(b) is a 2-morphism in Py;
g

is a prestack since for any U € S, 1-morphisms of P form a stack over S/U. It is in fact a
stack.

Let (Ui—=U), (a4, fi,b;i), a5 j)ijer be a descent datum with (U;—U);cr a covering of U,
(ai, fi, bi) an object in (AxpB)y, and a; j a 1-morphism in (AxpB)y,; between (aj, fj,b;)u,;
and (a;, fi, bi)y,;- Since au,;, = aju,;, biy,, = bjjy,; and A and B are sheaves, there
exist a € A(U) and b € B(U) such that a|y, = a; and by, = b;. Then the collection
((U;=U), fi, i j)i jer satisfies the descent in Hom(¢(a), (b)), which is effective since P is a
Picard 2-stack. That is, there exists f € Hom(¢(a), (b)) and S; : fiy,= fi compatible with
i j such that for all i € I, (ai, fiy,, Bi, fi,bi) is a morphism from (a, f,b)\y, to (ai, fi, bi).
Thus, the descent ((U;—U), (ai, fi, bi), ai j)ijer is effective.

Next, we show that A xp B is Picard. Let a and ¢ represent the associativity and
commutativity constraints in P. According to the definition , the Picard structure is
given by

1. a 2-functor ® : A xp B x A xp B——=A xp B defined as
(a1, f1,b1) @ (az, f2,b2) = (a1 + az, f1f2,b1 + b2),
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where fi fo is the morphism that makes the diagram

f1®p f2

¢(a1) ®p ¢(az) (b)) @p 1 (b2) (A.1.1)
Nmﬂ
P(a1 + a2) T V(b + b2)
commute up to a 2-isomorphism Ny,.
2. a functorial isomorphism a

(A xp B —2L (A xpB)?
1x® Y ®
(A Xp B)2 A Xp B

such that for any three objects (a;, fi,b:)(1,2,3}, a123 is the associator morphism

a1,2,3 = (a1 + ag + a3, fi(fof3), af fo, 15> (f1f2) f3,b1 + b2 + b3),

where ay, 1, r, is defined as the 2-isomorphism of the bottom face that makes the
following cube commutative (we ignored ®p for compactness).

[1®p(f2®@pf3)

¢(a1)(¢(az)d(as)) (b1)(¢(b2)1(b3))
> ¢lar)d(az + as) 27 (ba)y(ba + b3)
(6(a1)d(az))¢(as) Gonmmans (Wb1)i(b2))9(bs)
¢(a1 + az)¢(as) (b1 + b2)¢h(bs)
¢(ar + az + as) TS by + by + bs)
= Y as fats Z

ng(al + a9 + CL3) w(b1 + by + 63)

(f1f2)fs
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The other 2-isomorphisms of the cube are, the left and right 2-isomorphisms represent
the compatibility of the associator of P respectively with the strict associators of A
and B(i.e. they are the 2-morphisms defined by the modifications wg and wy, which
are similar to wp in the definition , the back and front ones are of the form N,,,
the top one is of the form ay, 7, ¢, : fi ®@p (f2 @p f3)=(f1 @p f2) @p f3.

3. a functorial isomorphism c

AX[{DB AXPB

N4

AXPB

such that for any two objects (a1, f1,01) and (ag, f2,b2), c12 is the morphism from
(a1, f1,b1) ® (a2, f2,b2) to (az, f2,b2) @ (a1, f1,b1) defined by

c12 = (a1 + a2, fif2, Bp foy f2S1, b1 4 b2),

where y, 1, is the 2-isomorphism of the bottom face of the commutative cube.

o(a1) @p P(az) fioels Y(b1) ®@p Y(b2)
o(a2) @p P(aq) l foseht Y(b2) ®@p Y(b1)
¢(a1 + CLQ) ff2 ¢(b1 + bg)
/ VETS /
gb(al + CLQ) ah 1/)(b1 + bg)

(A.1.2)
The other 2-isomorphisms of the cube are, the left and right 2-isomorphisms represent
the compatibility of the braiding of PP respectively with the strict braidings of A and
B(i.e. they are the 2-morphisms defined by the modifications ¢4 and e, which are
similar to ep in the definition , the front and back ones are of the form N,,, and
the top one is of the form ¢y, 1, : f1 ®p fo=f2 @p f1.

