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ABSTRACT

In Séminaire de Géometrie Algébrique 4 (SGA4), Exposé XVIII, Pierre Deligne proves that
to any Picard stack one can associate a complex of abelian sheaves of length 2. He also
studies the morphisms between such stacks and shows that such a morphism defines a class
of fractions in the derived category of complexes of abelian sheaves of length 2. From these
two preliminary results, he finally deduces that the derived category of complexes of abelian
sheaves of length 2 is equivalent to the category of Picard stacks with morphisms being the
isomorphism classes.

In this dissertation, we generalize his work, following closely his steps in SGA4, to the
case of Picard 2-stacks. But this generalization requires first a clear description of a Picard
2-category as well as of a 2-functor between such 2-categories that respects Picard structure.
Once this has been done, we can talk about category of Picard 2-stacks and prove that the
derived category of complexes of abelian sheaves of length 3 is equivalent to the category
of Picard 2-stacks.
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CHAPTER 1

INTRODUCTION

Let D[−1,0](S) be the subcategory of the derived category of category of complexes of abelian
sheaves A• over a site S with H−i(A•) 6= 0 only for i = 0, 1. Let Pic(S)[(S) denote the
category of Picard stacks over S with 1-morphisms isomorphism classes of additive functors.
In SGA4 Exposé XVIII, Deligne shows the following.

Proposition. [9, Proposition 1.4.15] The functor

℘[ : D[−1,0](S) //Pic(S)[(S)

given by sending a length 2 complex of abelian sheaves, A• : A−1→A0 over S to its as-
sociated Picard stack [A−1→A0]∼, an isomorphism class of fractions from A• to B• to an
isomorphism class of morphisms of associated Picard stacks is an equivalence.

The purpose of this thesis is to generalize the above result to Picard 2-stacks over S.
Let 2Pic(S)[[(S) denote the category of Picard 2-stacks, whose morphisms are equivalence
classes of additive 2-functors. Let D[−2,0](S) be the subcategory of the derived category of
category of complexes of abelian sheaves A• over S with H−i(A•) 6= 0 for i = 0, 1, 2.

Theorem I. The functor

2℘[[ : D[−2,0](S) //2Pic(S)[[(S)

given by sending a length 3 complex of abelian sheaves, A• : A−2→A−1→A0 over S to its
associated Picard 2-stack [A−2→A−1→A0]∼, an equivalence class of fractions from A• to
B• to an equivalence class of morphisms of associated Picard 2-stacks is an equivalence.

Basically, it gives a geometric description of the derived category of length 3 complexes
of abelian sheaves. It states that any Picard 2-stack over a site S is biequivalent to a
Picard 2-stack associated to a length 3 complex of abelian sheaves and that any morphism
of Picard 2-stacks comes from a fraction of such complexes. A complex of abelian sheaves,
whose only non-zero cohomology groups are placed at degrees -2,-1, and 0 can be thought
as a length 3 complex of abelian sheaves, and therefore a morphism in D[−2,0](S) between
any two complexes A• and B• is given by an equivalence class of fraction

(q,M•, p) : A• M•
p //qoo B•
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with q being a quasi-isomorphism.
However, we prove a much stronger statement, so that the latter theorem becomes an

immediate consequence of it. Let 2Pic(S)(S) be the 3-category of Picard 2-stacks where
1-morphisms are additive 2-functors, 2-morphisms are natural 2-transformations, and 3-
morphisms are modifications. Length 3 complexes of abelian sheaves over S placed in degrees
[−2, 0] form a 3-category C[−2,0](S) by adding to the regular morphisms of complexes, the
degree -1 and -2 morphisms. Then we easily construct an explicit trihomomorphism

2℘ : C[−2,0](S) //2Pic(S)(S) ,

that is a 3-functor between 3-categories. Under this construction, length 3 complexes of
abelian sheaves correspond to Picard 2-stacks. Although morphisms of such complexes
induce morphisms between associated Picard 2-stacks, not all of them are obtained in this
way. In this sense, the 1-morphisms of C[−2,0](S) are not geometric and the reason is their
strictness. We resolve this problem by weakening C[−2,0](S) as follows: We introduce a
tricategory T[−2,0](S) (a tricategory is a weak version of a 3-category in the sense of [13])
with same objects as C[−2,0](S). For any two complexes of abelian sheaves A• and B•,
morphisms between A• and B• in T[−2,0](S) is the bigroupoid Frac(A•, B•), whose main
property is that it satisfies π0(Frac(A•, B•)) ' HomD[−2,0](S)(A

•, B•), where π0 denotes the
isomorphism classes of objects. Roughly speaking, objects of Frac(A•, B•) are fractions
from A• to B• in the ordinary sense and its 2-morphisms are certain commutative diagrams
(5.2.2) called “diamonds”. Then we prove:

Theorem II. The trihomomorphism

2℘ : T[−2,0](S) //2Pic(S)(S)

defined by sending A• a length 3 complex of abelian sheaves to its associated Picard 2-stack
is a triequivalence.

Since in particular a triequivalence is essentially surjective, every Picard 2-stack is
biequivalent to a Picard 2-stack associated to a complex of abelian sheaves. Then by ignor-
ing the 3-morphisms and passing to the equivalence class of morphisms in the triequivalence
of Theorem II, we deduce Theorem I.

The Chapters in this dissertation are organized as follows:
In Chapter 2, we recall the language of 2-categories and 3-categories that is commonly

used through out the thesis.
In Chapter 3, we explain Deligne’s work in SGA4 Exposé XVIII. We start with a detailed

description of the 2-category Pic(S) of Picard stacks over a site S. We define the bicategory
T[−1,0](S) of morphisms of abelian sheaves over the site S whose 1-morphism are called
butterflies. We later construct a bifunctor from Pic(S) to T[−1,0](S) by sending a morphism
of abelian sheaves A−1→A0 to its associated Picard stack Tors(A−1, A0). We finish this
Chapter by enouncing Deligne’s characterization theorem for Picard stacks (3.8) from which
(1) follows.

In Chapter 4, we construct the 3-category 2Pic(S) of Picard 2-stacks. We give an
example of a Picard 2-stack, namely Tors(A , A0), where A is a Picard stack and A0 is an
abelian sheaf. This example is of great importance for the rest since it is equivalent to the
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Picard 2-stack associated to A• : [A−1→A−1→A0] a length 3 complex of abelian sheaves
with A the Picard stack associated to the morphism A−2→A−1. We call Tors(A , A0)
the Picard 2-stack associated to A•. For any two complexes A• and B•, we denote by
Hom(A•, B•) the hom-2-category of the morphisms between the associated Picard 2-stacks.

In Chapter 5, we first construct another 3-category, namely C[−2,0](S) of length 3 com-
plexes of abelian sheaves. By weakening the morphisms of C[−2,0](S), we construct a tricat-
egory T[−2,0](S) that has same objects as C[−2,0](S) and for any two length 3 complexes A•

and B• of abelian sheaves, Frac(A•, B•) as the hom-bigroupoid.
Chapter 6 is the main Chapter of this thesis. Here, we prove the generalization of

Deligne’s characterization theorem. We first construct an explicit trihomomorphism 2℘
from the 3-category C[−2,0](S) to the 3-category 2Pic(S) of Picard 2-stacks. We also show
that for any two length 3 complexes of abelian sheaves A• and B•, there exists a biequiv-
alence of bigroupoids between Frac(A•, B•) and the 2-category Hom(A•, B•). Using this
biequivalence, we extend the trihomomorphism 2℘ constructed on C[−2,0](S) to a trihomo-
morphism on T[−2,0](S). We end this Chapter by proving that the latter trihomomorphism
is a triequivalence (see Theorem II).
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CHAPTER 2

PRELIMINARY

In this chapter, we are going to recall 2-categories and 3-categories from a perspective that
is needed through out the thesis. We start with a short review of 2-categories. Then we
explain by analogies 3-categories and give list of references for detailed treatment of the
subject.

2.1 Language of 2-Categories

In this section, we revisit 2-categories. We assume familiarity with the category theory.
We ignore any set theoretic problems which can be overcome by standard arguments using
universes . For detailed treatment of 2-categories, we refer to [16], [24], [25], and [26].

Definition 2.1.1. A bicategory C is the collection of the following data:

1. a set of objects ObC.

2. for any two objects X and Y , a category HomC(X,Y ) or Hom(X,Y ) if there is no
confusion, whose objects are called 1-morphisms and designated by f : X→Y and
whose morphisms are called 2-morphisms and designated by α : f⇒g and whose
composition law, designated by ◦, is called vertical composition and defined as

X

f

  

h

>>
g //

�� ��
�� α

�� ��
�� β

Y = X

f

  

h

>>
�� ��
�� β◦α Y

3. for any three objects X,Y, Z, a functor

τX,Y,Z : Hom(X,Y )×Hom(Y, Z) //Hom(X,Z) .

We write g ◦ f and β ∗ α for τX,Y,Z(f, g) and τX,Y,Z(α, β), respectively. We call β ∗ α
the horizontal composition.

4. for any object X, a functor

IX : 111 //Hom(X,X) ,

4



defined on the category 111 with one object ∗ and one morphism id∗ by sending ∗ to
idX .

5. for all X,Y, Z,W objects, there exists a natural isomorphism θ

Hom(X,Y )×Hom(Y, Z)×Hom(Z,W )

1×τY,Z,W

��

τX,Y,Z×1
//

�� ���� θ

Hom(X,Z)×Hom(Z,W )

τX,Z,W

��
Hom(X,Y )×Hom(Y,W ) τX,Y,W

// Hom(X,W )

.

6. for all X,Y objects, there exits two natural isomorphisms l and r

Hom(X,Y )× 111 //

1×IY

��?????????????
Hom(X,Y )

� �� �KSrX,Y

Hom(X,Y )×Hom(Y, Y )

τX,Y,Y

??�������������

111×Hom(X,Y ) //

IX×1

��?????????????
Hom(X,Y )

� �� �KS
lX,Y

Hom(X,X)×Hom(X,Y )

τX,X,Y

??�������������

These data must satisfy 1:

(i) for every four composable 1-morphisms f, g, h, k, the diagram of 2-morphisms

(((kh)g)f)

τ∗1

#+OOOOOOOOOOO

OOOOOOOOOOO
τ

s{ ooooooooooo

ooooooooooo

((kh)(gf))

τ

��

� ((k(hg))f)

τ

��
(k(h(gf))) (k((hg)f))

1∗τ
ks

(2.1.1)

commutes.

(ii) for every two composable 1-morphisms X
g //Y

f //Z the diagram of 2-morphisms

(gIY )f
τ +3

r∗111

��
77777777777777

77777777777777

�

g(IY f)

111∗l

�� ��������������

��������������

gf

(2.1.2)

commute.
1In diagrams (2.1.1) and (2.1.2), ◦ is omitted for compactness.
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The stronger version of bicategories in which the composition of 1-morphisms is strictly
associative is called 2-category. Formally,

Definition 2.1.2. A 2-category C is a bicategory in which the natural transformations θ,
r, and l are identities.

Definition 2.1.3. Let C and D be two 2-categories. A 2-functor (F, ε) : C // D is
given by the data

1. for all X object of C, F (X) is an object of D,

2. for all X,Y objects of C, there exists a functor FX,Y

FX,Y : HomC(X,Y ) // HomD(F (X), F (Y )) ,

3. for all X,Y, Z objects of C, there exists a functorial 2-isomorphism εX,Y,Z

HomC(X,Y )×HomC(Y,Z)
τX,Y,Z //

FX,Y ×FY,Z

��

HomC(X,Z)

FX,Z

��
HomD(F (X), F (Y ))×HomD(F (Y ), F (Z)) τFX,FY,FZ

// HomD(F (X), F (Z))

� �� �
FNεA,B,C

satisfying that

(i) FX,X(idX) = idF (X)

(ii) the diagram expressing the associativity of composition

FZ,W (h) ◦ FY,Z(g) ◦ FX,Y (f)

εY,Z,W (g,h)×1

��

1×εX,Y,Z(f,g)
+3 FZ,W (h) ◦ FX,Z(g ◦ f)

εX,Z,W

��
FY,W (h ◦ g) ◦ FX,Y (f) εX,Y,W

+3 FX,W (h ◦ g ◦ f)

commutes for any X
f // Y

g // Z
h //W .

6



(iii) the diagrams expressing the composition with identity

FX,Y (f) ◦ FX,X(idX)
εX,X,Y (idX ,f)

+3

idFX,Y (f)

��

FX,Y (f ◦ idX)

FX,Y (f) ◦ idF (X) FX,Y (f)

FY,Y (idY ) ◦ FX,Y (f)
εX,Y,Y (f,idY )

+3

idFX,Y (f)

��

FX,Y (idX ◦ f)

idF (Y ) ◦ FX,Y (f) FX,Y (f)

commute for any X
f // Y .

Remark 2.1.4. According to the common terminology of the weak 2-functor, we should

have assumed that there exists an isomorphism FX,X(idx) // idF (X) . However due to

the Lemma 2.5 in [11], we can assume that the latter isomorphism is an identity.

Definition 2.1.5. A 2-functor is a biequivalence F : C→D if

1. F is essentially surjective. That is if for any object Y in D, there exists an object X
in D such that there exists a weakly invertible morphism FX→Y .

2. for every object X,X ′ in C, the category HomC(X,X ′) is equivalent to the category
HomD(FX,FX ′).

Definition 2.1.6. Let C and D be two 2-categories and F,G : C // D be two 2-functors.

A natural 2-transformation C
F

((

G

66
�� ��
�� θ D is the collection of the datum,

1. for all X an object in C, θX : F (X)→G(X) is a 1-morphism in D,

2. for all f : X→Y 1-morphism in C, there exists a 2-morphism θf in D

F (X)
F (f) //

θX

��

F (Y )

θY

��
G(X)

G(f)
// G(Y )

����
>Fθf

7



satisfying the condition,

for all X

f
))

g

55
�� ��
�� α Y 2-morphism in C, the diagram

F (f)

θf

��

F (α) +3 F (g)

θg

��

�

G(f)
G(α)

+3 G(g)

is commutative.

Definition 2.1.7. Let C and D be two 2-categories and F,G : C→D be two 2-functors and
θ, φ : F⇒G be two natural 2-transformations. A modification

C

F

  

G

>>θ⇓ V
Γ
⇓φ D

is the collection of

for all X an object in C, F (X)

θX

$$

φX

::
⇓ΓX G(X) is a 2-morphism in D

satisfying that for any morphism X

f
&&

g
88

�� ��
�� α Y in C, the diagram

F (X)

θY

��

φY

��

F (f)

))

F (g)

55 F (Y )

θX

��

φX

��
G(X)

G(g)

55

G(f)

))h c _ [ V

G(Y )

⇒
ΓX

⇒
ΓY

⇓F (α)

⇓G(α)

commutes.

8



Definition 2.1.8. A 2-groupoid C is a 2-category such that,

• all 2-morphisms of C are isomorphisms,

• all 1-morphisms of C are invertible up to a 2-isomorphism, that is for any 1-morphism
f : X→Y , there exists a 1-morphism g : Y→X and two 2-isomorphisms α and β such
that α : g ◦ f⇒idX and β : f ◦ g⇒idY .

2.2 Language of 3-Categories

Even though the language of tricategories is going to be extensively used, we are not
going to remind here in full detail tricategories. Just for motivation, a 3-category can be
thought as the category of 2-categories with 2-functors or weak 2-functors in the sense
of Bénabou [4] and a tricategory as a weakened version of a 3-category. For more about
tricategories, we refer the reader to [4], [13], [15], and [22].

Here we only recall the definition of triequivelence since it is the key ingredient of the
main theorem (6.4.1).

Definition 2.2.1. [22] A trihomomorphism of tricategories T : C→D is called a triequiv-
alence if it induces biequivalences TX,Y : C(X,Y )→D(TX, TY ) of hom-bicategories for all
objects X,Y in C (T is locally a biequivalence), and every object in D is biequivalent in D
to an object of the form TX where X is an object in C.

9



CHAPTER 3

2-CATEGORY OF PICARD STACKS AND

DELIGNE’S CHARACTERIZATION THEOREM

FOR PICARD STACKS

3.1 Picard Categories

Definition 3.1.1. A category C with data

1. a functor ⊗ : C × C //C

2. a functorial isomorphism a

C × C × C

1×⊗

��

⊗×1 //





�	 a

C ⊗ C

⊗

��
C ⊗ C ⊗

// C

expressing an associativity constraint.

3. a functorial isomorphism c

C × C
s //

⊗

��77777777777777 C × C

⊗

����������������

C

____ +3c

expressing a commutativity constraint where s is the functor

s : C × C → C × C

(X,Y ) 7→ (Y,X)

10



is called Picard if the above data satisfies the following conditions.

(i) for any object X in C the functor X ⊗− : C //C is an equivalence.

(ii) for all objects X,Y, Z,W in C the pentagon below commutes.

((X ⊗ Y )⊗ Z)⊗W
a(XY,Z,W )

ttiiiiiiiiiiiiiiii
a(X,Y,Z)

**UUUUUUUUUUUUUUUU

(X ⊗ Y )⊗ (Z ⊗W )

a(X,Y,ZW )

��

(X ⊗ (Y ⊗ Z))⊗W

a(X,Y Z,W )

��
X ⊗ (Y ⊗ (Z ⊗W )) X ⊗ ((Y ⊗ Z)⊗W )a(Y,Z,W )

oo

(iii) for all objects X,Y, Z in C the hexagones below

X ⊗ (Y ⊗ Z)
c(X,Y Z) // (Y ⊗ Z)⊗X

a(Y,Z,X)

��0
000000000000

(X ⊗ Y )⊗ Z

a(X,Y,Z)

FF�������������

c(X,Y )

��0
000000000000

Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z a(Y,X,Z)

// Y ⊗ (X ⊗ Z)

c(X,Z)

FF�������������

(X ⊗ Y )⊗ Z
c(XY,Z) // Z ⊗ (X ⊗ Y )

a−1
(Z,X,Y )

��0
000000000000

X ⊗ (Y ⊗ Z)

a−1
(X,Y,Z)

FF�������������

c(Y,Z)

��0
000000000000

(Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y )
a−1
(X,Z,Y )

// (X ⊗ Z)⊗ Y

c(X,Z)

FF�������������

(iv)

C

C × C

⊗

AA���������������

s
%%KKKKKKKKKK

1 // C × C

⊗

]]<<<<<<<<<<<<<<<

C × C

s

99ssssssssss

OO

c
.6

c

FN

id
em

id
Ya

is a commutative tetrahedron, that is for all X,Y objects in C ,

cY,X ◦ cX,Y = idX⊗Y .
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(v)

C

∆

��8888888888888

∆

���������������

C × C
s //

⊗

��8888888888888 C × C

⊗

���������������

C

____ +3c

�

where

∆ : C → C × C

X 7→ (X,X)

pastes to a commutative diagram

C

∆

��8888888888888

∆

���������������

C × C �

⊗

��8888888888888 C × C

⊗

���������������

C

that is for all X object in C ,

cX,X = idX⊗X .

Notation 3.1.2. We denote a Picard category by (C ,⊗C , a, c). In case there is no risk of
confusion we are going to denote a Picard category by (C ,⊗).

3.2 Units in Picard Categories

Definition 3.2.1. Let (C ,⊗) be a Picard category. A pair (e, ϕ) is called a unit element
where e is an object in C and ϕ : e⊗ e→e is an isomorphism.

Definition 3.2.2. Let (C ,⊗) be a Picard category and let (e1, ϕ1) and (e2, ϕ2) be two unit
elements. A morphism (e1, ϕ1)→(e2, ϕ2) is given by an isomorphism f : e1→e2 in C such

12



that the diagram

e1 ⊗ e1
f⊗f //

ϕ1

��

e2 ⊗ e2

ϕ2

��

�

e1
f

// e2

(3.2.1)

commutes. We call such an isomorphism unit morphism.

This defines U(C ) the category of units of the Picard category (C ,⊗). In fact, U(C ) is
a groupoid since a unit morphism is assumed to be an isomorphism. We are going to call
these unit elements Saavedra units following the terminology by J.Kock. In [21], Kock shows
that defining a unit element in a monoidal category as a cancellable-idempotent element - a
definition due to Saavedra [30], is equivalent to the classical definition of a unit - also known
as Left-Right unit. When the category has Picard structure defining unit element and unit
morphism in the sense of Saavedra is even simpler since in this case every object and every
morphism is cancellable. Restricted to the underlying strict monoidal category of C , the
definition (3.2.1) coincides with Kock’s definition in [21]. There are immediate propositions
which follow from the definition of Picard category and the unit element. They are far from
being original. They can be found in the paper by Kock, Saavedra, and Deligne.

Proposition 3.2.3. Let (e, ϕ) be a unit element in the Picard category (C ,⊗). Then for
all X ∈ Ob C there exists a unique functorial isomorphism αX : e⊗X→X compatible with
ϕ. In other words, for any morphism f : X→Y in C , the following diagrams commute

e⊗X
e⊗f //

αX

��

e⊗ Y

αY

��
X

f
// Y

(e⊗ e)⊗X
ae,e,X //

ϕ⊗idX

��

e⊗ (e⊗X)

e⊗αX

��
e⊗X =

// e⊗X

Proof. Let (e, ϕ) be a unit element and let X be an object in C . The morphism ϕ⊗ idX is
in the set HomC ((e⊗ e)⊗X, e⊗X). We pre compose this morphism with the isomorphism
a−1
e,e,X to get a morphism (ϕ ⊗ idX) ◦ a−1

e,e,X in the set HomC (e ⊗ (e ⊗ X), e ⊗ X). Since
e ⊗ − is an equivalence, there exists a bijection between the sets HomC (e ⊗ X,X) and
HomC (e⊗ (e⊗X), e⊗X). We let αX be the image of (ϕ⊗ idX)◦a−1

e,e,X under this bijection.
By definition, it is clear that it is functorial and compatible with ϕ.

Proposition 3.2.4. A Picard category (C ,⊗) has a unit element.

Proof. Let X ∈ C . Since X ⊗ − is an equivalence, for all Z ∈ C there exists Y ∈ C such
that X⊗Y ' Z. In particular when X = Z there exists eX ∈ C such that f : X⊗eX ' eX .
Therefore the composition

X ⊗ (eX ⊗ eX)
aX,eX,eX //(X ⊗ eX)⊗ eX

f⊗eX //X ⊗ eX , (3.2.2)
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is an isomorphism in HomC (X ⊗ (eX ⊗ eX), X ⊗ eX). By the equivalence of eX ⊗ −, we
also know that HomC (X ⊗ (eX ⊗ eX), X ⊗ eX) is in bijection with HomC (eX ⊗ eX , eX). We
define ϕ as the image of the composition (3.2.2) under this bijection. ϕ is an isomorphism
since f is.Hence, the pair (eX , ϕ) is a unit element in C .

Proposition 3.2.5. Let (C ,⊗) be a Picard category. The groupoid of units U(C ) is con-
tractible. That is between any two unit elements (e1, ϕ1) and (e2, ϕ2) there exists a unique
unit morphism.

Proof. We define f : e1→e2 as the isomorphism that makes the diagram

e2 ⊗ e1
ce2,e1 //

αe1

��

e1 ⊗ e2

α′e2

��
e1

f
// e2

commutative. We need to verify that f satisfies the diagram (3.2.1).

e2e1

α′e1

��

ce2,e1
������

�������� e2⊗f
777777

��777777

e1e1

f⊗e1

77oooooooooooooooooooooooo e1⊗f //

ϕ1

��

GF ED
f⊗f

��
e1e2

αe2

��77777777777777 e1

f

��

e2e2

ϕ2

����������������

e1
f

// e2

The outer cell is the diagram (3.2.1). The top cell and the triangular cell commute by
naturality. The cell at the bottom left corner and the cell at the right most commute by
the functorialiy of α and α′, respectively. The remaining rectangular cell commutes by
definition of f .

Definition 3.2.6. Let (C ,⊗) be a Picard category. For any object X in C the pair
(X∗, αX) is called inverse element of X where αX : X ⊗X∗→e and (e, ϕ) is a unit element
with ϕ = αe.
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3.3 Morphisms of Picard Categories

Definition 3.3.1. Let (C ,⊗C , aC , cC ) and (D ,⊗D , aD , cD) be two Picard categories. An
additive functor (F, λF ) is given by a functor F : C→D and a natural isomorphism λF

C × C
F×F //

⊗C

��

������ λF

D ×D

⊗D

��
C

F
// D

that satisfy the following conditions

(i) The pastings of the natural isomorphisms in the below diagrams are equal.

C 3

⊗C×1
BBB

!!BBB
1×⊗C

}}||||||||

F 3
//

____ks
aC

�� ��
�� λF×1

D3

⊗D×1

!!CCCCCCCC

C 2

⊗C !!CCCCCCCC C 2

⊗C
{{{

}}{{{

F 2
//

�� ��
�� λF

D2

⊗D}}{{{{{{{{

C
F

// D

=

C 3

1×⊗C

}}||||||||

F 3
//

�� ��
�� 1×λF

D3

1×⊗D
{{{

}}{{{
⊗D×1

!!CCCCCCCC

____ks
aD

C 2

⊗C !!CCCCCCCC
F 2

//
�� ��
�� λF

D2

⊗D !!CCCCCCCC D2

⊗D}}{{{{{{{{

C
F

// D

where C 3 is abbreviation for C × C × C .

(ii) The pastings of the natural isomorphisms in the below diagrams are equal.