We need to verify that these data satisfy the condition given in definition (3.1.1)).
(i) equivalence:Let (a, f,b) be an object in A xp B. We claim that

(a,f,b)@—:Ax]pB

AX]}»B
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is an equivalence. To show essential surjectivity, we need to find for any (x, g, y) object
in A Xp B, an object (a’, f’,b") such that (a, f,b) ® (a’, f',V’) is isomorphic to (x, g,y).
Define ' =2 —a and ¥ = b — a. Since f is a 1-morphism in P, by Lemma (4.1.3)

f @p —: Hom(¢(a'), »(b")) Hom(¢(a) @p ¢(a'),1b(b) @p (V) (A.1.3)
is an equivalence. We also have the equivalence

Hom(¢(a) @p ¢(a’), 9 (b) @p (b)) Hom(é(x), ¥ (y)) (A.1.4)

So we let f’ be the inverse image of g € Hom(¢(z), 1 (y)) under the composition (A.1.3))
and (A.1.4). To show (a, f,b) ® — is fully-faithful, we need to show for any two objects
(a1, f1,01) and (az, fa,b2), the map

Hom((a1, f1,b1), (a2, f2,b2))——=Hom((a + a1, f f1,b+ b1), (a + a2, f f2,b+ b2))

is a bijection.

¢(a+a1) ¢(b+b1) (A.1.5)

#(a) @p ¢(a1) Y(b) @p p(b')

p(a1) Y(b1)
\_/
f2

In the above 2-commutative cylinder, the 2-morphisms of the lateral faces of the top
half are of the form and the 2-morphisms of the lateral faces of the bottom
half are uniquely defined by the fact that f ® — is an equivalence. Therefore the 2-
morphisms of the top and bottom faces are in 1-1 correspondence which are elements in
the sets Hom( (a1, f1,b1), (a2, f2,b2)) and Hom((a+aq, f f1,0+b1), (a+az, f f2,0+b2)),
respectively.

Verifying the commutativity of the pentagon and the two hexagons is trivial.

To verify symmetry we need to show that the 2-morphism of the bottom face of the
diagram obtained by concatenation of the appropriate two cubes of the form
is identity(the back face of one of the cubes overlaps with the front face of the other
cube). This follows from the fact that, 2-morphism of the top face of the concatenated
cube pastes to identity with the help of the 2-morphisms defined by the modification

of the form (4.1.1]).
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(iv) The morphism from (a, f,b) ® (a, f,b) to itself is identity because the 2-morphism of
the top face of the diagram (A.1.2)) pastes to identity with the help f the 2-morphism
defined by the modification of the form (4.1.2]).

O]

A.2 Lemma 2

Proposition A.2.1. For any set E, denote by Z(E) the free abelian group generated by E.
Let C be a Picard 2-category and Fy : E—C be a set map. Then Fy extends to an additive
2-functor F : Z(E)—C where Z(E) is considered as a 2-category (trivially Picard).

Proof. We assume that the set E is well-ordered and denote the order on F by <. In what
follows, we define

1. a 2-functor F': Z(E)——C,
2. for any two words w; and wp in Z(FE), a functorial 1-morphism Ay, .

Awiws @ F(wr) ® F(we) —F(wy + wa),
3. for any three words wq, we, and w3 in Z(E), a 2-morphism )y, w, ws (A.2.8)),
4. for any two words w; and wy in Z(FE), a 2-morphism ¢, , (A.2.10)).

A.2.1 Definition of F
We construct the 2-functor F': Z(E)—C as follows:

e For any generator a € E, Fa := Fya,

e For any generator a € FE, F(—a) := (Fa)*, where (Fa)" is inverse of Fa in C,
e F'(0) is the unit element in C, where 0 denotes the unit element in Z(E).

e For any word w in Z(E), we

— simplify w so that there are no cancelations and denote the simplified word by
We,

— order the letters of w, from least to greatest and denote the simplified and ordered
word by we,

F(w) is defined by multiplying the letters of w., from left to right.

For instance let w = 2a + b — ¢ — a — 2b. After cancelations and ordering the letters
Weo = a —b—cand
F(w) = F(we,) = (Fa® (Fb)*) @ Fc)

The order on the set E is needed since without the order two words that differ by the
position of letters would map to different objects in C although they are the same word in
Z(E). For the reasons of compactness, we use juxtaposition for the group operation ® on
the 2-category C.
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A.2.2 Monoidal Case

The items , , and describes the additive structure of the 2-functor F. We
first define them on the words that do not have negative coefficients. That is, they are
constructed first on the free abelian monoid N(F). In the next section we extend
their definition to the free abelian group Z(FE).

Definition of A\, w,. Let w; =a; +...4 ap and wy = by + ... + b, be two words
in N(F). The word w; + wsy is defined by concatenation of w; and wg and then by an
(m, n)-shuffle so that the letters of w; and wy are ordered from least to greatest. We denote
w1 + wg by ¢1 + ...+ Cptn. From the definition of F,

F(wl) X F(U}Q) = ( .. ((FalFag)Fag) ... Fam) &® ( .. ((FblFbQ)Fb3) . an()A.Q.l)
Fwi +wz) = (...((FeaFea)Fe3)...Fepyn) (A.2.2)

We define the functorial morphism Ay, 4w, @ F(w1) @ F(we)—F(w; + w2) in two steps
as follows:
Step 1: Correct Bracketing

In this step, we define the morphism

(. .. ((FalFag)Fag) c. Fam) & ( .. ((FblFbQ)Fbg) . an)—>

(... (FarFag)Fas) ... Fam)Fb)Fby) ... Fby), (A.2.3)

which moves the pairs of parenthesis of F(ws) one by one to the left from the outer
most to the inner most without changing the place of parenthesis of F'(w;). (A.2.3)
is composition of n — 1 many morphisms of the form

(.. (F(w1) (F(wh) Fby))Fbisa) . .. Fb)—(. .. (F(wy)F(w)))Fb;)Fbis1) ... Fby),
(A.2.4)

where w}, is a subword of ws.

Step 2: Ordering Letters

Once (|A.2.3)) is applied, the letters of w; and wy are parenthesized from left. Next,
we define the morphism

(((( .. ((FalFaQ)Fag) e Fam)Fbl)Fbg) e an)—>( .. ((FchCQ)FC;),) e FCm—I—n);
(A.2.5)
that shuffles the letters of wy; and wy to order them from least to greatest, that is
c1 ¢ = ... X Cntn-

The rule is as follows,

1. find the smallest letter of wy in wi + wey such that it has a letter of w; on its left
that is greater,

2. change their places. Depending on the position of the letters, there are two cases.
Either the letters are in the same parenthesis , then (|A.2.5)) simply permutes them

(...((FeiFeg)Fe3) ... Femyn)— (... (FeaFer)Fes) ... Femyn), (A.2.6)
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or they are in different pairs of parenthesis and (A.2.5)) first groups them together
by moving the appropriate pair of parenthesis to the right, then permutes the
letters, and moves the pair of parenthesis moved to the right to the left, that is

((..((((...(Fe1Fey) .. ) Fey_
(.. (... (FerFey) .. ) Fep_y
(.. (... (FerFey) .. ) Fep_y
((..((((...(Fe1Fey) . ..

) )
)Femain)—
) )

where ¢;, is a letter of ws in wy + we with 1 < k < m +n and ¢i_1 is a letter of

w1y such that ¢ < ¢cp_q.

We repeat the above process to every letter of wo in wi +ws. We define the morphism
(A.2.5)) as composition of the morphisms of the form (A.2.6) or (A.2.7).

We can illustrate the map by the lattice paths [12, Chapter 7.3D]. It is clear
that there is a 1-1 correspondence between the lattice paths from (0,0) to (m,n)
and the (m,n)-shuffles. can be seen as the lattice path corresponding to the
(m,n)-shuffle of the words wy,ws that defines wy + we and as the lattice
path corresponding to the concatenation of the words w; and wsy (i.e. the empty
(m,n)-shuffle). We denote these paths by Ly, 4w, and Ly, u,, respectively. From
this perspective, the map can be thought as applying an (m, n)-shuffle to the

concatenation of the words w; and ws.

(m,n) (m,n)
bn bn
b1 bl
(07 0) al Qm, (07 0) al am

Lattice Path Ly, v,

Lattice Path Ly, 44w,

The morphisms (A.2.6) and (A.2.7) describe the basic movement. They substitute
the point (4, 7) on the lattice path with the point (i — 1, j 4 1) as shown in the picture

below.