C 2

s

}}||||||||

F 2
//

⊗C

��

____ks
cC

~~~~{� λF

D2

⊗D

��

C 2

⊗C !!CCCCCCCC

C
F

// D

=

C 2 F 2
//

s

}}||||||||
D2

s

}}{{{{{{{{

⊗D

��

____ks
cD

C 2

⊗C !!CCCCCCCC
F 2

//

�

����}� λF

D2

⊗D !!CCCCCCCC

C
F

// D

Definition 3.3.2. A morphism of additive functors θ : (F, λF )⇒(G,λG) is a natural trans-
formation θ : F⇒G that satisfy the following equation of natural transformations.

C 2

⊗C

��

����|� λG

F 2

&&

G2

88⇓θ2 D2

⊗D

��
C

G
// D

=

C 2 F 2
//

⊗C

��

����|� λF

D2

⊗D

��
C

F

&&

G

88⇓θ D

(3.3.1)
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3.4 Picard Stacks

The concept of a stack over a site S is categorical analogue of sheaves. That is a stack is
naively a sheaf of categories. In this section other than stacks and morphisms of stacks, we
define fibered categories over S and Picard stacks over S which are categorical analogues of
presheaves and abelian sheaves. Our main references for this section are [8], [14], [33].

3.4.1 Fibered Categories

In this section, we study the categories over a fixed site S, that is categories C equipped
with a functor

pC : C // S .

Definition 3.4.1. Let C be a category over S and let U be an object of S. A fiber of C
over U , denoted by CU , is a subcategory of C such that pC maps its objects and morphisms
to U and idU , respectively.

Definition 3.4.2. Let C be a category over S and let f : X→Y be a morphism in C such
that

pC (X) = U pC (Y ) = V pC (f) = i.

f is called cartesian if for any object X ′ and for any morphism f ′ : X ′→Y in C such that
pC (X ′) = U and pC (f ′) = i, there exists a unique morphism g : X ′→X in C satisfying
pC (g) = idU and f ◦ g = f ′.

Remark 3.4.3. The definition (3.4.2) can be equivalently expressed as follows. A morphism
f : X→Y in C is cartesian if for any object X ′ in C the map HomCU (X ′, X)→Homi(X,Y )
defined by g 7→ f ◦ g is a bijection where Homi(X,Y ) denotes the set of morphisms in C
from X to Y that are mapped to i by pC .

Definition 3.4.4. Let C be a category over S. We say that C is fibered over S if

(i) for every i : U→V morphism in S and for every object Y in CV , there exists an object
X in CU and a cartesian morphism f : X→Y in C such that pC (f) = i.

(ii) composition of cartesian morphisms is cartesian.

Definition 3.4.5. Let C and D be two fibered categories over S. A functor F : C→D is
called a morphism of fibered categories or a cartesian functor if

(i) F preserves the base, that is if the diagram

C
F //

pC

��1
111111111111

�

D

pD

��














S

commutes.
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(ii) F maps cartesian morphisms to cartesian morphisms.

Even though we have defined fibered categories and functors between them in general,
in the rest of the thesis we will only deal with fibered categories in groupoids, that is fibered
categories where each fiber is a groupoid.

3.4.2 Sheaf Axiom for Fibered Categories

In this section, we define the analog of the sheaf axiom for fibered categories which were
introduced as the categorical analogues of presheaves. In general, sheaf axiom describes
how to obtain a global information from local data. In case of fibered categories, local data
are objects and morphisms of fibers. Therefore sheaf axiom for fibered categories consists
of the following conditions.

(i) Axiom on Morphisms: for any two objects X,Y in CU , the presheaf HomCU (X,Y ) is
a sheaf on S/U .

(ii) Axiom on Objects: every decent datum is effective.

A decent datum is a collection (V•→U,X,ϕ) where

• . . . V2

d0 //
d1
//

d2

// V1

d0 //

d1

// V0
δ // U is a hypercover over U ,

• X is an object in CV0 ,

• ϕ : d∗1X→d∗0X is a morphism in CV1 ,

satisfying the cocycle condition in CV2

d∗1ϕ = d∗2ϕ ◦ d∗0ϕ.

A decent datum (V•→U,X,ϕ) is effective if there exists an object Y ∈ CU together with
isomorphism ψ : δ∗Y→X in CV0 compatible with ϕ.

3.4.3 Picard Stacks

Finally, we define the analog of a sheaf in a categorical context. A stack is a fibered
category C over S that satisfies both axioms (3.4.2). If C satisfies only the first axiom
(3.4.2), then C is called prestack. A (pre)stack C is fibered in groupoids over S if for every
object U ∈ S CU is a groupoid, that is a category whose morphisms are isomorphisms. In
this thesis, we assume that all (pre)stacks are fibered in groupoids.

Definition 3.4.6. A Picard stack P over the site S is a stack equipped with a morphism
of stacks

⊗ : P ×P //P

inducing a Picard structure (3.1.1) on P.

Definition 3.4.7. A morphism of Picard stacks F : P1→P2 is an additive (3.3.1) and
cartesian (3.4.5) functor. By abuse of language, we call F additive functor.
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Definition 3.4.8. Picard stacks over S form a 2-category, denoted by Pic(S), whose

• 1-morphisms are additive functors (3.3.1),

• 2-morphisms are natural transformations compatible with the additive structure (3.3.2).

3.5 Associated Picard Stack

In this section, we define the Picard stack associated to a morphism of abelian sheaves.
We also give an equivalent but more geometric realization of the associated stack in terms
of torsors.

Let λ : A−1→A0 be a morphism of abelian sheaves. For any U ∈ S, we define a groupoid
PU as

• objects: a ∈ A0(U)

• morphisms: (f, a) ∈ A−1(U)×A0(U) such that (f, a) : a→a+ λ(f).

Proposition 3.5.1. P is a pre-stack.

Proof. Let U ∈ S and a1, a2 be two objects in PU . We want to show that HomPU
(a1, a2)

is a sheaf over S/U . HomPU
(a1, a2) is a pre-sheaf (i.e a fibered category over S/U) defined

by

• for any object α : V→U in S/U ,

HomPU
(a1, a2)(α) := HomPV

(α∗(a1), α∗(a2))

where α∗ is the restriction functor onto PV ,

• for any morphism

V1
β //

α1   @@@@@@@ V2

α2~~~~~~~~~

U

in S/U , HomPU
(a1, a2)(β) is the set map

HomPV2
(α∗2(a1), α∗2(a2))→HomPV1

(α∗1(a1), α∗1(a2))

defined by post composing β∗ : PV2→PV1 .

Let (W•→V, (f, δ∗ ◦ α∗(a))) be a collection where α : V→U is an object in S/U , f ∈
A−1(W0), W•→V is a hyper-cover, and δ : W0→V is an augmentation map that satisfies
δ∗ ◦α∗(a1) + λW0(f) = δ∗ ◦α∗(a2). Since A−1 is a sheaf, there exists g ∈ A−1(V ) such that
δ∗(g) = f . By the facts that λ is a functor and δ is a local epimorphism, g satisfies the
relation

α∗(a1) + λV (g) = α∗(a2).

That is (g, α∗(a1)) is a morphism in PV from α∗(a1) to α∗(a2) such that δ∗(g, α∗(a1)) =
(f, δ∗ ◦ α∗(a1)). This shows that HomPU

(a1, a2) is a sheaf.
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We recall the stack associated to a prestack. Let C be a prestack. There exits a stack
C∼ with a morphism of prestacks a : C→C∼ which satisfy the following universal property:
For any stack D and prestack morphism F : C→D there exists a unique prestack morphism
F∼ : C∼→D such that

C
a //

F

  AAAAAAAAAAAAAAAA

����|�

C∼

F∼

��
D

There is also an explicit way of constructing the associated stack which involves “adding
the descent data”. This method is explained in [3] and [23].

We denote the stack associated to the morphism A−1→A0 by [A−1→A0]∼. An object of
[A−1→A0]∼ over U is a decent datum (V•→U, a, (f, a)). We remark that in fact [A−1→A0]∼

is a Picard stack where the Picard structure is defined by

(V•→U, a, (f, a))⊗ (V ′•→U, a′, (f ′, a′)) = (V• ×U V ′•→U, a+ a′, (f + f ′, a+ a′))

3.6 (A,B)-torsors

In this section, we give a geometric description of the associated Picard stack. Let A be
a sheaf over the site S, not necessarily abelian. A (right) A-torsor is a space L→S over S
with a right group action

m : L×A //A

such that the morphism

(pr,m) : L×A //L× L

defined by (l, a) 7→ (l,m(l, a)) is an equivalence. Moreover we require that there exists a
collection of local sections si : Ui→L for an open cover {Ui} of S.

Let A→B be a morphism of, not necessarily abelian, sheaves. An (A,B)-torsor is a pair
(L, x), where L is an A-torsor and x : L→B is an A-equivariant morphism of sheaves (see
[10]). A morphism between two pairs (L, x) and (K, y) is a morphism of sheaves F : L→K
compatible with the action of A such that the diagram

L

x

��1
111111111111
F //

�

K

y

���������������

B

commutes.
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(A,B)-torsors form a stack denoted by Tors(A,B). If A and B are abelian sheaves, we
can also define a group-like structure on Tors(A,B) as follows:

(L, x)⊗ (K, y) := (L ∧A K,x ∧ y)

where L∧AK is the contracted product and x∧y is the A-equivariant morphism from L∧AK
to B given by x(l)y(k) where (l, k) is in L ∧A K. This group-like structure on Tors(A,B)
is Picard, that is Tors(A,B) is a Picard stack. It provides a geometric realization of the
associated Picard stack.

Theorem 3.6.1. [5, Théorème 4.6] There is an equivalence of Picard stacks

Tors(A−1, A0)
∼ // [A−1→A0]∼

3.7 Length 2 Complexes of Abelian Sheaves

In the section (3.5) we looked at the relation between morphism of abelian sheaves and
Picard stacks. We have already defined morphisms of Picard stacks. In this section, we
define the morphisms between the morphisms of abelian sheaves which are called butterflies
(see [3], [27], and [28]). Moreover, we show that morphisms of abelian sheaves, that is
length 2 complexes of abelian sheaves form a bicategory T[−1,0](S) whose 1-morphisms are
butterflies (3.7.1) and 2-morphisms are morphisms of butterflies 3.7.2.

Let A• = [λA : A−1→A0] and B• = [λB : B−1→B0] be two length 2 complexes of
abelian sheaves.

Definition 3.7.1. A butterfly from A• to B• is a commutative diagram of abelian sheaf
morphisms of the form

A−1

λA

��

κ

!!CCCCCCCC B−1

λB

��

ı

}}{{{{{{{{

E
ρ

}}{{{{{{{{


!!CCCCCCCC

A0 B0

(3.7.1)

where E is an abelian sheaf, the NW-SE sequence is a complex, and the NE-SW sequence
is an extension. [A•, E,B•] will denote a butterfly from A• to B•.

A butterfly is called flippable or reversible if both diagonals of (3.7.1) are extensions. A
strong butterfly is a butterfly equipped with a global section s : A0→E such that ρ ◦ s = id.

Definition 3.7.2. A morphism of butterflies ϕ : [A•, E,B•]→[A•, E′, B•] is an abelian
sheaf isomorphism E→E′ satisfying the commutative diagrams below.
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A−1

λA

��

""DDDDDDDD
// E′

�����������������

��2
22222222222222 B−1

λB

��

||zzzzzzzz
oo

E

||zzzzzzzz

""DDDDDDDD

OO

A0 B0

(3.7.2)

Two such morphisms (3.7.2) compose in an obvious way. Therefore butterflies from A•

to B• form a groupoid denoted by B(A•, B•).

We can also compose butterflies. Given two butterflies

A−1

λA

��

κ

!!CCCCCCCC B−1

λB

��

ı

}}{{{{{{{{

E
ρ

}}{{{{{{{{


!!CCCCCCCC

A0 B0

B−1

λB

��

κ′

!!CCCCCCCC C−1

λC

��

ı′

}}{{{{{{{{

F
ρ′

}}{{{{{{{{
′

!!CCCCCCCC

B0 C0

(3.7.3)

their composition is the butterfly

A−1

λA

��

κ

$$IIIIIIIII C−1

λC

��

ı

zzuuuuuuuuu

E ×B1
B0
F

ρ

zzuuuuuuuuu 

$$IIIIIIIII

A0 C0

(3.7.4)

where the center E×B1
B0
F is given by the pushout-pullback construction (see [3]). From the

definitions 3.7.1, 3.7.2, and the definition of composition of butterflies, it follows

Theorem 3.7.3. [3, Theorem 5.1.4] Length 2 complexes of abelian sheaves equipped with
butterflies as 1-morphisms and morphisms of butterflies as 2-morphisms form a bicategory
T[−1,0](S).

T[−1,0](S) has a full sub 2-category C[−1,0](S) that has same objects as T[−1,0](S) but
whose 1-morphisms are strong butterflies. To be precise,

• objects of C[−1,0](S) are same as objects of T[−1,0](S), that are morphisms of abelian
sheaves A• = [λA : A−1→A0].

• for any two objects A• and B•, a 1-morphism f• : A•→B• in C[−1,0](S) is a complex
morphism from A• to B•. That is f• consists of two morphisms of abelain sheaves
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f−1 and f0 such that the diagram

A−1
λA //

f−1

��

A0

f0

��

�

B−1
λB

// B0

(3.7.5)

commutes.

• for any two parallel 1-morphisms f•, g• : A•→B•, a 2-morphism s• : f•⇒g• in
C[−1,0](S) is a homotopy between f• and g•. That is s• consists of a degree -1 mor-
phism of abelian sheaves s0 given by the diagrams

A−1
λA //

f−1

��

g−1

��

A0

f0

��

g0

��

s0
||||||||

}}||||||||

B−1
λB

// B0

(3.7.6)

satisfying g0 − f0 = λB ◦ s0 and g−1 − f−1 = s0 ◦ λA.

Said differently, C[−1,0](S) is a 2-category of morphisms of abelian sheaves whose hom-
category HomT[−1,0](S)(A

•, B•) for any two morphisms A• and B• is the groupoid associated
to the complex

Hom−1(A•, B•)
∂ //Z0(Hom0(A•, B•))

of abelian groups, where elements of Hom−1(A•, B•) are morphisms of complexes from A•

to B• of degree -1 and where Z0(Hom0(A•, B•)) is the abelian group of cocycles of degree
0 morphisms. The differential ∂ is defined as

(∂(s•))−p = λ−p−1
B ◦ s−p + s−p+1 ◦ λ−pA

for any s• ∈ Hom−1(A•, B•) and p = 0, 1.

3.8 Characterization Theorem for Picard Stacks

We finish this chapter by recalling Deligne’s characterization theorem for Picard stacks
[9, §1.4]. This result is also revisited by Aldrovandi and Noohi in [3]. In order to be
consistent with the rest of the thesis, we recall them as they are enounced in [3].

The characterization theorem states the following:
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Theorem. [3, Proposition 8.4.3] The functor

T[−1,0](S) //Pic(S) (3.8.1)

defined by sending a morphism of abelian sheaves A• = [λA : A−1→A0] to Tors(A−1, A0)
is a biequivalence of bicategories.

The bifunctor (3.8.1) in this theorem is first constructed on the strict sub 2-category
C[−1,0](S) as follows.

• An object in C[−1,0](S) that is a morphism of abelian sheaves A• = [λA : A−1→A0] is
sent to its associated Picard stack which is equivalent to Tors(A−1, A0). (see Section
(3.5)).

• A 1-morphism f• : A•→B• (3.7.5) in C[−1,0](S) is sent to a morphism of torsors

Tors(A−1, A0) //Tors(B−1, B0)

which sends an (A−1, A0)-torsor (L, x) to (L∧A−1

f−1 B
−1, f0 ◦x+λB) where L∧A−1

f−1 B
−1

denotes the contracted product of the A−1-torsors L and B−1 such that the A−1-torsor
structure of B−1 is induced by f−1.

• A 2-morphism s• : f•⇒g• (3.7.6) in C[−1,0](S) is sent to a 2-morphism of torsors θ

Tors(A−1, A0)
))
55⇓θ Tors(B−1, B0)

that assigns to any object (L, x) in Tors(A−1, A0) a 1-morphism θ(L,x)

θ(L,x) : (L ∧A−1

f−1 B
−1, f0 ◦ x+ λB) //(L ∧A−1

g−1 B
−1, g0 ◦ x+ λB) ,

defined by sending (l, b) to (l, b− s0 ◦ x(l)).

This construction extends to T[−1,0](S) by the following theorem

Theorem. [3, Theorem 8.3.1] For any two length 2 complexes of abelian sheaves A• and
B•, there is an equivalence of groupoids

Hom(A•, B•)
∼ //B(A•, B•) ,

where Hom(A•, B•) is the groupoid of additive functors between the Picard stacks associated
to A• and B•.

which shows that the bifunctor (3.8.1) is fully-faithful. To show that it is a biequivalence,
one needs to show that it is essentially surjective which is the following statement.

Proposition. [3, Proposition 8.3.2] Let A be a Picard stack. Then there exists a length
2 complex of abelian sheaves A• : A−1→A0 such that A is equivalent to Picard stack
[A−1→A0]∼.
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Remark 3.8.1. In the paper [3], the authors also generalize the theorem (3.8) to non-abelian
context by not assuming that stacks and sheaves are necessarily Picard or abelian.

Theorem 3.8 has an immediate consequence.

Corollary 3.8.2. The functor (3.8.1) induces an equivalence

D[−1,0](S) //Pic[(S)

of categories where D[−1,0](S) is the subcategory of the derived category of category of com-
plexes of abelian sheaves A• over a site S with H−i(A•) 6= 0 only for i = 0, 1 and Pic[(S)
is the category of Picard stacks over S with 1-morphisms isomorphism classes of additive
functors.

Proof. The proof follows from the observation that isomorphism classes in Pic[(S) corre-
spond to isomorphism classes of flippable butterflies. A flippable butterfly from A• to B•

corresponds to a zig-zag of complexes

M•

q

""DDDDDDDD
p

}}{{{{{{{{

A• B•,

where both p and q are quasi-isomorphisms.
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CHAPTER 4

3-CATEGORY OF PICARD 2-STACKS

Itroduction paragraph

4.1 Picard 2-Categories

In this section, following [6] and [19], we define Picard 2-categories, additive 2-fuctors,
natural 2-transformations, and modifications. Since our fundamental object of study is
Picard 2-stack fibered in 2-groupoids, from now on, unless otherwise stated, we assume
that all 2-categories are 2-groupoids (2.1.8). For compactness, in large diagrams we omit
⊗.

Definition 4.1.1. A 2-category C with the data

1. a 2-functor ⊗ : C× C //C

2. a 2-natural transformation a,

C× C× C ⊗×1 //

1×⊗

��

				�� a

C× C

⊗

��
C× C ⊗

// C

expressing the associativity constraint.

3. a 2-natural transformation c,

C× C s //

⊗

��66666666666666 C× C

⊗

����������������

C

____ +3c

expressing the commutativity constraint.
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4. a modification π

C4

1×⊗×1
BBB

  BBB
1×1×⊗

~~||||||||

⊗×1×1 //

____ks
1×a

�� ��
�� a×1

C3

⊗×1

  BBBBBBBB

C3

1×⊗   BBBBBBBB C3

1×⊗|
||

~~|||

⊗×1 //
�� ��
�� a

C2

⊗~~||||||||

C2
⊗

// C

π
V

C4

1×1×⊗

~~||||||||

⊗×1×1 //

�

C3

1×⊗|
||

~~|||
⊗×1

  BBBBBBBB

____ks
aC3

1×⊗   BBBBBBBB
⊗×1 //

�� ��
�� a

C2

⊗   BBBBBBBB C2

⊗~~||||||||

C2
⊗

// C

5. two modifications h1 and h2

C3

1×s

((PPPPPPPPPPPPPPP

C3

s×1

66nnnnnnnnnnnnnnn

⊗×1

��

1×⊗
BBB

  BBB

� C3

1×⊗

��

⊗×1
|||

~~|||

C2 s //

⊗
1111111

��1
111111

C2

⊗








��






C2

⊗
((QQQQQQQQQQQQQQQQ

����
=Ea <<<< �"

a

C2

⊗
vvmmmmmmmmmmmmmmmm

C

____ +3c

h1

V

C3

1×s

&&NNNNNNNNNNNNN

1×⊗
44444444444

��44444444444⊗×1













��












C3

s×1

88ppppppppppppp

⊗×1

��

C3

1×⊗

��

����
<Dc

C2

⊗
''NNNNNNNNNNNNN

____ +3a

C2

⊗
wwppppppppppppp

����
<Dc

C

C3

s×1

((PPPPPPPPPPPPPPP

C3

1×s
66nnnnnnnnnnnnnnn

1×⊗

��

⊗×1
BBB

  BBB

� C3

⊗×1

��

1×⊗|
||

~~|||

C2 s //

⊗
1111111

��1
111111

C2

⊗








��






C2

⊗
((QQQQQQQQQQQQQQQQ

����
=Ea−1 <<<< �"a

−1

C2

⊗
vvmmmmmmmmmmmmmmmm

C

____ +3c

h2

V

C3

s×1

&&NNNNNNNNNNNNN

1×⊗













��










 ⊗×1
44444444444

��44444444444

C3

1×s
88ppppppppppppp

1×⊗

��

C3

⊗×1

��

����
<Dc

C2

⊗
''NNNNNNNNNNNNN

____ +3a−1

C2

⊗
wwppppppppppppp

����
<Dc

C

6. a modification ζ

C

C2

⊗
==||||||||

s
  BBBBBBBB C2

⊗
aaBBBBBBBB

C2

s

>>||||||||

⊗

OO

____ +3c____ +3c ζ
V

C

C2

s
  BBBBBBBB

⊗
==||||||||

1 //

�

�

C2

⊗
aaBBBBBBBB

C2

s

>>||||||||

(4.1.1)
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7. a modification η

C
∆

~~}}}}}}}
∆

  AAAAAAA

C2

⊗   AAAAAAA
s //

�

C2

⊗~~}}}}}}}

C

____ +3c

η
V

C
∆

~~}}}}}}}
∆

  AAAAAAA

C2

⊗   AAAAAAA
� C2

⊗~~}}}}}}}

C

(4.1.2)

where ∆ is the diagonal 2-functor.

These data must satisfy the conditions:

(i) for any object X in C the functor X ⊗− : C //C is a biequivalence.
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(ii) for all X,Y, Z,W, T objects in C, the equation of 2-morphisms hold.

X(Y (Z(WT )))

(XY )(Z(WT ))

??���������
X(Y ((ZW )T ))

__?????????

____ks
Xπ

((XY )Z)(WT )

??���������

''OOOOOOOOOOOOOO
X((Y Z)(WT ))

OO

� �� �KS
π

X((Y (ZW ))T )

__?????????

????[c
π(((XY )Z)W )T

??���������

��?????????
' (X(Y Z))(WT )

OO

X(((Y Z)W )T )

__?????????

jjTTTTTTTTTTTTTTTTTTTT

((X(Y Z))W )T

77oooooooooooooo
// (X((Y Z)W ))T

??���������

q
X(Y (Z(WT )))

(XY )(Z(WT ))

??���������
X(Y ((ZW )T ))

__?????????

(XY )((ZW )T )

??���������

__?????????

????[c
π

'

????[c
π

((XY )Z)(WT )

GG������������������
((XY )(ZW ))T

OO

��

X((Y (ZW ))T )

WW//////////////////

(((XY )Z)W )T

??���������

44jjjjjjjjjjjjjjjjjjjj

��????????? � �� �KS
πT

(X(Y (ZW )))T

77oooooooooooooo
' X(((Y Z)W )T )

__?????????

((X(Y Z))W )T // (X((Y Z)W ))T

??���������

ggOOOOOOOOOOOOOO

The natural 2-isomorphisms ' are due to the functoriality of ⊗.
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(iii) For any objects X,Y, Z,W , the equation of two 2-morphisms hold.

X((Y Z)W ) //

�� ��
��π∗

(X(Y Z))W

''PPPPPPPPPPPP

X(Y (ZW ))

77nnnnnnnnnnnn
//

��
'

(XY )(ZW ) //

��

((XY )Z)W

��
X(Y (WZ))

��

// (XY )(WZ)

��

�� ��
�� h2 W ((XY )Z)

��
X((YW )Z)

��

((XY )W )Z // (W (XY ))Z

��
(X(YW ))Z

''PPPPPPPPPPPP

33ggggggggggggggggggggggg

����
<Dπ∗

�� ��
�� h2 ((WX)Y )Z

(X(WY ))Z //

‖

((XW )Y )Z

77nnnnnnnnnnnn

X((Y Z)W ) //

��
������ h2

(X(Y Z))W

''PPPPPPPPPPPP

��
X(Y (ZW ))

77nnnnnnnnnnnn

��
������ h2

X(W (Y Z))

''PPPPPPPPPPPP

��

W (X(Y Z))

����|� π∗
�� ''PPPPPPPPPPPP

' ((XY )Z)W

��
X(Y (WZ))

��

X((WY )Z)

��

(XW )(Y Z) //

��55555555555555555555555555
(WX)(Y Z)

  @@@@@@@@@@@@@@@@@@@

'

W ((XY )Z)

��
X((YW )Z)

��

77nnnnnnnnnnnn

'

____ +3π∗

(W (XY ))Z

��
(X(YW ))Z

''PPPPPPPPPPPP
((WX)Y )Z

(X(WY ))Z // ((XW )Y )Z

77nnnnnnnnnnnn

The modification π∗ is defined in the same way as π using a−1 instead of a.
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(iv) for any objects X,Y, Z,W , the equation of two 2-morphisms hold.

(X(Y Z))W //

�� ��
�� π

X((Y Z)W )

''PPPPPPPPPPPP

((XY )Z)W

77nnnnnnnnnnnn

��

//

'

(XY )(ZW ) //

��

X(Y (ZW ))

��
((Y X)Z)W

��

// (Y X)(ZW )

��

�� ��
�� h1 (Y (ZW ))X

��
(Y (XZ))W

��

Y (X(ZW )) // Y ((ZW )X)

��
Y ((XZ)W )

''PPPPPPPPPPPP

33ggggggggggggggggggggggg

����
<Dπ

�� ��
�� h1 Y (Z(WX))

Y ((ZX)W ) //

‖

Y (Z(XW ))

77nnnnnnnnnnnn

(X(Y Z))W //

��
������ h1

X((Y Z)W )

''PPPPPPPPPPPP

��
((XY )Z)W

77nnnnnnnnnnnn

��
������ h1

((Y Z)X)W

�� ''PPPPPPPPPPPP
((Y Z)W )X

����|� π

�� ''PPPPPPPPPPPP
' X(Y (ZW ))

��
((Y X)Z)W

��

(Y (ZX))W

��

(Y Z)(XW ) //

��55555555555555555555555555
(Y Z)(WX)

  @@@@@@@@@@@@@@@@@@@

'

(Y (ZW ))X

��
(Y (XZ))W

��

77nnnnnnnnnnnn

'

____ +3π

Y ((ZW )X)

��
Y ((XZ)W )

''PPPPPPPPPPPP
Y (Z(WX))

Y ((ZX)W ) // Y (Z(XW ))

77nnnnnnnnnnnn
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(v) for any objects X,Y, Z,W , the equation of two 2-morphisms hold.

((
(Z
X

)Y
)W

)
// (

(Z
X

)(
Y
W

))
//

&&LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
((
Z
X

)(
W
Y

))
//

'

(Z
(X

(W
Y

))
)

��

((
(X
Z

)Y
)W

)

OO

__ __ ks h
2

((
X

(Z
Y

))
W

)

OO

((
Z

(X
Y

))
W

)

aaB B B B B B B B B B B B B B B B B B B B B B B B B B B B B
//

�� �� ��π
′

(Z
((
X
Y

)W
))

&&LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
(Z

(X
(Y
W

))
)

oo

BB � � � � � � � � � � � � � � � � � � � � � � � � �
(Z

((
X
W

)Y
))

��
((
X

(Y
Z

))
W

)

OO ��

(Z
((
W
X

)Y
))

_ __ _
+3

h
2

((
(X
Y

)Z
)W

)
//

== | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
((
X
Y

)(
Z
W

))
// (

(Z
W

)(
X
Y

))
//

����KS
h
1

(Z
(W

(X
Y

))
)

OO
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((
(Z
X

)Y
)W

)
//

'

((
Z
X

)(
Y
W

))
//

'

((
Z
X

)(
W
Y

))

��

// (
Z

(X
(W

Y
))

)

��

((
(X
Z

)Y
)W

)
//

OO

((
X
Z

)(
Y
W

))

OO

((QQQQQQQQQQQQQ

'

__ __ ks π
′

(X
(Z

(Y
W

))
)

66 m m m m m m m m m m m m m
// (
X

(Z
(W

Y
))

)
// (

(X
Z

)(
W
Y

))

== { { { { { { { { { { { { { { { { { { { {

��

'
_ __ _
+3

π
′

__ __ ks h
1

�� �� ��π
′

((
(X
Z

)W
)Y

)

��

// (
((
Z
X

)W
)Y

)

��
((
X

(Z
Y

))
W

)

OO

// (
X

((
Z
Y

)W
))

OO

(X
((
Z
W

)Y
))

OO

// (
(X

(Z
W

))
Y

)

��

((
Z

(X
W

))
Y

)

��

(Z
((
X
W

)Y
))

oo

��

'
((
Z

(W
X

))
Y

)

� �� �DL
h
1

'

((
X

(Y
Z

))
W

)

OO ��

//
�� �� ��π
′

(X
((
Y
Z

)W
))

OO

// (
X

(Y
(Z
W

))
)

OO ��

((
(Z
W

)X
)Y

)

66 m m m m m m m m m m m m m

����KS
h
2

�� �� ��π
′

(Z
((
W
X

)Y
))

hhQ Q Q Q Q Q Q Q Q Q Q Q Q

((
(X
Y

)Z
)W

)
// (

(X
Y

)(
Z
W

))
// (

(Z
W

)(
X
Y

))
//

OO

(Z
(W

(X
Y

))
)

OO

The modification π′ is obtained from π by inverting one or more a’s.
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(vi) for all X,Y, Z objects in C, the equation of two 2-morphisms hold.

(Y X)Z // Y (XZ) // Y (ZX) (Y Z)X

��

oo

(XY )Z

OO

��

++ ++
��h1

(ZY )X

��
X(Y Z)

��

33gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
Z(Y X)

X(ZY )

33gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
(XZ)Yoo //

‖

%% %%
�� h1

(ZX)Y //

'

Z(XY )

OO

(Y X)Z

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW Y (XZ)oo // Y (ZX) //

'

(Y Z)X

��
(XY )Z

OO

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW (ZY )X
����
EM

h2

X(Y Z)

��

OO

�����
 h2

Z(Y X)

OO

X(ZY ) // (XZ)Y // (ZX)Y Z(XY )

OO

oo

(vii) for all X,Y, Z objects in C

XY
cX,Y // Y X

id
**

cX,Y ◦cY,X
44

�� ��
�� ζ Y X = XY

id
**

cY,X◦cX,Y
44

�� ��
�� ζ XY

cX,Y // Y X

(viii) η ∗ η = ζ.

(ix) for all X,Y objects in C, there is an additive relation between ηX ,ηY and ηX⊗Y . That
is ηX⊗Y is equal to the pasting of the below diagram.
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(X
(Y
X

))
Y

''OOOOOOOOOOOOOOOOOOOOOOOOO

X
((
X
Y

)Y
)

��????????????????
(X

(X
Y

))
Y

��????????????????

(X
Y

)(
X
Y

)

GF
ED ��

��????????????????
X

((
Y
X

)Y
)

?? � � � � � � � � � � � � � � � �

..

GF
ED ��

X
(X

(Y
Y

))
((
X
X

)Y
)Y id

		

c X
,X

��__ __ ks η X

?? � � � � � � � � � � � � � � � �
(X

(Y
X

))
Y

��

(X
Y

)(
X
Y

)

BCOO

@A

X
(Y

(X
Y

))

��????????????????

OO

X
(X

(Y
Y

))

id

II

c Y
,Y

UU

_ __ _
+3

η
Y

((
X
X

)Y
)Y

((
X
Y

)X
)Y

?? � � � � � � � � � � � � � � � �

X
((
X
Y

)Y
)

?? � � � � � � � � � � � � � � � �
// (
X

(X
Y

))
Y

?? � � � � � � � � � � � � � � � �

__? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
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Notation 4.1.2. We denote a Picard 2-category by (C,⊗C, aC, cC, πC, h1C, h2C, ζC, ηC). In
case there is no risk of confusion we are going to denote a Picard category by (C,⊗).

Lemma 4.1.3. Let (C,⊗) be a Picard 2-category and f : X→Y be a morphism in C. If f
is weakly invertible then f ⊗ − : HomC(A,B)→HomC(X ⊗ A, Y ⊗ B) is an equivalence of
categories for all objects A,B in C.

Proof. Assume that f is weakly invertible. The functor f ⊗− is defined as composition of
the following two functors,

Hom(A,B) //Hom(X ⊗A,X ⊗B) (4.1.3)

Hom(X ⊗A,X ⊗B) //Hom(X ⊗A, Y ⊗B) (4.1.4)

Since the functor (4.1.3) is multiplication by X, it is an equivalence. The functor (4.1.4) is
post composition by f ⊗ Y . It is an equivalence since f is weakly invertible. Thus f ⊗− is
an equivalence.

4.2 Units in Picard 2-Categories

We define unit element in Picard 2-categories. The only original result in this section
is the Proposition 4.2.5 which says that every Picard 2-category possesses a unit element.
All the definitions and other results can be found in the paper by Joyal and Kock [18].
The reason why we restate these results here is because originally they are given for strict
monoidal 2-categories and in this thesis we interpret them for Picard 2-categories where the
associativity is assumed to be non-strict.

Definition 4.2.1. Let (C,⊗) be a Picard 2-category. A pair (e, ϕ) is called a unit element
in C where e is an object in C and ϕ : e⊗ e→e is a weakly invertible 1-morphism.

Definition 4.2.2. Let (C,⊗) be a Picard 2-category and (e1, ϕ1) and (e2, ϕ2) be two unit
elements. A 1-morphism (e1, ϕ1)→(e2, ϕ2) is given by a pair (f, θf ) where f : e1→e2 is a
weakly invertible 1-morphism and θf is the 2-isomorphism

e1 ⊗ e1
f⊗f //

ϕ1

��

e2 ⊗ e2

ϕ2

��
e1

f
// e2

����
@Hθf

(4.2.1)

We call such a pair (f, θf ) a unit morphism.

Definition 4.2.3. Let (C,⊗) be a Picard 2-category, and (f, θf ) and (g, θg) be two unit mor-
phisms from (e1, ϕ1) to (e2, ϕ2). A 2-morphism (f, θf )⇒(g, θg) is given by a 2-isomorphism
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δ : f⇒g in C such that

e1 ⊗ e1
f⊗f

//

ϕ1

��

g⊗g

##
e2 ⊗ e2

ϕ2

��

� �� �KS
δ⊗δ

e1
f

// e2

����
@Hθf =

e1 ⊗ e1
g⊗g //

ϕ1

��

e2 ⊗ e2

ϕ2

��
e1

g //

f

;; e2
� �� �KS

δ

����
@Hθg

(4.2.2)

We call such a 2-isomorphism unit 2-morphism.

Unit elements, unit morphisms, and unit 2-morphisms of a Picard 2-category (C,⊗)
form a 2-category denoted by U(C) where

the composition of 1-morphisms (f, θf ) : (e1, ϕ1)→(e2, ϕ2) and (g, θg) : (e2, ϕ2)→(e3, ϕ3)
is the pair (h, θh) : (e1, ϕ1)→(e3, ϕ3) where h = g ◦ f and θh is the pasting of the 2-
isomorphisms given in the diagram below.

e1 ⊗ e1
f⊗f //

ϕ1

��

GF ED
(g◦f)⊗(g◦f)

��
e2 ⊗ e2

g⊗g //

ϕ2

��

� �� �KSεf,g

e3 ⊗ e3

ϕ3

��
e1

f
// e2 g

//

����
@Hθf

e3

����
@Hθg

the vertical and the horizontal compositions are induced from the ones in C.

We remark that U(C) is in fact a 2-groupoid and call it unit 2-groupoid.

Proposition 4.2.4. Let (e, ϕ) be a unit element in a Picard 2-category (C,⊗). For every
object X in C, there exists a pair (αX , µX) where αX : e ⊗ X→X is a weakly invertible
1-morphism, µX is the 2-isomorphism,

(e⊗ e)⊗X
ae,e,X //

ϕ⊗idX

��

�����
 µX

e⊗ (e⊗X)

ide⊗αX

��
e⊗X =

// e⊗X

(4.2.3)
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Also for any object X in C, the pair (αX , µX) is unique in the following sense. If there
exists another pair (α′X , µ

′
X) then there exists a unique 2-isomorphism νX : αX⇒α′X such

that the diagram

(e⊗ e)⊗X ϕ⊗idX //

ae,e,X

��

e⊗X

=

��
e⊗ (e⊗X)

e⊗α′X //

e⊗αX

::e⊗X

				
@Hµ′X

� �� �KSνX

=

(e⊗ e)⊗X ϕ⊗idX //

ae,e,X

��

e⊗X

=

��
e⊗ (e⊗X)

e⊗αX
// e⊗X

				
@HµX

Proof. The main ideas of the proof are given in [18, §5]. However we want to give a detailed
proof since we assume different from Joyal and Kock non-strict associativity.

Existence of (αX , µX): Let (e, ϕ) be a unit element and let X be an object in C. The
1-morphism ϕ⊗idX is an object in the category Hom((e⊗e)⊗X, e⊗X). This hom-category
is equivalent to the hom-categories

Hom((e⊗ e)⊗X, e⊗X) ' Hom(e⊗ (e⊗X), e⊗X) ' Hom(e⊗X,X).

The first equivalence follows from the Lemma 4.1.3 since ae,e,X is weakly invertible and the
second follows from the biequivalence of the 2-functor e ⊗ −. Under these equivalences,
there exists αX : e⊗X→X in Hom(e⊗X,X) whose image in Hom((e⊗ e)⊗X, e⊗X) is
ide ⊗ αX ◦ ae,e,X and is 2-isomorphic to ϕ⊗ idX . That is there exists also a modification µ
whose component at X is the 2-isomorphism µX as in diagram (4.2.3).

Naturality of (αX , µX): In order to show that αX is functorial, we need to define for
any 1-morphism X→Y in C, a 2-isomorphism αf

e⊗X
e⊗f //

αX

��

������ αf

e⊗ Y

αY

��
X

f
// Y

, (4.2.4)

that is compatible with another choice of 1-morphism g : X→Y . We let αf be the inverse
image of the 2-isomorphism α under the biequivalence e⊗−. α is defined as the 2-morphism
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that makes the two different pastings of the 2-morphisms in the below diagram equal.

(ee)X

ae,e,X
????

��????
ϕ⊗idX

������������

(e⊗e)⊗f //

____ks
µX

(ee)Y

ae,e,Y

��?????????

�

eX

=

��?????????? e(eX)

e⊗αX
����

�������

e⊗(e⊗f) //
�� ��
�� α

e(eY )

e⊗αY
������������

eX
e⊗f

// eY

=

(ee)X

ϕ⊗idX

������������

(e⊗e)⊗f //

�

(ee)Y

ϕ⊗idX
����

������
ae,e,Y

��?????????

____ks
µY

eX

=

��??????????
e⊗f // eY

=

��??????????

�

e(eY )

e⊗αY
������������

eX
e⊗f

// eY

(4.2.5)
α is a uniquely defined 2-isomorphism since the other 2-morphisms in the diagram (4.2.5)
are 2-isomorphisms.

The fact that the two different pastings in the diagram (4.2.5) are equal shows that µX
is functorial. To verify that αf is compatible with another choice of 1-morphism g : X→Y ,
we have to show that for any 2-morphism

X

f

$$

g

::⇓γ Y ,

the two different pastings in the diagram

e⊗X
αX //

e⊗g

��

γ
⇒e⊗f

��

X

g

��
e⊗ Y αY

// Y

����
=Eαg

=

e⊗X
αX //

e⊗f

��

X

g

��

γ
⇒f

��
e⊗ Y αY

// Y

����
=Eαf

are equal. Since the 2-isomorphisms on the right half of the diagram (4.2.5) are independent
of the morphism from X to Y , f and g satisfy the same diagram (4.2.5).

Uniqueness of (αX , µX): Let (αX , µX) and (α′X , µ
′
X) be two pairs such that

e⊗ αX
µX +3

τ

##G
G

G
G

G
G

G
G

G
G ϕ⊗ idX

e⊗ α′X

µ′X

KS (4.2.6)

Since µX and µ′X are 2-isomorphisms, there exists a 2-isomorphism τ : e⊗αX⇒e⊗α′X that
makes the diagram (4.2.6) commutative. Using the equivalence Hom(e⊗ (e⊗X), e⊗X) '
Hom(e⊗X,X), we deduce there exists a 2-isomorphism σ : αX⇒α′X such that e⊗σ = τ .
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Proposition 4.2.5. A Picard 2-category (C,⊗) has a unit element.

Proof. Let X be an object in C. Since X ⊗ − is a biequivalence, for all Y ∈ C there
exists Z ∈ C such that X ⊗ Z is equivalent to Z. That is there exists a weakly invertible
1-morphism X⊗Z→Y in C. In particular, we take X = Y and there exists f : eX ∈ C with
a weakly invertible 1-morphism X ⊗ eX→X. We claim that there exists ϕ : eX ⊗ eX→eX
such that (eX , ϕ) is a unit element in C. The hom-categories