(i_lzj""l)

(4,)
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(4,5 +1)

(i—1,5)

(49)



The overall movement is described by the morphism where each step is a
basic movement. We define the following special point on the lattice path in order
to explain the mechanism of the movements. We call the point (7,j) on the lattice
path the corner point if the points (i — 1,7) and (i,j + 1) are on the lattice path, as
well. The morphism picks at every step the corner point (¢, 7) with the least y-
coordinate that is not on the lattice path Ly, 4, and substitutes it with (i — 1,7+ 1).
We show in the picture below the transformation of the lattice path L, w, to the
lattice path Ly, 41, -

bn bn by
b1 by b1
ai . am, al e am ay am
b bn
brn
b1 bl
by
ai . am ai N am al am

The morphism obtained in the first step followed by the morphism
constructed in the second step defines Ay, 1, -

We remark that if all the letters of wy are less than all the letters of ws, then wy + wo
is obtained by concatenating the words w; and ws without the shuffle. That is Ly, 1,
coincides With Ly, w,. In this case Ay, w, is of the form (A.2.3).

We also observe that the morphism Ay, ., is a path in the 1-skeleton of permuto-
associahedron K1ll,,,_1 where m and n are lengths of the words w; and ws, respectively.
KIlI,,1p—1 is a polytope whose vertices are all possible orderings and groupings of strings
of length m + n and whose edges are all possible adjacent permutations and all possible
parenthesis movements. For more details about permuto-associahedron, we refer to [20] and
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Definition of %y, w,ws- For any three words wi,ws, w3 in N(E), we define the 2-
morphism ¥y, s, ws

(F (1) F(w2)) F(w3)) “22%2 F(wy + wa) F(ws) —2" By 4wy +ws)  (A.2.8)
(F(w1)(F(w2) F(ws))) mF(wl)F(wz + w3) P F(wy + wa + w3)

between the 1-morphisms Ay, ws+ws ©Awy,ws 0@ A0 Ay g5 0wy w, from ((F(wy) F(ws))F(ws))
to F(wy +wq + wg)ﬂ These 1-morphisms are paths in the 1-skeleton of K11, 4,1 where
n,m, and p are the lengths of the words wi, we, and ws, respectively. This follows from the
fact that every map in the diagram (A.2.8)) is in the 1-skeleton of KTl 4pn4p—1-

In order to better understand these paths, we interpret them in terms of 3-dimensional
lattice paths. Assume that the letters of the words wi, we, and w3 represent respectively
the unit intervals on the z, y, and z-axis. F(w; + wy + w3) can be represented by the
3-dimensional lattice path corresponding to the (m,n,p)-shuffle of the words wy, ws,ws
that defines wy + wa + ws and ((F(w1)(F(w2))F(ws)) by the 3-dimensional lattice path
corresponding to the empty shuffle of the words w1, w2, w3. Therefore, the paths Ay, ws+ws ©
Awo,ws 0@ and Ay, 4aws ws © Awpwe can be thought as two different ways of shuffling w1, wo, w3
to obtain wy 4+ wa +ws. The path Ay, wy+ws © Aws.ws © @ first does the (n, p)-shuffle then the
(m, n)-shuffle. On the other hand the path Ay, fws ws © Aww, does the (m,n)-shuffle first,
then the (n, p)-shuffle. In this sense the 2-morphism ), u, ws can be seen as the connection
between the two different ways of doing the (m, n, p)-shuffle.

To define the 2-morphism %y, ws,.ws, We need the following Lemmas .

Lemma A.2.2. Let wy and wy be two elements of N(E). Ayywy = € and Ay, w, = id if
and only if Ay wotws © Awa,wz © @ = Ay +we,wz © Awy,ws

Proof. We first remark that Ay, w, = ¢ and Ay, w, = id is equivalent to assuming wy and w3
are letters such that we is greater than ws and wsy is greater than or equal to all letters of
wy. These facts imply that the map Ay, 4wy, w; first permutes F'(wg) and F'(w3) then shuffles
F(w;) and F(w3) without changing the position of F'(w2). Thus Ay, wotws © Awg,ws 0@ =
)‘w1+w2,w3 o )‘wl,w2'