HomC((X ⊗ eX)⊗ eX , X ⊗ eX) ' HomC(X ⊗ (eX ⊗ eX), X ⊗ eX) ' HomC(eX ⊗ eX , eX)

are equivalent. The first equivalence is defined by whiskering with the weakly invertible 1-
morphism aX,e,e. The second equivalence follows from the fact that X⊗− is a biequivalence.
Now f ⊗ eX is a 1-morphism in the category HomC((X ⊗ e) ⊗ e,X ⊗ e). We define ϕ :
eX ⊗ eX→eX as the image of f ⊗ eX under these equivalences. ϕ is weakly invertible since
f is. Hence, the pair (eX , ϕ) is a unit element in C.

Proposition 4.2.6. [18, Thereom C] Let (C,⊗) be a Picard 2-category. The 2-groupoid of
units U(C) is contractible. That is between any two units there exists a unit morphism and
between any parallel two unit morphisms there exists a unique unit 2-morphism.

Proof. The proof is given in [18, §5]. However one has to be careful since in [18] the
associativity is assumed to be strict.

The unit element in a Picard 2-category is first extracted from the definition of a tri-
category. In [18], Joyal and Kock give another definition for the unit element 4.2.1. They
show that

Theorem 4.2.7. [18, Theorem E] The notion of unit element 4.2.1 is equivalent to the
notion of the unit element extracted from the definition of tricategry.

By the above theorem, the notion of unit element is not part of the Picard 2-category
data, but it is already part of the Picard structure. This reduces significantly the number
of compatibility conditions in the definition of Picard 2-category. As we are going to see in
the next section, this simplifies the definition of the morphism of Picard 2-stacks. Before
we want to point out some differences between the definitions and results given above and
the same definitions and results enounced in [18].

1. We assume that the 2-functors are weak(i.e. the composition is defined up to a 2-
isomorphism) whereas in [18] a 2-functor means strong.

2. In the definition of unit 2-morphism, we assumed that the 2-morphism δ is an iso-
morphism, whereas Joyal and Kock only assumed that δ is a cancellable 2-morphism.
That is a 2-morphism that induces bijection on the Hom sets of the Hom categories.

4.3 Morphisms of Picard 2-Categories

Definition 4.3.1. Let (C,⊗C, aC, cC, πC, h1C, h2C, ζC, ηC) and (D,⊗D, aD, cD, πD, h1D, h2D, ζD, ηD)
be two Picard 2-categories. An additive 2-functor (F, λF , ωF , εF ) : C⇒D is given by the
following data:
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1. a 2-functor F : C //D ,

2. a natural 2-transformation λF

C2 F 2
//

⊗C

��

����|� λF

D2

⊗D

��
C

F
// D

3. a modification ωF

C3

⊗C×1
BBB

  BBB
1×⊗C

~~||||||||

F 3
//

____ks
aC

�� ��
�� λF×1

D3

⊗D×1

  BBBBBBBB

C2

⊗C !!BBBBBBBB C2

⊗C
|||

}}|||

F 2
//

�� ��
�� λF

D2

⊗D}}||||||||

C
F

// D

ωF
V

C3

1×⊗C

~~||||||||

F 3
//

�� ��
�� 1×λF

D3

1×⊗D
|||

~~|||
⊗D×1

  BBBBBBBB

____ks
aDC2

⊗C !!BBBBBBBB
F 2

//
�� ��
�� λF

D2

⊗D !!BBBBBBBB D2

⊗D}}||||||||

C
F

// D

4. a modification εF

C2

s

~~||||||||

F 2
//

⊗C

��

____ks
cC

}}}}z� λF

D2

⊗D

��

C2

⊗C !!BBBBBBBB

C
F

// D

εF
V

C2 F 2
//

s

~~||||||||
D2

s

~~||||||||

⊗D

��

____ks
cDC2

⊗C !!BBBBBBBB
F 2

//

�

����}� λF

D2

⊗D !!BBBBBBBB

C
F

// D

that satisfy the following conditions:

(i) For all X,Y, Z,W objects in C, the equation of 2-morphisms holds in D.
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F (((XY )Z)W )

**TTTTTTTTTTTTTTTTTT

F ((XY )Z)FW //

44jjjjjjjjjjjjjjjjjj
�� ��
�� λF

F (X(Y Z))FW // F ((X(Y Z))W )

��????????

(F (XY )FZ)FW

??��������
FX(F (Y Z)FW )

OO

��????????

�� ��
�� ωF F (X((Y Z)W ))

��

???? �#
ωF

(FX(FY FZ))FW

??��������

��????????
'

����{� πD

FX(F (Y Z)FW )

��????????

((FXFY )FZ)FW

OO

44jjjjjjjjjjjjjjjjjj

��????????
FX((FY FZ)FW )

??��������

�����������������������

����{� ωF

FXF ((Y Z)W )

??���������������������

��????????

�� ��
�� λF
F (X(Y (ZW )))

(FXFY )(FZFW )

��????????
FXF (Y (ZW ))

??��������

FX(FY (FZFW )) //

‖

FX(FY F (ZW ))

??��������

F (((XY )Z)W )

**TTTTTTTTTTTTTTTTTT

��?????????????????????

F ((XY )Z)FW

44jjjjjjjjjjjjjjjjjj

�� ��
�� ωF

F ((X(Y Z))W )

��????????

����{�F (πC)(F (XY )FZ)FW

??��������

��????????
F ((XY )(ZW ))

��?????????????????????
F (X((Y Z)W ))

��

F (XY )(FZFW ) //

'

F (XY )F (ZW )

77ooooooooooooo

((FXFY )FZ)FW

OO

��????????
'

�� ��
��πD F (X(Y (ZW )))

(FXFY )(FZFW )

��????????
//

OO

'

(FXFY )F (ZW )

OO

''OOOOOOOOOOOOO
FXF (Y (ZW ))

??��������

FX(FY (FZFW )) // FX(FY F (ZW ))

??��������
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(ii) for all X,Y, Z objects in C, the equation of 2-morphisms holds in D.

FX(FY FZ) //

���������������
(FXFY )FZ

'

//

��������������������������
FZ(FXFY )

��?????????????

��������������������������

FXF (Y Z)

��

(FZFX)FY

��

F (XY )FZ //

��������������������������
FZF (XY )

��������������������������

F (X(Y Z))

��?????????????

____ +3
ω∗F

� �� �KSεF F (ZX)FY

���������������

____ +3
ω∗F

F ((XY )Z) // F (Z(XY )) //

‖

F ((ZX)Y )

FX(FY FZ) //

��?????????????

���������������
(FXFY )FZ //

�� ��
�� h2D

FZ(FXFY )

��?????????????

FXF (Y Z)

��

''OOOOOOOOOOOOOOOOOOOO
FX(FZFY ) //

��
����{� h2D

(FXFZ)FY //

��

(FZFX)FY

��

____ +3
εF

FXF (ZY )

��

F (XZ)FY

�� ''OOOOOOOOOOOOOOOOOOOO

F (X(Y Z))

��?????????????
//

'

F (X(ZY )) //

�� ��
��F (h2C)

F ((XZ)Y )

��?????????????
F (ZX)FY

���������������

����
CKεF

F ((XY )Z) // F (Z(XY )) // F ((ZX)Y )

����
;CεF

The modification ω∗F is defined in the same way as ωF using a−1
C and a−1

D except aC and aD.
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(iii) for all X,Y, Z objects in C, the equation of 2-morphisms holds in D.

(FXFY )FZ //

���������������
FX(FY FZ)

'

//

��������������������������
(FY FZ)FX

��?????????????

��������������������������

F (XY )FZ

��

FY (FZFX)

��

FXF (Y Z) //

��������������������������
F (Y Z)FX

��������������������������

F ((XY )Z)

��?????????????

____ +3
ωF

� �� �KSεF FY F (ZX)

���������������

____ +3
ωF

F (X(Y Z)) // F ((Y Z)X) //

‖

F (Y (ZX))

(FXFY )FZ //

��?????????????

���������������
FX(FY FZ) //

�� ��
�� h1D

(FY FZ)FX

��?????????????

F (XY )FZ

��

''OOOOOOOOOOOOOOOOOOOO
(FY FX)FZ //

��
����{� h1D

FY (FXFZ) //

��

FY (FZFX)

��

____ +3
εF

F (Y X)FZ

��

FY F (XZ)

�� ''OOOOOOOOOOOOOOOOOOOO

F ((XY )Z)

��?????????????
//

'

F ((Y X)Z) //

�� ��
��F (h1C)

F (Y (XZ))

��?????????????
FY F (ZX)

���������������

����
CKεF

F (X(Y Z)) // F ((Y Z)X) // F (Y (ZX))

����
;CεF
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(iv) for all X,Y objects in C, the pasting of the 2-morphisms in the below diagram is 1.

FXFY //

��

������ εF

GF ED
��

�� ��
�� ζD

FY FX //

��

������ εF

FXFY

��
F (XY ) // F (Y X) //

� �� �KS
F (ζC)

F (XY )

BC
OO

@A

(v) for all X object in C, the pasting of the 2-morphisms in the below diagram is 1.

FXFX

��

//
##

�� ��
�� ηD

				�� εF

FXFX

��
FX //

;;FX� �� �KS
F (ηC)

Definition 4.3.2. A morphism of additive 2-functors (F, λF , ωF , εF )⇒(G,λG, ωG, εG) is
given by a pair (θ,Γ) where θ : F⇒G is a natural 2-transformation (2.1.6) and Γ is a
modification (2.1.7)

C2 ⇓θ2

⊗C

��

����|� λG

F 2

&&

G2

88⇓θ2 D2

⊗D

��
C

G
// D

Γ
V

C2 F 2
//

⊗C

��

����|� λF

D2

⊗D

��
C ⇓θ

F

%%

G

99⇓θ D

where Γ satisfies two equations of modifications, one that involves ωF and ωG and another
one that involves εF and εG.

Definition 4.3.3. A modification between two morphisms of additive 2-functors (θ1,Γ1)V
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(θ2,Γ2) is given by a modification (2.1.7) Σ : θ1 V θ2 such that the diagram of modifications

λG ∗ θ2
1

Γ1 _ *4

λG∗Σ2

�
�

θ1 ∗ λF

Σ∗λF

�
�

�

λG ∗ θ2
2 Γ2

_ *4 θ2 ∗ λF

commute.

4.4 Picard 2-Stacks

In this section, we are going to extend the discussion in Section 3.4 from categories
to 2-categories. That is we investigate the naive notion of sheaf of 2-categories, namely
2-stacks over a site S. We discuss also fibered 2-categories over S which are analogues of
presheaves of 2-categories. Lastly, we define Picard 2-stacks over S which are categorical
analogues of abelian sheaves. Our main references for this section are [7], [8], and [16].

4.4.1 Fibered 2-Categories

In this Section, we study the 2-categories over a fixed site S, that is 2-categories C
equipped with a strict 2-functor

pC : C // S .

Definition 4.4.1. Let C be a 2-category over S and let U be an object of S. A fiber of C
over U , denoted by CU is a sub 2-category of C such that pC maps its objects, 1-morphisms,
and 2-morphisms to U , idU , and ididU , respectively.

Let C be a 2-category over S and let f : X→Y be a 1-morphism in C such that

pC(X) = U pC(Y ) = V pC(f) = i.

Post composing by f defines a natural 2-transformation f̃

f̃ : HomCU (−, X) //Homi(−, Y ) .

For any object A in CU , the component of f̃ at X is the functor

f̃A : HomCU (A,X) //Homi(A, Y ) , (4.4.1)

defined by f̃A(g) = f ◦g. Homi(A, Y ) denotes the subcategory of HomC(A, Y ) whose objects
are mapped to i by pC. For any morphism α : A→B, the component of f̃ at α is the natural
transformation between the following composition of functors.

HomCU (B,X)

��

//

�����
 fα

Homi(B, Y )

��
HomCU (A,X) // Homi(A, Y )
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For any g : B→X, fα(g) : (f ◦ g) ◦ α⇒f ◦ (g ◦ α). However, in 2-categories composition of
1-morphisms is associative. Hence fα is a trivial natural transformation.

Definition 4.4.2. A morphism f : X→Y as above is called cartesian if f̃ is a weakly
invertible 1-morphism in the 2-category of contravariant 2-functors from CU to Cat the
2-category of categories. Equivalently by the above discussion, we say that f : X→Y is
cartesian if for any object A in C the functor (4.4.1) is an equivalence.

Definition 4.4.3. Let C be a 2-category over S. We say that C is fibered over S if

(i) for every i : U→V morphism in S and for every object Y in CV , there exists an object
X in CU and a cartesian morphism f : X→Y in C such that pC(f) = i.

(ii) composition of cartesian morphisms is cartesian.

We observe that if C is a fibered 2-category over S, than for any object U in S HomCU (X,Y )
is a fibered category for all X,Y objects in CU . In fact let i : U→V morphism in S and
f : X→Y be a morphism in HomCV (X,Y ). Since C is a fibered 2-category, we can pullback
f to a morphism f|U : X|U→Y|U where X|U and Y|U are pullbacks of X and Y into CU .
This pullback f|U is defined up to 2-isomorphism α as shown in the diagram

X|U
gX //

f|U

��

X

f

��
Y|U gY

// Y

����
<Dα

.

where gX and gY are cartesian morphisms. Let f ′ : X ′→Y ′ be another morphism in CU
such that

X ′
hX //

f ′

��

X

f

��
Y ′

hY
// Y

����
<Dα′

The unique 2-morphism β from f ′ to f|U is defined as the 2-morphism that makes the
diagram
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X ′
hX

��}}{
{

{
{

f ′

��

X|U
gX //

f|U

��

X

f

��

Y ′
hY

��}}{
{

{
{

Y|U gY
// Y

commute. The dotted arrows and the 2-isomorphisms on the top and bottom faces exist
due to the fact that gX and gY are cartesian arrows. Uniqueness of β follows from that fact
that other 2-morphisms are isomorphisms.

Definition 4.4.4. Let C and D be two fibered 2-categories over S. A functor F : C→D is
called a morphism of fibered 2-categories or a cartesian 2-functor if

(i) F preserves the base, that is if the diagram

C F //

pC

��1
111111111111

�

D

pD

��














S

commutes.

(ii) F maps cartesian morphisms to cartesian morphisms.

4.4.2 Sheaf Axiom for Fibered 2-Categories

Next, as we have done for fibered categories, we will talk about the analog of the sheaf
axiom for fibered 2-categories. Since fibers are 2-categories, this axiom consists of conditions
about objects, 1-morphisms, and 2-morphisms.

1. Axiom on 1-Morphisms and 2-Morphisms: for any two objects X,Y in CU , the fibered
category HomCU (X,Y ) is a stack over S/U .

2. Axiom on Objects: every decent 2-datum is effective.

A decent 2-datum is a collection (V•→U,X,ϕ, α)

1. . . . V2

d0 //
d1
//

d2

// V1

d0 //

d1

// V0
δ // U is a hypercover over U ,

2. X is an object in CV0
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3. ϕ : d∗0X→d∗1X is a 1-morphism in CV1

4. α : d∗1ϕ⇒d∗2ϕ ◦ d∗0ϕ is a 2-morphism in CV2

satisfying the 2-cocycle condition in CV3

((d2d3)∗ϕ ∗ d∗0α) ◦ d∗2α = (d∗3α ∗ (d0d1)∗ϕ) ◦ d∗1α.

A decent 2-datum (V•→U,X,ϕ, α) is effective if there exists an object Y ∈ CU together
with weakly invertible 1-morphisms ψ : δ∗Y→X in CV0 compatible with ϕ and α.

4.4.3 Picard 2-Stacks

The analog of a sheaf in 2-categorical context is a 2-stack. Hence, a 2-stack over the
site S is a fibered 2-category C that satisfies both axioms (4.4.2). If C satisfies only the first
axiom, then C is called pre 2-stack. A (pre) 2-stack is fibered in 2-groupoids over S if for
every U ∈ S, CU is a 2-groupoid (2.1.8). In this thesis, we assume that every (pre) 2-stack
is fibered in 2-groupoid.

Definition 4.4.5. A Picard 2-stack P is a 2-stack equipped with a morphism of 2-stacks

⊗ : P× P //P

inducing a Picard structure (4.1.1) on P. A morphism of Picard 2-stacks F : P1→P2 is an
additive (4.3.1) and cartesian (4.4.4) 2-functor. By abuse of language, we call F additive
2-functor.

Picard 2-stacks over S form a 3-category, denoted by 2Pic(S), whose

• 1-morphisms are additive 2-functors,

• 2-morphisms are pairs (θ,Γ) of the form (4.3.2),

• 3-morphisms are modifications of the form (4.3.3).

Additive 2-functors between Picard 2-stacks P and Q form a 2-groupoid that we denote by
Hom(P,Q).

4.5 Associated Picard 2-Stack

An immediate example of a Picard 2-stack is the Picard 2-stack associated to a complex
of abelian sheaves. It is already explained in [27] and in [3] how to associate a 2-groupoid
to a length 3 complex. However, this 2-groupoid is not a 2-stack. It is not even a 2-prestack
(i.e. 1-morphisms only form a prestack but not a stack and 2-descent data are not effective).
Therefore to obtain a 2-stack one has to apply the stackification twice. Instead, we are going
to use a torsor model for associated stacks. It is more geometric, intuitive, and can be found
in [1] for the abelian case, and in [3] for the non-abelian case.

We start with a recall on torsors. Let A be a gr-stack, not necessarily Picard. A stack
L is an (right) A -torsor if there exists a morphism of stacks
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m : L ×A //L

compatible with the group laws in A , and the morphism

(pr,m) : L ×A //L ×L

is an equivalence, and for all U ∈ S, LU is not empty. [5, §6.1]

Let A→B be a morphism of gr-stacks. An (A ,B)-torsor is a pair (L , x), where L is
an A -torsor, and x : L→B is an A -equivariant morphism of stacks [1, §6.1], [3, §6.3.4]. A
1-morphism of (A ,B)-torsors is a pair

(F, µ) : (L , x) //(K , y) ,

where F : L→K is a morphism of stacks such that

L
F //

x

��2
222222222222

rrrru} σF

K

y

���������������

B

and µ is a natural transformation of stacks

L ×A

��

F×1 //

				�� µ

K ×A

��
L

F
//K

expressing the compatibility of F with the torsor structure. Let (F, µ), (G, ν) : (L , x)→(K , y)
be two parallel 1-morphisms of (A ,B)-torsors. A 2-morphism of (A ,B)-torsors (F, µ)⇒(G, ν)
is given by a natural transformation φ : F⇒G satisfying

L

x

��2
222222222222 G

//

F

""
�� ��
�� φ

rrrru} σG

K

y

���������������

B

=

L

rrrru} σF
x

��2
222222222222

F

""
K

y

���������������

B

49



and

L ×A

F×1

$$

G×1
//

��

				�� ν

�� ��
�� φ×1

K ×A

��
L

G
//K

=

L ×A
F×1 //

��

				�� µ

K ×A

��
L

F //

G

::�� ��
�� φ

K

(A ,B)-torsors with 1- and 2-morphisms as defined above form a 2-stack over the site S
denoted by Tors(A ,B). Moreover, if A and B are Picard stacks, we can define a Picard
group like structure on Tors(A ,B) as follows:

(L , x)⊗ (K , y) := (L ∧A K , x ∧ y)

where L ∧A K is the contracted product and x ∧ y is the A -equivariant morphism from
L ∧A K to B given by x(l)y(k) where (l, k) is in L ∧A K .

Now, consider A• : [A−2→A−1→A0] a complex of abelian sheaves. Let A be the Picard
stack associated to A−2→A−1, that is A := [A−2→A−1]∼ ' Tors(A−2, A−1) and let
ΛA : A→A0 be an additive functor of Picard stacks, where A0 is considered as a discrete