In the other direction, we observe that the morphism a can be only part of the morphism
Aw; we+w; Which means Ay, w, = id. This requires wo to be a letter greater than or equal to
all letters of w1 and Ay; wo+ws © Aws,ws ©@ = Ay +ws,wy- We also observe that a parenthesis
movement caused by Ay, , effects only the places of the parenthesis around the letters of
wo and w3 and such a movement can not be caused by Ay, fwo,ws- This means Ay, w, does
not cause any parenthesis movements. Hence, we deduce that ws is also a letter. If wo < w3
then Ay, .y and Ay, 4uws,wy become identity morphisms and we obtain Ay, wotws © @ = id
which is not possible. Therefore Ay, ., should consist of a single permutation. O

'"We commit an abuse of notation in diagram (A.2.8). By Aw;,ws and Awy ws; We mean Ay, w, ® idw, and
idw; @ Awsy,wy, respectively.
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Lemma A.2.3. Let wy, wa, and ws be three elements of N(E). Then the followings are
equivalent.

1. The path Ay, 4wyws © Mwywe 8 strictly included in Ay, wotws © Awg,wy © @ That is
Viw: wslws) the vertex set of the path Aw, 4wy ws © Awy wy @8 strictly included in Vi, [y, ws)
the vertex set of the path Aw, wo+ws © AMws,ws © -

— -1
2. )\w1,w2+w3 o >\w2,w3 - )\w1+w2,w3 © Awl,wg ©ca .

3. Mgy = id.

Proof. 1t is clear that implies (|1)).

= : Aws,ws = 1d is equivalent to assuming that both wy and ws are letters and
wg < ws. This requires F(wq)F (wg 4+ ws) to be of the form F'(wy)(F (w2)F (w3)). Since all
the morphisms \’s start with moving parenthesis to the left, Ay, wo+w, starts exactly with
a~!. Therefore Awr wa+ws © Awg,ws = AMwi4wa,ws © My ws © a~ L

= : In all the vertices that Ay, ., pass through, F(w;) is grouped separately
from F(w9) and F(ws). Therefore any parenthesis movement or permutation that is
part of Ay,w, does not change the parenthesis around F(w;). However, on the path
Awi+wa,ws © Awp,we the same movements that describe Ay, ., are part of the morphism
Awi4ws,wy- Since this path passes through the vertices that group F(w;) and F'(wsg), the
parenthesis movements and permutations change the parenthesis around F'(wy). This con-
tradicts to the fact that Ay, 4aws,ws © Aw; w, 18 included in Ay, wotws © Aws,ws © - O

We remark that the Lemma ([A.2.3)) can be also expressed as Ay, +-ws,ws © My wsy 1S strictly
included in A, g +ws 0wy wy 03 if and only if Vi, s ws) = V(wth|w3)U{(F(w1)(F(wg)F(w3)))}.
We can return to the definition of the 2-morphism ., w, ws- By the Lemmas (A.2.2))

and (A.2.3)), the paths Aw, wotws © Aws,ws ©@ AN Ay s ,ws © Awy we are going to satisfy one
of the following three cases.

1. The paths may be the same. In this case, the 2-morphism 9y, w,w, is identity.

2. The path Ay, fws,ws © Awy,we 18 strictly included in Ay, wotws © Aws,ws ©a. In this case,
by Lemma (A.2.3)), the 2-morphism 1., wy.ws i aa~!'=id.

3. The paths may enclose a 2-cell. This 2-cell is a tiling of pentagonal and rectangular
2-cells. The pentagonal 2-cells are either MacLane Pentagones or their derivatives
obtained by inverting the direction of an edge. The rectangular 2-cells are of the form

a1 a1 c1
o— >0 o >0 o— >0
azi laz Cll \LCI Czi lcz (A.2.9)
[ Y o -0 [ Y
a1 a1 a1

where aj, as are either leftward or rightward parenthesis movements and ¢y, c; permute
adjacent objects. Rectangular 2-cells can be also derived from by inverting
the direction of an edge. These 2-cells commute up to structural 2-morphisms defined
by the Picard structure of the 2-category C. The Theorem 3.3 in [29] implies that
these 2-morphisms compose in a unique way. We let 1y, 4, w; be this composition.
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Definition of ¢, «,. The last piece of the additive structure of I is the 2-morphism

¢w1,w2

Fwn) F(ws) ~222F (wy + ws) (A.2.10)

F(wg)F(wl) T> F('LUQ + wl)
w2,wy
between the 1-morphisms Ay, © € and Ay, w, from F(w;)F(ws) to F(w; 4+ wz) where wy
and wy are any two words in N(£). We notice that the path Ay, ., oc is not necessarily in the
1-skeleton of K1l,,4,—1. The reason is that the braiding c is not an adjacent permutation
unless wy and wq are letters.
In the case where the words w; and wy are letters, ¢, w, is defined by the table

W1 | W2 ¢w1,w2

a a id
a b | id=c?
b a id

where id=c? is given by the Picard structure of the 2-category C.