stack (no non-trivial morphisms). It associates to an object (L, s) in Tors(A−2, A−1) an
element λA(s) in A0. It follows from the above discussion that Tors(A , A0) is a Picard
2-stack. Thus, we define

Definition 4.5.1. For any length 3 complex of abelian sheaves A• : [A−2→A−1→A0],
the Picard 2-stack associated to A• is Tors(A , A0). The hom-2-groupoid between two
associated Picard 2-stacks Tors(A , A0) and Tors(B, B0) is denoted by Hom(A•, B•).

4.6 Homotopy Exact Sequence

Let Tors(A , A0) be the associated Picard 2-stack to A•, then there is a sequence of
Picard 2-stacks

A
ΛA //A0 πA //Tors(A , A0) , (4.6.1)

where A0 is considered as discrete Picard 2-stack (no non-trivial 1-morphisms and 2-
morphisms). The morphism πA assigns to an element a of A0(U) the pair (A , a), where a
is identified with the morphism A→A0 sending 1A = (A−2, δA) to a. (4.6.1) is homotopy
exact in the sense that A satisfies the pullback diagram.

50



A //

ΛA

��

0

��
A0

πA
// Tors(A , A0)

����
@H

(4.6.2)

Since A is the Picard stack associated to the morphism of abelian sheaves δA : A−2→A−1,
it fits into the commutative pullback square of Picard stacks (see the proof of non-abelian
version of Proposition 8.3.2 in [3]).

A−2 //

δA

��

0

��
A−1

πA

// A

����
=E

(4.6.3)

Then pasting the diagrams 4.6.2 and 4.6.3 at A , we obtain

A−2 //

δA

��

0

��
A−1

πA

//

λA

%%

7
:

>
A

E
H

J

A

ΛA

��

//

����
=E

0

��
A0

πA
// Tors(A , A0)

����
@H

(4.6.4)
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CHAPTER 5

TRICATEGORY OF LENGTH 3-COMPLEXES

OF ABELIAN SHEAVES

In the previous Chapter 4, we have seen the relation between Picard 2-categories and length
3-complexes of abelian sheaves. Now, we look at the category of such complexes more in
details. In this Chapter, we define T[−2,0](S) the tricategory of A• : [A−1→A−1→A0] length
3-complexes of abelian sheaves. In T[−2,0](S) a morphism between any two complexes A•

and B• is called a weak morphism and we show that they form a bigroupoid denoted by
Frac(A•, B•).

5.1 3-category of Complexes of Abelian Sheaves

The main purpose of this thesis is to construct a trifunctor (6.1.1) from the tricategory
T[−2,0](S) to the 3-category 2Pic(S). This construction (see Lemma 6.1.1) is going to be
first performed on C[−2,0](S) a strict sub 3-category of T[−2,0](S) and extended to T[−2,0](S).
Although C[−2,0](S) is very well known, in order to setup our notation and terminology,
we start this chapter with its explicit description. The objects of C[−2,0](S) are length 3
complexes of abelian sheaves placed in degrees [−2, 0]. For a pair of objects A• ,B•, the
hom-2-groupoid HomC[−2,0](S)(A•,B•) is defined as follows:

• A 1-morphism f• : A•→B• is a degree 0 map given by strictly commutative squares.

A−2
δA //

f−2

��

A−1
λA //

f−1

��

A0

f0

��
B−2

δB
// B−1

λB
// B0

(5.1.1)
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• A 2-morphism s• : f•⇒g• is a homotopy map given by the diagram

A−2
δA //

g−2

��

f−2

��

A−1
λA //

g−1

��

f−1

��

s−1
{{{{{{{{

}}{{{{{{{{

A0

g0

��

f0

��

s0
||||||||

}}||||||||

B−2
δB

// B−1
λB

// B0

(5.1.2)

satisfying the relations

g0 − f0 = λB ◦ s0, g−1 − f−1 = δB ◦ s−1 + s0 ◦ λA, g−2 − f−2 = s−1 ◦ δA.

• A 3-morphism v• : s• V t• is a homotopy map between homotopies s• and t• given
by the diagram

A−2
δA //

g−2

��

f−2

��

A−1
λA //

�� ��

s−1

��

t−1

yy

A0

g0

��

f0

��

s0

��

t0

yy
v

vvm m m m m m m m m m m m m m m

B−2
δB

// B−1
λB

// B0

(5.1.3)

satisfying the relations

s0 − t0 = δB ◦ v, s−1 − t−1 = −v ◦ λA.

Remark 5.1.1. In fact, the hom-2-groupoid HomC[−2,0](S)(A•,B•) is the 2-groupoid associated

to τ≤0(Hom•(A•, B•)), the smooth truncation of the hom complex Hom•(A•, B•), that is
to the complex

Hom−2(A•, B•)
∂−2
//Hom−1(A•, B•)

∂−1
//Z0(Hom0(A•, B•))

of abelian groups, where for i = 1, 2 the elements of Hom−i(A•, B•) are morphisms of
complexes from A• to B• of degree −i, and where Z0(Hom0(A•, B•)) is the abelian group
of cocycles. The differentials ∂i are defined as

(∂−i(s•))−p = λ−p−iB ◦ s−p + (−1)i+1s−p+1 ◦ λ−pA

for any s• ∈ Hom−i(A•, B•) and p = 0, 1, 2.

5.2 Weak Morphisms of Complexes of Abelian Sheaves

We fix two complexes of abelian sheaves A• and B•. We define Frac(A•, B•) a weakened
analog of the hom-2-groupoid HomC[−2,0](S)(A

•, B•). We also prove that Frac(A•, B•) is a
bigroupoid.
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5.2.1 Definition of Frac(A•, B•)

Frac(A•, B•) is a consists of objects, 1-morphisms, and 2-morphisms such that

• An object is an ordered triple (q,M•, p), called fraction

(q,M•, p) : A• M•
qoo p //B•

with M• a complex of abelian sheaves, p a morphism of complexes, and q a quasi-
isomorphism.

• A 1-morphism from the fraction (q1,M
•
1 , p1) to the fraction (q2,M

•
2 , p2) is an ordered

triple (r,K•, s) with K• a complex of abelian sheaves, r and s quasi-isomorphisms
making the diagram

M•1
p1

''NNNNNNNNNNNNN
q1

wwppppppppppppp

A• K• p //qoo

s

OO�
�
�

r
���
�
� B•

M•2

p2

77ppppppppppppp
q2

ggNNNNNNNNNNNNN

(5.2.1)

commutative.

• A 2-morphism from the 1-morphism (r1,K
•
1 , s1) to the 1-morphism (r2,K

•
2 , s2) is an

isomorphism t• : K•1→K•2 of complexes of abelian sheaves such that the diagram that
we will call “diamond”

A•

K•1

vvmmmmmmmmmmmmmmmm

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

r1
+++++++++++

��+
++++++++++

s1{{{

=={{{

t•
C

C
C

C
C

!!C
C

C
C

C

M•2

q2LLLLLLLLLLLLL

ffLLLLLLLLLLLLLL
p2rrrrrrrrrrrrr

88rrrrrrrrrrrrr

M•1

q1
rrrrrrrrrrrrr

xxrrrrrrrrrrrrrr p1
LLLLLLLLLLLLL

&&LLLLLLLLLLLLL

K•2

llXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

66mmmmmmmmmmmmmmmm

r2
{{{

}}{{{

s2+++++++++

UU++++++++++++++

B•

(5.2.2)

commutes.

Remark 5.2.1. For reasons of clarity, we will represent the above 2-morphism by the follow-
ing planar commutative diagram
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M•1

p1

&&LLLLLLLLLLLLLLLLLLLLLLL

q1

xxrrrrrrrrrrrrrrrrrrrrrrr

A• K•1
t• //________

s1







EE







r1
444444

��444444

K•2

s2444444

YY444444

r2








��







B•

M•2

p2

88rrrrrrrrrrrrrrrrrrrrrrr

q2

ffLLLLLLLLLLLLLLLLLLLLLLL

where we have ignored the maps from K•’s to A• and B•.

Remark 5.2.2. From the definition of 2-morphisms, it is immediate that all 2-morphisms
are isomorphisms.

5.2.2 Frac(A•, B•) is a bigroupoid

Proposition 5.2.3. Let A• and B• be two complexes of abelian sheaves. Then Frac(A•, B•)
is a bigroupoid.

Proof. We will describe the necessary data to define the bigroupoid without verifying that
they satisfy the required axioms.

• For any two composable morphisms (r1,K
•
1 , s1) : (q1,M

•
1 , p1)→(q2,M

•
2 , p2) and (r2,K

•
2 , s2) :

(q2,M
•
2 , p2)→(q3,M

•
3 , p3) shown by the diagram

M•1

p1

##FFFFFFFFFFFFFFFFFFFFFF

q1

{{xxxxxxxxxxxxxxxxxxxxxx

K•1

q′
SSSSSSSSS

))SSSSSSSSSp′kkkkkkkkk

uukkkkkkkkk

s1

OO�
�
�

r1
���
�
�

A• M•2 p2 //q2oo B•

K•2

q′′kkkkkkkkk

55kkkkkkkkk
p′′SSSSSSSS

iiSSSSSSSSS
s2

OO�
�
�

r2
���
�
�

M•3

p3

;;xxxxxxxxxxxxxxxxxxxxxx

q3

ccFFFFFFFFFFFFFFFFFFFFFF

the composition is defined by the pullback diagram.
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K•1 ×M•2 K
•
2

pr2

%%KKKKKKKKKK
pr1

yyssssssssss

K•1
r1

%%KKKKKKKKKKK
s1

}}{{{{{{{{
= K•2

r2

!!CCCCCCCC
s2

yysssssssssss

M•1 M•2 M•3

That is the composition is the triple (r2 ◦ pr2,K
•
1 ×M•2 K

•
2 , s1 ◦ pr1).

• For two 2-morphisms t•1 : (r1,K
•
1 , s1)⇒(r2,K

•
2 , s2) and t•2 : (r2,K

•
2 , s2)⇒(r3,K

•
3 , s3)

shown by the diagram

M•1

((PPPPPPPPPPPPPPPPPPPPPPPPPPPPP

wwnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

A• K•1
t•1 //______

s1}}}}}}}}

>>}}}}}}}}

r1
AAAAAAAA

  AAAAAAAA

K•2

s2

OO

r2

��

t•2 //______ K•3

s3AAAAAAAA

``AAAAAAAA

r3
}}}}}}}}

~~}}}}}}}}

B•

M•2

66nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

hhPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

the vertical composition is defined by t•2 ◦ t•1.

• For two 2-morphisms t• : (r1,K
•
1 , s1)⇒(r2,K

•
2 , s2) and u• : (r′1, L

•
1, s
′
1)⇒(r′2, L

•
2, s
′
2)

shown by the diagram

M•1

&&NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

xxpppppppppppppppppppppppppppppp

K•1

r1
CCC

!!CCC

s1{{{

=={{{

t• //________ K•2

s2CCC

aaCCC

r2
{{{

}}{{{

A• M•2 //oo B•

L•1

s′1{{{

=={{{

r′1

CCC

!!CCC

u• //________ L•2

r′2
{{{

}}{{{

s′2CCC

aaCCC

M•3

88pppppppppppppppppppppppppppppp

ffNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

the horizontal composition is given by the natural morphism K•1 ×M•2 L
•
1→K•2 ×M•2 L

•
2

between the pullbacks of pairs (r1, s
′
1) and (r2, s

′
2) over M•2 .
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Any three composable 1-morphisms (r1,K
•
1 , s1), (r2,K

•
2 , s2), and (r3,K

•
3 , s3) can be

pictured as a sequence of three fractions

K•1
r1

!!CCCCCCCC
s1

}}{{{{{{{{
K•2

r2

!!CCCCCCCC
s2

}}{{{{{{{{
K•3

r3

!!CCCCCCCC
s3

}}{{{{{{{{

M•1 M•2 M•3 M•4

simply by ignoring the maps to A• and B•. They can be composed in two different ways,
either first by pulling back over M•2 then over M•3 or vice versa. The resulting fractions
will be (r, (K•1 ×M•2 K

•
2 )×M•3 K

•
3 , s) and (r′,K•1 ×M•2 (K•2 ×M•3 K

•
3 ), s′), respectively, where r

and r′ (resp.s and s′) are equal to r3 (resp.s1) composed with appropriate projection maps.
The 2-isomorphism between these fractions is given by the natural isomorphism between
the pullbacks. Thus, the associativity of composition of 1-morphisms is weak.

We also observe that 1-morphisms are weakly invertible. Let (r,K•, s) be a 1-morphism
from (q1,M

•
1 , p1) to (q2,M

•
2 , p2), then (s,K•, r) is a weak inverse of (r,K•, s) in the sense

that the composition (r ◦ pr,K• ×M•2 K
•, r ◦ pr) is equivalent to the identity, that is there

is a natural 2-transformation θ : r ◦ pr⇒id ◦ (r ◦ pr) as shown in the below diagram.

M•1

p1

&&LLLLLLLLLLLLLLLLLLLLLLLL

q1

xxrrrrrrrrrrrrrrrrrrrrrrr

A• K•
r◦pr //________

r◦pr









EE







r◦pr
4444444

��444444

____ +3θ

M•1

id444444

ZZ444444

id








��







B•

M•1

p1

88rrrrrrrrrrrrrrrrrrrrrrrr

q1

ffLLLLLLLLLLLLLLLLLLLLLLL

____ +3θ

Thus, Frac(A•, B•) is a bigroupoid.

Remark 5.2.4. In the terminology of [2], what we have called fractions are called in the
non-abelian context weak morphisms of 2-crossed modules or butterflies of gr-stacks or bats
of sheaves.

5.3 Tricategory of Complexes of Abelian Sheaves

We define the tricategory T[−2,0](S) of length 3 complexes of abelian sheaves promised
at the beginning of the section. To define a tricategory, one has to first define the data
given in [15, Definition 3.3.1] and then verify that these data satisfy the axioms also given
in [15, Definition 3.3.1]. Since this is a very long and dull procedure, we give here the some
of the important data and leave the rest.

T[−2,0](S) is a tricategory equipped with the data
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• Objects are length 3 complexes of abelian sheaves.

• For any two complexes of abelian sheaves A• and B•, Frac(A•, B•) is the hom-
bicategory.

• For any three complexes of abelian sheaves A•, B•, and C•, the composition is given
by the weak functor

⊗T : Frac(A•, B•)× Frac (B•, C•) // Frac (A•, C•) ,

which is defined on

1. objects, by

M•1
q1

����������
p1

��????????
M•2

q2

����������
p2

��????????
M•1 ×B• M•2

q1◦pr1

wwooooooooooooo
p2◦pr2

''OOOOOOOOOOOOO

A• B• B• C• A• C•

=⊗T

2. 1-morphisms, by

M•1
q1

����������
p1

��????????
M•2

q2

����������
p2

��????????
M•1 ×B• M•2

q1◦pr1

wwooooooooooooo
p2◦pr2

''OOOOOOOOOOOOO

A• K•

s1

OO

r1

��

y1 //x1oo B• ⊗T B• L•

s2

OO

r2

��

y2 //x2oo C• = A• K• ×B• L•
s1×s2

OO

r1×r2
��

y1◦pr2 //x1◦pr1oo C•

N•1

q′1

__???????? p′1

??��������
N•2

q′2

__???????? p′2

??��������
N•1 ×B• N•2

q′1◦pr1

ggOOOOOOOOOOOOO p′2◦pr2

77ooooooooooooo

3. 2-morphisms, by

M•1
q1

����������
p1

��????????
M•2

q2

����������
p2

��????????
M•1 ×B• M•2

q1◦pr1

wwooooooooooooo
p2◦pr2

''OOOOOOOOOOOOO

A• K•1→K•2 B• ⊗T B• L•1→L•2 C• = A• K•1 ×B• L•1→K•2 ×B• L•2 C•

N•1

q′1

__???????? p′1

??��������
N•2

q′2

__???????? p′2

??��������
N•1 ×B• N•2

q′1◦pr1

ggOOOOOOOOOOOOO p′2◦pr2

77ooooooooooooo

HH������

VV------

��-
-----

��������

HH������

VV------

��-
-----

��������

DD








ZZ4444444

��4444444

��
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CHAPTER 6

CHARACTERIZATION THEOREM FOR

PICARD 2-STACKS

This is the main chapter of the thesis where we prove the generalization of the theorem
(3.8) to Picard 2-stacks. So far we have defined 2Pic(S) the 3-category of Picard 2-stacks
and T[−2,0](S) the tricategory of length 3 complexes of abelian sheaves.

6.1 Definition of the Trihomomorphism

We construct a trihomomorphism from C[−2,0](S) to 2Pic(S).

Lemma 6.1.1. There is a trihomomorphism

2℘ : C[−2,0](S) //2Pic(S) (6.1.1)

between the 3-category C[−2,0](S) of complexes of abelian sheaves and the 3-category 2Pic(S)
of Picard 2-stacks.

Proof. We will give a step by step construction of the trihomomorphism and leave the
verification of the axioms to the reader.

• Using the notations in section 4.5, given a complex A•, we define 2℘(A•) as the
associated Picard 2-stack, that is 2℘(A•) := Tors(A , A0).

• For any morphism f• : A•→B• of complexes (see diagram (5.1.1)), there exists a
commutative square of Picard stacks

A
ΛA //

F

��

A0

f0

��
B

ΛB
// B0

(6.1.2)

where F is induced by f•<0 : A•<0→B•<0. From the square (6.1.2), we construct a
1-morphism 2℘(f•) in 2Pic(S)
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2℘(f•) : Tors(A , A0) //Tors(B, B0)

that sends an (A , A0)-torsor (L , x) to (L ∧A B, f0 ◦x+ΛB). For details, the reader
can refer to [1, §6.1].

• For any 2-morphism s• : f•⇒g• of complexes (see diagram 5.1.2), there exists a
diagram of Picard stacks

A

F

		

G

��

ΛA // A0

f0

		

g0

��

ŝ0
~~~~~~~

~~~~~~~~~~

B
ΛB

// B0

(6.1.3)

such that for any (L, a) in A , we have the relation

G(L, a)− F (L, a) = ŝ0 ◦ ΛA(L, a) with ŝ0(a) = (B−2, s0(a)).

From the relation, we construct a natural 2-transformation θ

Tors(A , A0)

2℘(f•)
--

2℘(g•)

11Tors(B, B0)θ��

in 2Pic(S) that assigns to any object (L , x) in Tors(A , A0) a 1-morphism θ(L ,x)

θ(L ,x) : (L ∧A
2℘(f•) B, xF ) //(L ∧A

2℘(g•) B, xG) (6.1.4)

in Tors(B, B0), where xF = f0 ◦x+ΛB and xG = g0 ◦x+ΛB. The morphism (6.1.4)
is defined by sending (l, b) to (l, b− s0 ◦ x(l)).

• For any 3-morphism v• : s• V t• of complexes (see diagram 5.1.3), there exists a
modification Γ

Tors(A , A0)

2℘(f•)

**

2℘(f•)

44θ⇓ V
Γ
⇓φ Tors(B, B0)

in 2Pic(S) that assigns to any (L , x) object of Tors(A , A0) a natural 2-transformation
Γ(L ,x)
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(L ∧A
F B, xF )

θ(L ,x)

++

φ(L ,x)

33(L ∧A
G B, xG)⇓Γ(L ,x)

in Tors(B, B0), where θ(L ,x), φ(L ,x) are of the form (6.1.4). The natural 2-transformation

Γ(L ,x) is defined by assigning to any object (l, b) in (L ∧A
F B, xF ) a morphism

Γ(L ,x)(l, b) : (l, b− s0 ◦ x(l)) //(l, b− t0 ◦ x(l))

in (L ∧A
G B, xG) given by the triple (idl, 1A , β) with β being the isomorphism

b− s0 ◦ x(l) //b− s0 ◦ x(l) + δB ◦ v ◦ x(l) ,

and idl the identity of l in L , and 1A the unit element in A .

6.2 Biequivalence of Frac(A•, B•) and Hom(A•, B•)

We fix two length 3 complexes of abelian sheaves A• and B•. In this Section, we prove
that the bigroupoid Frac(A•, B•) of fractions defined in Section 5.2.1 is biequivalent to the
2-groupoid Hom(A•, B•) of additive 2-functors from 2℘(A•) to 2℘(A•) defined in Section
4.5(see Definition (4.5.1)).

6.2.1 Morphisms of Picard 2-Stacks as Fractions

Lemma 6.2.1. Let P be a Picard 2-stack and A,B be two abelian sheaves with additive
2-functors φ : A // P and ψ : B // P . Then A×P B is a Picard stack.

Proof. Proof of this technical lemma will be given in the Appendix (A.1.1).

Lemma 6.2.2. A morphism f : A•→B• is a quasi-isomorphism if and only if

2℘(f) : 2℘(A•) // 2℘(B•)

is a biequivalence.

Proof. Given f : A•→B• a morphism of complexes, we know how to induce a morphism
of Picard 2-stacks (see construction of trihomomorphism 2℘(f)). It is also known that
a 2-stack (not necessarily Picard) can be seen as a 2-gerbe over its own π0 bounded by
the stack Aut(I) of automorphisms of identity [7, §8.1]. In particular, the Picard 2-stacks
Tors(A , A0) and Tors(B, B0) are 2-gerbes over their own π0 bounded by Aut(I2℘(A•)) '
[A−2→ ker(δA)]

∼
and Aut(I2℘(B•)) ' [B−2→ ker(δB)]

∼
, respectively. Furthermore, if f is

a quasi-isomorphism, then H−i(A•) ' H−i(B•) for i = 0, 1, 2 and thus, πi(2℘(A•)) '
πi(2℘(B•)) for i = 0, 1, 2. So Tors(A , A0) and Tors(B, B0) are 2-gerbes with equivalent
bands. Therefore they are equivalent.
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Given an additive 2-functor F in Hom(A•, B•), we will show in the next lemma that
there is a corresponding object in Frac(A•, B•).

Lemma 6.2.3. For any additive 2-functor F : 2℘(A•)→2℘(B•), there exists a fraction
(q,M•, p) such that F ◦ 2℘(q) ' 2℘(p).

Proof. From the sequences

A
ΛA // A0

πA // 2℘(A•) and B
ΛB // B0

πB // 2℘(B•) ,

we can construct the commutative diagram

A ×B

µF

��

&&LLLLLLLLLLL

xxrrrrrrrrrrr

A
νF

%%LLLLLLLLLLL

ΛA

��

B

ΛB

��

ξF

yyrrrrrrrrrrr

EF
pr2

%%LLLLLLLLLLL
pr1

yyrrrrrrrrrrr

A0

πA
��

F◦πA

**UUUUUUUUUUUUUUUUUUUUU B0

πB
��

2℘(A•)
F

// 2℘(B•)

(6.2.1)

where EF := A0 ×F,B B0. It follows from the commutativity of the above diagram that
µF = (ΛA,ΛB). The sequence

B
ξF //EF

pr1 //A0 (6.2.2)

is homotopy exact since it is the pullback of the exact sequence B→B0→2℘(B•). From
Lemma 6.2.1, it follows that EF is a Picard stack. Therefore by [3, Proposition 8.3.2], there
exists a length 2 complex E• = [δE : E−1

F →E0
F ] of abelian sheaves such that the associated

Picard stack Tors(E−1
F , E0

F ) is equivalent to EF . Then by [3, Theorem 8.3.1], there exists
a butterfly representing µF

A−2 ×B−2

δA×δB

��

κ

%%JJJJJJJJJJ E−1
F

δE

��

ı

}}{{{{{{{{

PF


!!CCCCCCCC
ρ

yytttttttttt

A−1 ×B−1

πA×πB

��

E0
F

πEF

��
A ×B µF

// EF

(6.2.3)
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with PF ' (A−1×B−1)×EF E
0
F . From a different perspective, this butterfly can be seen as

0 //

��

E−1
F

δE //

ı

��

E0
F

id
��

A−2 ×B−2 κ //

id
��

PF
 //

ρ

��

E0
F

��
A−2 ×B−2

δA×δB
// A−1 ×B−1 // 0

(6.2.4)

where each column is an exact sequence of abelian sheaves. The only non-trivial sequence
is the second column and its exactness follows from the definition of a butterfly (3.7.1). So
we have a short exact sequence of complexes of abelian sheaves

0 // E•F //M•F // A•<0 ×B•<0 // 0 , (6.2.5)

where

M•F := A−2 ×B−2 //PF //E0
F , (6.2.6)

E•F := 0 //E−1
F

//E0
F ,

A•<0 ×B•<0 := A−2 ×B−2 //A−1 ×B−1 //0 .

From the lower part of the diagram (6.2.4) and the definition of PF , we deduce that
there are morphisms of complexes
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A−2 ×B−2

κ

��

pr1

wwoooooooooooo
pr2

''OOOOOOOOOOOO

A−2

δA

��

B−2

δB

��

PF



��

pr2◦ρ

wwooooooooooooo
pr1◦ρ

''OOOOOOOOOOOOO

A−1

λA

��

B−1

λB

��

E0
F

wwpppppppppppppp

''NNNNNNNNNNNNNN

A0 B0

M•F
q

wwooooooooooooo
p

''OOOOOOOOOOOOO

A• B•

(6.2.7)

We claim that q is a quasi-isomorphism, that is

H−2(M•F ) ' ker(δA), H−1(M•F ) ' ker(λA)/ im(δA), H0(M•F ) ' coker(λA).

Indeed, from the exact sequence (6.2.5), we obtain the long exact sequence of homology
sheaves

0 // H−2(M•F ) // H−2(A•<0)×H−2(B•<0) // H−1(E•F ) ED
BC

GF
∂

��
H−1(M•F ) // H−1(A•<0)×H−1(B•<0) // H0(E•F ) // H0(M•F ) // 0

.

(6.2.8)
On the other hand, by [3, Proposition 6.2.6] applied to the exact sequence (6.2.2), we

get a long exact sequence of homotopy groups

0 // π1(B) // π1(EF ) // π1(A0) // π0(B) // π0(EF ) // π0(A0) // 0.

(6.2.9)
Since π1(A0) = H−1(A0) = 0 and π0(A0) = H0(A0) = A0, it follows from (6.2.9) that

we have an isomorphism
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H−2(B•<0)
' // H−1(E•F ) (6.2.10)

and an exact sequence

0 // H−1(B•<0) // H0(E•F ) // A0 // 0. (6.2.11)

(6.2.10) implies that ∂ = 0 in (6.2.8). Therefore from (6.2.8) again, we obtain a short
exact sequence

0 // H−2(M•F ) // H−2(A•<0)×H−2(B•<0) // H−1(E•F ) // 0

from which we deduce that H−2(M•F ) ' H−2(A•<0) = ker(δA).
Now, apply the snake lemma to the short exact sequence (6.2.11) and to

0 // H−1(B•<0) // H−1(A•<0)×H−1(B•<0) // H−1(A•<0) // 0

in order to get the dashed exact sequence

0

��

// H−1(M•F )

��

// ker(λA)/ im(δA)

��

ED

BC�
�
�
�
�
�
�
�
�

GF_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

@A�
�
�
�
�
�
�
�
�

//_____

0 // H−1(B•<0) //

��

H−1(A•<0)×H−1(B•<0) //

��

H−1(A•<0) //

��

0

0 // H−1(B•<0) //

��

H0(E•F ) //

��

A0
//

��

0

0 // H0(M•F ) // coker(λA)

from which it follows H−1(M•F ) ' ker(λA)/ im(δA), and H0(M•F ) ' coker(A0) as wanted.
We end this proof by showing that F ◦ 2℘(q) ' 2℘(p). (6.2.7) induces a diagram of

Picard 2-stacks

2℘(M•F )
2℘(p)

%%KKKKKKKKKK
2℘(q)

yyssssssssss

2℘(A•)
F

// 2℘(B•)

. (6.2.12)
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We claim that (6.2.12) commutes up to a natural 2-transformation. To show that, it is
enough to look at 2℘(M•F ) locally. Given U ∈ S, 2℘(M•F )U is the 2-groupoid associated to
the complex of abelian groups (for the definition of the 2-groupoid associated to a complex
see [3] or [27])

A−2(U)×B−2(U)
δ // PF (U)

λ // E0
F (U)

Then, an object of 2℘(M•F )U is an element e of E0
F (U). Since EF := A0 ×F,B B0 '

Tors(E−1
F , E0

F ), e can be taken as (a, f, b), where a ∈ A0(U), b ∈ B0(U), and f : F (a)→b
is a 1-morphism in 2℘(B•)U .

A 1-morphism of 2℘(M•F )U from e1 to e2 is given by an element p of PF (U) such that
λ(p) + e1 = e2 in E0

F (U). We can again take λ(p), e1, and e2 as (a, f, b), (a1, f1, b1),
and (a2, f2, b2), respectively. Therefore, the addition in E0

F (U) should be replaced by the
monoidal operation on EF between the triples, that is (a, f, b)⊗EF (a1, f1, b1) = (a2, f2, b2).
This monoidal operation is described in the proof of the technical Lemma 6.2.1. It creates
a diagram commutative up to a 2-isomorphism in 2Pic(S)(B•)U that defines f2.

F (a2)

'

��

f2 // b2

'

��
F (a)⊗B F (a1)

f⊗Bf1

// b⊗B b1

����
AIθ

The collection (f, θ) gives the natural 2-transformation between 2℘(q) ◦ F and 2℘(p).

Remark 6.2.4. Since q is a quasi-isomorphism in C[−2,0](S), the technical lemma 6.2.2 implies
that 2℘(q) is a biequivalence in 2Pic(S)(S). Therefore, by choosing an inverse of 2℘(q) up
to a natural 2-transformation we can write F as F ' 2℘(p) ◦ 2℘(q)−1.

6.2.2 Hom-categories of Frac(A•, B•) and Hom(A•, B•)

In the next two lemmas, we are going to explore the relation between 1-morphisms (resp.
2-morphisms) of Frac(A•, B•) and natural 2-transformations (resp. modifications) of Picard
2-stacks.

Suppose we have a natural 2-transformation θ

2℘(A•)

F ++

G

33
�� ��
�� θ 2℘(B•) (6.2.13)

between the two additive 2-functors F,G : 2℘(A•)→2℘(B•). By Lemma 6.2.3, we know
that there are fractions (qF ,M

•
F , pF ) and (qG,M

•
G, pG) associated to F and G.

Lemma 6.2.5. For any natural 2-transformation θ as in (6.2.13), there is a 1-morphism
in Frac(A•, B•) between the fractions (qF ,M

•
F , pF ) and (qG,M

•
G, pG).
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Proof. For F and G, we have the following diagrams similar to (6.2.1)

A ×B

µF

��

&&LLLLLLLLLLL

xxrrrrrrrrrrr

A
νF

%%LLLLLLLLLLL

ΛA

��

B

ΛB

��

ξF

yyrrrrrrrrrrr

EF

%%LLLLLLLLLLL

yyrrrrrrrrrrr

A0

πA
��

F◦πA

**UUUUUUUUUUUUUUUUUUUUU B0

πB
��

2℘(A•)
F

// 2℘(B•)

A ×B

µG

��

&&LLLLLLLLLLL

xxrrrrrrrrrrr

A
νG

%%LLLLLLLLLLL

ΛA

��

B

ΛB

��

ξG

yyrrrrrrrrrrr

EG

%%LLLLLLLLLLL

yyrrrrrrrrrrr

A0

πA
��

G◦πA

**UUUUUUUUUUUUUUUUUUUUU B0

πB
��

2℘(A•)
G

// 2℘(B•)

where EF := A0×F,BB0 and EG := A0×G,BB0 are Picard stacks by Lemma 6.2.1. Therefore
by [3, Proposition 8.3.2], there exist E−1

F →E0
F and E−1

G →E0
G morphisms of abelian sheaves

such that the Picard stack associated to them are respectively EF and EG. The natural
2-transformation θ : F⇒G induces an equivalence H : EG→EF of Picard stacks defined as
follows:

• For any (a, g, b) object of (EG)U , H((a, g, b)) := (a, f, b), where f fits into the commu-
tative diagram

F (a)

θa

��

f //

=

b

∼

��
G(a) g

// b

• For any (a, g, σ, g′, b) morphism of (EG)U , H((a, g, σ, g′, b)) := (a, f, τ, f ′, b), where τ
is defined by the following whiskering.

F (a)
θa // G(a)

g

))

g′

55
�� ��
�� σ b

By [3, Theorem 8.3.1], H corresponds to a butterfly [E•G, N,E
•
F ]. Since H is an equivalence,

this butterfly is flippable.

We compose H and µG by composing their corresponding butterflies
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A−2 ×B−2

δA×δB

��

κ′

&&MMMMMMMMMMM E−1
F

δE

��

ı′

zzuuuuuuuuu

PG ×
E−1
G

E0
G
N

′

$$IIIIIIIIII
ρ′

xxqqqqqqqqqqq

A−1 ×B−1

πA×πB

��

E0
F

πEF

��
A ×B

H◦µG
// EF

where PG ×
E−1
G

E0
G
N is pull-out/pull-back construction as defined in [3, §5.1].

There is also a direct morphism µF from A × B to EF . µF is equivalent to H ◦ µG
since they both map an object of A ×B to an object in EF which is isomorphic to the unit
object in 2℘(B•). Then by [3, Theorem 8.3.1], there exists an isomorphism k between the
corresponding butterflies of µF and H ◦ µG, that is the dotted arrow in the diagram below
such that all regions commute.

A−2 ×B−2

δA×δB

��

κ

))RRRRRRRRRRRRRRRRRRR
κ′ // PG ×

E−1
G

E0
G
N

CCCCC

′

!!CCCCCCCCCCCCCCwwwww

ρ′

{{wwwwwwwwwwwwwwww
k

���
�
�

E−1
F

δE

��

ı

vvnnnnnnnnnnnnnnnnn
ı′oo

PF


((RRRRRRRRRRRRRRRRR

ρ
uujjjjjjjjjjjjjjjjjj

A−1 ×B−1

πA×πB

��

E0
F

πEF

��
A ×B

H◦µG
--

µF

11 EF

(6.2.14)

Let M•F : A−2 × B−2→PF→E0
F and M•G : A−2 × B−2→PG→E0

G. We claim that, there
exists a complex K• with quasi-isomorphisms rF and rG such that all regions in the diagram

M•F
pF

''NNNNNNNNNNNNN
qF

wwppppppppppppp

A• K•
p //qoo

rF

OO

rG
��

B•

M•G

pG

77ppppppppppppp
qG

ggNNNNNNNNNNNNN

(6.2.15)

commute.

Proof of the claim: LetK• : A−2×B−2→PG×E0
G
N→N and define rF by the composition
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K•

rF

��

A−2 ×B−2 // PG ×E0
G
N //

quotient
��

N

quotient

��

A−2 ×B−2 // PG ×
E−1
G

E0
G
N //

��

N/E−1
G

��
M•F A−2 ×B−2 // PF // E0

F

(6.2.16)

and rG by the diagram

K•

rG

��

A−2 ×B−2 // PG ×E0
G
N

��

// N

��
M•G A−2 ×B−2 // PG // E0

G

(6.2.17)

The commutativity of the diagram (6.2.16) follows from composition of butterflies. Since

PG×
E−1
G

E0
G
N ' PF and the butterfly [E•G, N,E

•
F ] is flippable, rF is a quasi-isomorphism. The

diagram (6.2.17) commutes because its left square is a pullback. This implies that rG is a
quasi-isomorphism.

It remains to show that qF ◦ rF = qG ◦ rG, that is in the diagram below each column
closes to a commutative square.

A• A−2 // A−1 // A0

M•F

qF

OO

A−2 ×B−2

OO

// PF //

OO

E0
F

OO

K•

rF

OO

rG

��

A−2 ×B−2 // PG ×E0
G
N

OO

��

// N

OO

��
M•G

qG

��

A−2 ×B−2 //

��

PG

��

// E0
G

��
A• A−2 // A−1 // A0

It is obvious for the first column. The commutativity of the triangles
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PG ×
E−1
G

E0
G
N

k //

ρ′

$$JJJJJJJJJJJJJJJJJJJJ
PF

ρ

��
A−1 ×B−1

EG
H //

pr1

��3
333333333333 EF

pr2

���������������

A0

imply that the middle and last columns close to a commutative square, respectively (the
first triangle is extracted from diagram (6.2.14)).

In the same way, we also show that pF ◦ rF = pG ◦ rG.

Now, suppose we have a modification Γ

2℘(A•)

F

''

G

77θ⇓ V
Γ
⇓φ 2℘(B•) (6.2.18)

between two natural 2-transformations θ, φ : F⇒G. We have proved in Lemmas 6.2.3 and
6.2.5 that both θ and φ correspond to a 1-morphism in Frac(A•, B•).

Lemma 6.2.6. Given a modification Γ as in (6.2.18), there exists a 2-morphism between
the two 1-morphisms corresponding to θ and φ.

Proof. Using the same notations as in Lemma 6.2.5, we construct a diagram of Picard stacks

EG

Hθ
))

Hφ

66
�� ��
�� T EF ,

where T is a natural transformation. For any object (a, g, b) in EG, T(a,g,b) is a morphism
in EF defined by

F (a)

fθ

$$

fφ

::
�� ��
�� 1g∗Γa b,

where

F (a)

θa
((

φa

66
�� ��
�� Γa G(a) ,

and Hθ(a, g, b) = (a, fθ, b), Hφ(a, g, b) = (a, fφ, b) . By [3, Theorem 5.3.6], the natural
transformation T corresponds to an isomorphism t between the centers of the butterflies
associated to Hθ and Hφ.
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E0
G

δEG

��

κφ

&&MMMMMMMMMMMMM
κθ // Nθ

=====

θ

��============
�����

ρθ

��������������

E−1
F

δEF

��

ıφ

xxppppppppppppp

ıθoo

Nφ

φ
&&NNNNNNNNNNNNN

ρφ
xxqqqqqqqqqqqqq

t

OO�
�
�

E0
G

πEG

��

E0
F

πEF

��
EG

Hθ
--

Hφ

11 EF⇓ T

(6.2.19)

t induces an isomorphism of complexes t•.

K•φ

t•

��

A−2 ×B−2 // PG ×E0
G
Nφ

id×t
��

// Nφ

t

��
K•θ A−2 ×B−2 // PG ×E0

G
Nθ // Nθ

The proof finishes by showing that all the regions in the diagram (5.2.2) commute. The
only regions, whose commutativity are non-trivial, are the triangles in the middle sharing
an edge marked by the isomorphism t•. They commute as well since in the diagram below

M•G A−2 ×B−2 // PG // E0
G

K•φ

rG,φ

OO

t•

��

A−2 ×B−2 // PG ×E0
G
Nφ

pr1

OO

id×t
��

// Nφ

ρφ

OO

t

��
K•θ

rG,θ

��

A−2 ×B−2 // PG ×E0
G
Nθ

pr1

��

// Nθ

ρθ
��

M•G A−2 ×B−2 // PG // E0
G

each column closes to a commutative triangle. This is immediate for the first two columns.
The triangle formed by the last column commutes as well, since it is a piece of the commu-
tative diagram (6.2.19).

For any two complexes of abelian sheaves A• and B•, the proofs of Lemmas 6.2.3 and
6.2.5 define us a 2-functor

2℘(A•,B•) : Frac(A•, B•) // Hom(A•, B•) (6.2.20)

between the bigroupoid Frac(A•, B•) and the 2-groupoid Hom(A•, B•) of additive 2-functors
between 2℘(A•) and 2℘(B•) considered as a bigroupoid. In fact, we have proved:
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Theorem 6.2.7. For any two complexes of abelian sheaves A• and B•, 2℘(A•,B•) is a
biequivalence of bigroupoids.

The trihomomorphism (6.1.1) extends to a trihomomorphism

2℘ : T[−2,0](S) // 2Pic(S) (6.2.21)

on the tricategory T[−2,0](S) as follows1: It sends any length 3 complex of abelian sheaves to
the associated Picard 2-stack. The biequivalence (6.2.20) defines it on 1-,2-,3-morphisms.

6.3 From Picard 2-Stacks to Complexes of Abelian Sheaves

In this Section, we show that for any Picard 2-stack P, there exists a length 3 complex
of abelian sheaves whose associated Picard 2-stack (see Section 4.5) is equivalent to P. Said
differently, we prove (Lemma 6.3.2) that the trifunctor (6.2.21) is essential surjectivity. This
proof depends on the following technical result, which is similar to Lemme 1.4.3 in [9]. We
give its proof in the Appendix (A.2.1).

Proposition 6.3.1. For any set E, denote by Z(E) the free abelian group generated by E.
Let C be a Picard 2-category and F0 : E→C be a set map. Then F0 extends to an additive
2-functor F : Z(E)→C where Z(E) is considered as a 2-category (trivially Picard).

Lemma 6.3.2. Let P be a Picard 2-stack, then there exists a complex of abelian sheaves A•

such that 2℘(A•) is biequivalent to P.

Proof. There is a construction analogous to the skeleton of categories. For any 2-category P,
we construct 2sk(P) a 2-category that has one object per equivalence class in P. We observe
that 2sk(P) is a full sub 2-category of P, that is the inclusion 2sk(P)→P is a biequivalence.
Let P be a Picard 2-stack. We note that Ob 2sk(P) : U→Ob(2sk(PU )) is a presheaf of sets.
We consider A0 the abelian sheaf over S associated to the presheaf {U→Z(Ob(2sk(PU )))}
where Z(Ob(2sk(PU ))) is the free abelian group associated to Ob(2sk(PU )). By Proposition
6.3.1, the inclusion i : Ob 2sk(P)→P extends to

πP : A0 //P

an essentially surjective additive 2-functor on A0.

Define A by the pullback diagram

A //

ΛA

��

0

��
A0

πP
// P

����
<D

(6.3.1)

1We commit an abuse of notation by calling both functors (6.1.1) and (6.2.21) by 2℘.
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of morphisms of Picard 2-stacks, which is similar to (4.6.2). Then, the sequence of Picard
2-stacks

A // A0 // P

is exact sequence in the sense of Section 4.6.

On the other hand, from Lemma 6.2.1, it follows that A is a Picard stack. Therefore
by [3, Proposition 8.3.2], there exists a morphism of abelian sheaves δA : A−2→A−1, where
A−2 is defined by the pullback diagram

A−2 //

δA

��

0

��
A−1

πA

// A

����
=E