Now, we assume that wi and w9 are two words such that their sum of lengths is m-+n > 3.
The 2-morphism ¢y, 4, is defined in the following way. We first transform the path Xy, ., oc
to a path in the 1-skeleton of K1I,,,_1. Second we apply the process that defines ¥, ws,w;
to the new path and the path Ay, wy. @w,,w, is then defined as the appropriate composition
of the 2-morphisms obtained at the first and the second step. Therefore to define ¢y, .,
it suffices to describe how we transform the path Ay, ., o c into a path in the 1-skeleton of
KHm+n—1 .

The main idea is to substitute the edge c that is not in the 1-skeleton by a sequence of
five other edges. This sequence is an alternating collection of three leftward or rightward
parenthesis movements and two braidings. The parenthesis movements are certainly in the
1-skeleton; however the braidings may not be. If they are not, then we substitute each of
those braidings by a sequence of five other edges as above. We keep substituting until all
the braidings become permutations of adjoint objects, therefore part of the 1-skeleton. We
know that the substitution process is going to terminate because after each substitution
braidings permute parenthesized objects with shorter length.

We describe this process on the sample w; = b+ e and wy = a + ¢ + d. The braiding
c permutes F'(w;) and F(wsg). First, we substitute c by the braidings c(, ¢ 4je) and c(q ¢ 4jp)-
Ca,c,dle) Permutes the parenthesized object ((FaFc)Fd) with Fe and c(qqp) permutes
((FaFec)Fd) with Fb. They are going to be substituted by c(ge) and c(, ey and by c(q ¢p)
and c(gpp), respectively. Since c(ge) permutes F'd and Fe and c(gp) permutes F'd and Fb,
they are edges in the 1-skeleton and therefore can not be substituted. In the diagram below,
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we illustrate the complete process of substituting ¢ by adjacent permutations c(,p), C(cJp);
C(d|b)7 Clale)> C(C|e), and C(d|e) using lattice paths.

A
d d d
C(a,c,d\e) C(a,c,d\b)
c _ c - c
a a a
b e b e b
C(a,c\e) C(d\e) C(‘lsc\b) C(d|b)
d d
C(ale) ¢ S(alb) ¢
a a
b [3 b e
C(cle) C(clb)
Y Y
d d
c c
a a
b e b e

This process defines a 2-morphism as follows. Substituting a braiding by an alternating
sequence of three leftward or rightward parenthesis movements and two braidings means
substituting an edge in a hexagonal 2-cell by the other five edges. Such hexagonal 2-cells
commute up to a 2-morphism given by the Picard structure of the 2-category C. The
appropriate composition of these 2-morphisms defines the 2-morphism of the first step.
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A.2.3 Extending the Additive Structure to Free Abelian Gorup

Here we extend the additive structure of the 2-functor F' to the free abelian group Z(FE)
generated by the set F.

Extending Ay, w,. The extension of Ay, w,, denoted by Ay, w,, to the words in Z(E)
should take into consideration the cancelations that might occur in wy + ws. If wo does not
have a letter that appears with an opposite sign in w; then there aren’t any cancelations
in wy + w2 and Ay we = Awywe- Otherwise, Ay, w, orders the letters of wy and wy from
least to greatest, left parenthesizes, and does the cancelations starting with the image of
the least letter. That is Ay, w, is equal to post composition of Ay, ., With the morphisms
of the form

(...((F(w)Fe))(Fei) )Feiv1) - Fepiom) — (.. (F(w)(Fei(Fe)*))Feirt) - . Feptm) ]

inchi

(...((F(w))Fcit1) ... Fenim) (...(F(w)Fe¢it1) ... Fengm)

(A.2.11)
for every cancelation. In (A.2.11]) w is a subword of wy 4+w2, I is a unit element in the Picard
2-category and invpe; and rp(,) are structural morphisms due to the Picard structure of

I'F(w)

the 2-category. By the Picard structure, we can also assume for simplicity that when le,w
orders letters from least to greatest the inverse of an object is always adjacent to the object
and it is on its left. We note that using Ay, w, for the morphism that orders the letters of
wy and woy from least to greatest and left parenthesizes them is an abuse of notation. Here
Awr w, does not map to the object F(w; + wg) but to an object that we denote F(wy2).
F(w2) is product of the images of all letters in w; and wy parenthesized from the left,
ordered from least to greatest, and if there exists inverse of an object is placed on its left.
For instance, if w1 = b+ ¢ and wy = a — b, then

Awiws @ (FbF¢)(Fa(Fb)*)—(((FaFb)Fb)*)Fc),
where F(wy ) = (FaFb)(Fb)*)Fc). Thus Ay, v, can be expressed as composition of

>\w1 ,wo Tw1 ,wo

F(w) F(ws)

F(U}LQ)

F(wy + wa), (A.2.12)

where Ty, w, is composition of morphisms of the form (A.2.11)) for every cancelation. We
remark that Ay, ., as in the monoidal case defines a path in the 1-skeleton of the permuto-

associahedron K1II,,,—1. However if there are cancelations, Ay, w, is not a path in the
1-skeleton of K1l,,4p—1.

Extending ¥, w,,w;- The extension of ¥, w,,ws, denoted by le,w%m, to the words
w1, wa, w3 in Z(E) is a 2-morphism
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)\w ,wo )‘“’1‘“‘)27“)3

(F(w1)F(w2))F(w3)) 22 F(wy + ws) F(ws) Flwi +ws +ws)  (A.2.13)

(F(w1)(F(w2) F(ws))) = F(w1) F (w2 + ws) F(wy 4wy + w3)

)‘w2vw3 >‘w1,w2+W3

between the 1-morphisms le,wﬁm o sz,w oa and le+w2,w3 o le,wQ. As noticed, these
paths may not be in the 1-skeleton of Kl ,—1. However, there exists a vertex Vj of
the permuto-associahedron KII,, 11,1 that both paths le+w2’w3 Ole,wz and le,w2+w3 o
Xw27w3 pass through it. Therefore the diagram can be rewritten as:

(B (wn ) (wn)) F (w3)) — Vo —— F(wy +ws) Fws) 22 o B(w; 4wy + w)
D A, Y omssn
(E'(w1) (F (w2) F(w3))) —— Vo —— F(w1) F (w2 + w3) oo, F(wy + wy + w3)
(A.2.14)
where both vertical morphisms to Vp are paths on KTl y54p—1. So we compute ¥, 4, in

the same way as 1 of the monoidal case. After the vertex Vj, the morphisms on the diagram
(A.2.14)) are not any more in the 1-skeleton of K1l y4p—1 because of the cancelations. The
region between the two paths from Vj to F(w; 4+ w2 + ws3) can be filled with the structural
2-morphisms of the Picard structure in particular involving the ones related with inverse
and unit objects. The 2-morphism py, w,.ws 1S then the unique pasting of those structural
2-morphisms. Hence, we define ¢, w,ws as pasting of 1y, 1, ws a0 Py s ws-

Extending ¢y, w,. The extension of ¢y, «,, denoted by %wl,wz is a 2-morphism

Awl wo

F(wl)F(wg) — F(w1 + w2) (A.2.15)

F(wg)F(w) — F(ws + wy)

wo, w1

between the 1-morphisms XW w, © ¢ and le w, from F'(wy)F(wsz) to F(w; + wy) where w;
and wy are any two words in Z(E). We rewrite the diagram 1} by expressing )\wl g
and /\wz,w1 as compositions using 1'

Awq ,wo Tw

F(wl)F(wg) — F(w1 2) 4>2F w1 + w2 (A.2.16)
|t

F(wg)F(wl) — F(w2 1) —> F w2 + w1

w2,w1
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The square on the left commutes up to the 2-morphism qu,wz obtained inthe same way as

¢ of the monoidal case. The square on the right commutes since F(wj2) = F(ws,;) and

therefore 7y, wy = Twsy,w,- Hence, ¢y, w, is the whiskering ¢u, .., * Tw, ws- O
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