(6.3.2)

and A := Tors(A−2, A−1).

Now putting the diagrams (6.3.1) and (6.3.2) together,

A−2 //

δA

��

0

��
A−1

πA

//

λA

%%

8
;

>
B

E
H

K

A

ΛA

��

//

����
=E

0

��
A0

πP
// P

����
;C

(6.3.3)

we have a diagram of Picard 2-stacks. It implies that A• : A−2 δA //A−1 λA //A0 is a
complex.

The Picard 2-stack associated to A•, that is 2℘(A•) := Tors(A , A0), verifies by defini-
tion the above diagram (see 4.6.4).

The biequivalence 2℘(A•) ' P is almost immediate. Essential surjectivity follows from
the definition of πP and equivalence of hom-categories from the fact that A0 and 0 pull back
to A over 2℘(A•) and over P.

6.4 The Main Theorem

Considering 2Pic(S) as a tricategory, our main result follows from Theorem 6.2.7 and
Lemma 6.3.2.

Theorem 6.4.1. The trihomomorphism (6.2.21) is a triequivalence.
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An immediate consequence of the Theorem 6.4.1, which was also the motivation for this
work, is the following.

Let 2Pic(S)[[ denote the category of Picard 2-stacks obtained from 2Pic(S) by ignoring
the modifications and taking as morphisms the equivalence classes of additive 2-functors.
Let D[−2,0](S) be the subcategory of the derived category of category of complexes of abelian
sheaves A• over S with H−i(A•) 6= 0 for i = 0, 1, 2. We deduce from Theorem 6.4.1 the
following, which generalizes Deligne’s result [9, Proposition 1.4.15] from Picard stacks to
Picard 2-stacks.

Corollary 6.4.2. The functor (6.2.21) induces an equivalence

2℘[[ : D[−2,0](S) //2Pic(S)[[ (6.4.1)

of categories.

Proof. It is enough to observe from the calculations in Section 5.2.2 that π0(Frac(A•, B•)) '
HomD[−2,0](S)(A•,B•). Since the objects of D[−2,0](S) are same as the objects of T[−2,0](S),
the essential surjectivity follows from the Lemma 6.3.2.
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CHAPTER 7

CONCLUSION

The purpose of this thesis is to generalize Deligne’s characterization theorem for Picard
stacks which is recalled in Chapter 3 to Picard 2-stacks. For that, we closely follow Deligne’s
proof in [9].

In Chapter 4, we first define the 3-category 2Pic(S) of Picard 2-stacks. Our definition of
Picard 2-stacks (4.4.5) differs from the usual definition (see [7, Chapter 8]). The difference
is that, we assume the multiplication by an object in a Picard 2-category is a biequivalence.
This implies existence of a unit object in the sense of Joyal-Kock [18] and an inverse of an
object. The advantage of this definition is that we do not need to add any data about unit
objects or inverses to the definition of Picard 2-stack which therefore reduces significantly
the number of coherence conditions. This definition of Picard 2-stacks also makes easier
to define the morphism of Picard 2-stacks (4.4.5). In Chapter 5, we introduce length 3
complexes of abelian sheaves and their tricategory T[−2,0](S). In Chapter 6, we show that
the tricategory T[−2,0](S) is triequivalent to the 3-category 2Pic(S) (Theorem 6.4.1).

We want to conclude this thesis with an informal discussion of stack versions of some of
our results. We will assume that all structures are strict unless otherwise stated. Through-
out the thesis, we dealt with 2- and 3-categories and their weakened versions bi- and tri-
categories. They can be stackified.

2-stacks over a site are well known [7]. The collection of 2-stacks over S, denoted
by 2Stack(S), comprise a 3-category structure. We can consider the fibered 3-category
2Stack(S), whose fiber over U is the 3-category 2Stack(S/U) of 2-stacks over S/U . In [7,
Remark 1.12], Breen claims that 2Stack(S) is a 3-stack. Hirschowitz and Simpson in [17],
generalize this result to weak n-stacks.

Theorem. [17, Théorème 20.5] The weak (n+ 1)-prestack of weak n-stacks nWStack(S)
is a weak (n+ 1)-stack over S.

We can use the above facts to deduce that the 3-prestack of Picard 2-stacks 2Pic(S)
with fibers 2Pic(S)(S/U) over U is a 3-stack.

Claim. Hom(A•, B•) fibered over S in 2-groupoids is a 2-stack where for any U ∈ S, the 2-
groupoid Hom(A•|U , B

•
|U ) of additive 2-functors from 2℘(A•)|U to 2℘(B•)|U defines the fiber

over U .

We have also fibered analogs for each hom-bicategory Frac(A•, B•) and for T[−2,0](S).
It follows from the above claim and Theorem 6.2.7 that the bi-prestack Frac(A•, B•) of
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fractions from A• to B• with fibers defined by Frac(A•|U , B
•
|U ) is a bistack. Then, once an

appropriate notion of 3-descent has been specified and all descent data are shown to be
effective, we conclude by the characterization proposition [17, Proposition 10.2] for n-stacks
that the tri-prestack of complexes T[−2,0](S) with fibers T[−2,0](S)(S/U) is a tristack. The
characterization proposition cited above briefly says that P is an n-stack over S if and only
if all descent data are effective and for any X,Y objects of PU , HomPU (X,Y ) is an n− 1
stack over S/U .

Remark 7.0.3. The characterization proposition in [17, Proposition 10.2] is originally enounced
for Segal n-categories, n-prestacks, and n-stacks. But again in the same paper, it has been
remarked that the proposition holds for non Segal structures [17, §20] where in this case,
the weak structure is assumed to be the one defined by Tamsamani. Its definition can be
found in [31] and [32]. However, we are being very informal and not discussing here the
connection of the weak structure of our categories, pre-stacks and, stacks with the ones
mentioned above.

Finally, we define the trihomomorphism of tristacks by localizing the triequivalence
(6.2.21).

T[−2,0](S) //2Pic(S) , (7.0.1)

where 2Pic(S) is considered naturally as a tristack. We deduce then its stack analog

Theorem 7.0.4. (7.0.1) is a triequivalence of tristacks.
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APPENDIX A

TECHNICAL LEMMAS

A.1 Lemma 1

In the appendix we give the proof of two technical lemmas.

Lemma A.1.1. Let P be a Picard 2-stack and A,B be two abelian sheaves with additive
2-functors φ : A // P and ψ : B // P . Then A×P B is a Picard stack.

Proof. The fibered category A×P B with fibers (A×P B)|U consisting of

• objects (a, f, b), where a ∈ A(U), b ∈ B(U), and f : φ(a)→ψ(b) is a 1-morphism in
PU ;

• morphisms (a, f, α, g, b), where φ(a)

f
**

g
44

�� ��
�� α ψ(b) is a 2-morphism in PU ;

is a prestack since for any U ∈ S, 1-morphisms of P form a stack over S/U . It is in fact a
stack.

Let ((Ui→U), (ai, fi, bi), αi,j)i,j∈I be a descent datum with (Ui→U)i∈I a covering of U ,
(ai, fi, bi) an object in (A×PB)Ui and αi,j a 1-morphism in (A×PB)Uij between (aj , fj , bj)|Uij
and (ai, fi, bi)|Uij . Since ai|Uij = aj|Uij , bi|Uij = bj|Uij and A and B are sheaves, there
exist a ∈ A(U) and b ∈ B(U) such that a|Ui = ai and b|Ui = bi. Then the collection
((Ui→U), fi, αi,j)i,j∈I satisfies the descent in Hom(φ(a), ψ(b)), which is effective since P is a
Picard 2-stack. That is, there exists f ∈ Hom(φ(a), ψ(b)) and βi : f|Ui⇒fi compatible with
αi,j such that for all i ∈ I, (ai, f|Ui , βi, fi, bi) is a morphism from (a, f, b)|Ui to (ai, fi, bi).
Thus, the descent ((Ui→U), (ai, fi, bi), αi,j)i,j∈I is effective.

Next, we show that A ×P B is Picard. Let a and c represent the associativity and
commutativity constraints in P. According to the definition (3.1.1), the Picard structure is
given by

1. a 2-functor ⊗ : A×P B ×A×P B //A×P B defined as

(a1, f1, b1)⊗ (a2, f2, b2) := (a1 + a2, f1f2, b1 + b2),
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where f1f2 is the morphism that makes the diagram

φ(a1)⊗P φ(a2)

��

f1⊗Pf2 // ψ(b1)⊗P ψ(b2)

��
φ(a1 + a2)

f1f2

// ψ(b1 + b2)

����
CKNm

(A.1.1)

commute up to a 2-isomorphism Nm.

2. a functorial isomorphism a

(A×P B)3

1×⊗

��

⊗×1 //





�	 a

(A×P B)2

⊗

��
(A×P B)2

⊗
// A×P B

such that for any three objects (ai, fi, bi){1, 2, 3}, a1,2,3 is the associator morphism

a1,2,3 := (a1 + a2 + a3, f1(f2f3), αf1,f2,f3 , (f1f2)f3, b1 + b2 + b3),

where αf1,f2,f3 is defined as the 2-isomorphism of the bottom face that makes the
following cube commutative (we ignored ⊗P for compactness).

φ(a1)(φ(a2)φ(a3))

��
a

zzvvvvvvvvvvvvvvvvvvvvvvv

f1⊗P(f2⊗Pf3) // ψ(b1)(ψ(b2)ψ(b3))

��
a

zzvvvvvvvvvvvvvvvvvvvvvvv

φ(a1)φ(a2 + a3)

��

ψ(b1)ψ(b2 + b3)

��

(φ(a1)φ(a2))φ(a3)

��

(f1⊗Pf2)⊗Pf3

// (ψ(b1)ψ(b2))ψ(b3)

��
φ(a1 + a2)φ(a3)

��

ψ(b1 + b2)ψ(b3)

��

φ(a1 + a2 + a3)
f1(f2f3) //

=

yysssssssssssssssssssss

�����	 αf1,f2,f3

ψ(b1 + b2 + b3)

=

yysssssssssssssssssssss

φ(a1 + a2 + a3)
(f1f2)f3

// ψ(b1 + b2 + b3)
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The other 2-isomorphisms of the cube are, the left and right 2-isomorphisms represent
the compatibility of the associator of P respectively with the strict associators of A
and B(i.e. they are the 2-morphisms defined by the modifications ωφ and ωψ which
are similar to ωF in the definition 4.3.1), the back and front ones are of the form Nm,
the top one is of the form af1,f2,f3 : f1 ⊗P (f2 ⊗P f3)⇒(f1 ⊗P f2)⊗P f3.

3. a functorial isomorphism c

(A×P B)2 s //

⊗

��@@@@@@@@@@@@@@@@
(A×P B)2

⊗

��~~~~~~~~~~~~~~~~

A×P B

____ +3c

such that for any two objects (a1, f1, b1) and (a2, f2, b2), c1,2 is the morphism from
(a1, f1, b1)⊗ (a2, f2, b2) to (a2, f2, b2)⊗ (a1, f1, b1) defined by

c1,2 = (a1 + a2, f1f2, βf1,f2 , f2f1, b1 + b2),

where βf1,f2 is the 2-isomorphism of the bottom face of the commutative cube.

φ(a1)⊗P φ(a2)

c

vvlllllllllllll

f1⊗Pf2 //

��

ψ(b1)⊗P ψ(b2)

c

vvlllllllllllll

��

φ(a2)⊗P φ(a1)
f2⊗Pf1 //

��

ψ(b2)⊗P ψ(b1)

��

φ(a1 + a2)

�����
 βf1,f2

f1f2 //

=

vvlllllllllllll
ψ(b1 + b2)

=
vvlllllllllllll

φ(a1 + a2)
f2f1

// ψ(b1 + b2)

(A.1.2)
The other 2-isomorphisms of the cube are, the left and right 2-isomorphisms represent
the compatibility of the braiding of P respectively with the strict braidings of A and
B(i.e. they are the 2-morphisms defined by the modifications εφ and εψ which are
similar to εF in the definition 4.3.1), the front and back ones are of the form Nm, and
the top one is of the form cf1,f2 : f1 ⊗P f2⇒f2 ⊗P f1.

We need to verify that these data satisfy the condition given in definition (3.1.1).

(i) equivalence:Let (a, f, b) be an object in A×P B. We claim that

(a, f, b)⊗− : A×P B //A×P B
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is an equivalence. To show essential surjectivity, we need to find for any (x, g, y) object
in A×PB, an object (a′, f ′, b′) such that (a, f, b)⊗ (a′, f ′, b′) is isomorphic to (x, g, y).
Define a′ = x− a and b′ = b− a. Since f is a 1-morphism in P, by Lemma (4.1.3)

f ⊗P − : Hom(φ(a′), ψ(b′)) //Hom(φ(a)⊗P φ(a′), ψ(b)⊗P ψ(b′)) (A.1.3)

is an equivalence. We also have the equivalence

Hom(φ(a)⊗P φ(a′), ψ(b)⊗P ψ(b′)) //Hom(φ(x), ψ(y)) (A.1.4)

So we let f ′ be the inverse image of g ∈ Hom(φ(x), ψ(y)) under the composition (A.1.3)
and (A.1.4). To show (a, f, b)⊗− is fully-faithful, we need to show for any two objects
(a1, f1, b1) and (a2, f2, b2), the map

Hom((a1, f1, b1), (a2, f2, b2)) //Hom((a+ a1, ff1, b+ b1), (a+ a2, ff2, b+ b2))

is a bijection.

φ(a+ a1)

ff1

**

ff2

44

��

ψ(b+ b1)

��
φ(a)⊗P φ(a1)

f⊗Pf1

**

f⊗Pf2

44

��

ψ(b)⊗P ψ(b′)

��
φ(a1)

f1

**

f2

44 ψ(b1)

(A.1.5)

In the above 2-commutative cylinder, the 2-morphisms of the lateral faces of the top
half are of the form (A.1.1) and the 2-morphisms of the lateral faces of the bottom
half are uniquely defined by the fact that f ⊗ − is an equivalence. Therefore the 2-
morphisms of the top and bottom faces are in 1-1 correspondence which are elements in
the sets Hom((a1, f1, b1), (a2, f2, b2)) and Hom((a+a1, ff1, b+b1), (a+a2, ff2, b+b2)),
respectively.

(ii) Verifying the commutativity of the pentagon and the two hexagons is trivial.

(iii) To verify symmetry we need to show that the 2-morphism of the bottom face of the
diagram obtained by concatenation of the appropriate two cubes of the form (A.1.2)
is identity(the back face of one of the cubes overlaps with the front face of the other
cube). This follows from the fact that, 2-morphism of the top face of the concatenated
cube pastes to identity with the help of the 2-morphisms defined by the modification
of the form (4.1.1).
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(iv) The morphism from (a, f, b)⊗ (a, f, b) to itself is identity because the 2-morphism of
the top face of the diagram (A.1.2) pastes to identity with the help f the 2-morphism
defined by the modification of the form (4.1.2).

A.2 Lemma 2

Proposition A.2.1. For any set E, denote by Z(E) the free abelian group generated by E.
Let C be a Picard 2-category and F0 : E→C be a set map. Then F0 extends to an additive
2-functor F : Z(E)→C where Z(E) is considered as a 2-category (trivially Picard).

Proof. We assume that the set E is well-ordered and denote the order on E by �. In what
follows, we define

1. a 2-functor F : Z(E) //C ,

2. for any two words w1 and w2 in Z(E), a functorial 1-morphism λw1,w2

λw1,w2 : F (w1)⊗ F (w2) //F (w1 + w2) ,

3. for any three words w1, w2, and w3 in Z(E), a 2-morphism ψw1,w2,w3 (A.2.8),

4. for any two words w1 and w2 in Z(E), a 2-morphism φw1,w2 (A.2.10).

A.2.1 Definition of F

We construct the 2-functor F : Z(E)→C as follows:

• For any generator a ∈ E, Fa := F0a,

• For any generator a ∈ E, F (−a) := (Fa)∗, where (Fa)∗ is inverse of Fa in C,

• F (0) is the unit element in C, where 0 denotes the unit element in Z(E).

• For any word w in Z(E), we

– simplify w so that there are no cancelations and denote the simplified word by
wc,

– order the letters of wc from least to greatest and denote the simplified and ordered
word by wc,o

F (w) is defined by multiplying the letters of wc,o from left to right.

For instance let w = 2a + b − c − a − 2b. After cancelations and ordering the letters
wc,o = a− b− c and

F (w) = F (wc,o) = ((Fa⊗ (Fb)∗)⊗ Fc)
.

The order on the set E is needed since without the order two words that differ by the
position of letters would map to different objects in C although they are the same word in
Z(E). For the reasons of compactness, we use juxtaposition for the group operation ⊗ on
the 2-category C.
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A.2.2 Monoidal Case

The items (2), (3), and (4) describes the additive structure of the 2-functor F . We
first define them on the words that do not have negative coefficients. That is, they are
constructed first on the free abelian monoid N(E). In the next section A.2.3, we extend
their definition to the free abelian group Z(E).

Definition of λw1,w2. Let w1 = a1 + . . . + am and w2 = b1 + . . . + bn be two words
in N(E). The word w1 + w2 is defined by concatenation of w1 and w2 and then by an
(m,n)-shuffle so that the letters of w1 and w2 are ordered from least to greatest. We denote
w1 + w2 by c1 + . . .+ cm+n. From the definition of F ,

F (w1)⊗ F (w2) = (. . . ((Fa1Fa2)Fa3) . . . Fam)⊗ (. . . ((Fb1Fb2)Fb3) . . . F bn)(A.2.1)

F (w1 + w2) = (. . . ((Fc1Fc2)Fc3) . . . F cm+n) (A.2.2)

We define the functorial morphism λw1+w2 : F (w1) ⊗ F (w2)→F (w1 + w2) in two steps
as follows:

Step 1: Correct Bracketing

In this step, we define the morphism

(. . . ((Fa1Fa2)Fa3) . . . Fam)⊗ (. . . ((Fb1Fb2)Fb3) . . . F bn)→
((((. . . ((Fa1Fa2)Fa3) . . . Fam)Fb1)Fb2) . . . F bn),

(A.2.3)

which moves the pairs of parenthesis of F (w2) one by one to the left from the outer
most to the inner most without changing the place of parenthesis of F (w1). (A.2.3)
is composition of n− 1 many morphisms of the form

(. . . ((F (w1)(F (w′2)Fbi))Fbi+1) . . . F bn)→(. . . (((F (w1)F (w′2))Fbi)Fbi+1) . . . F bn),
(A.2.4)

where w′2 is a subword of w2.

Step 2: Ordering Letters

Once (A.2.3) is applied, the letters of w1 and w2 are parenthesized from left. Next,
we define the morphism

((((. . . ((Fa1Fa2)Fa3) . . . Fam)Fb1)Fb2) . . . F bn)→(. . . ((Fc1Fc2)Fc3) . . . F cm+n),
(A.2.5)

that shuffles the letters of w1 and w2 to order them from least to greatest, that is
c1 � c2 � . . . � cm+n.

The rule is as follows,

1. find the smallest letter of w2 in w1 +w2 such that it has a letter of w1 on its left
that is greater,

2. change their places. Depending on the position of the letters, there are two cases.
Either the letters are in the same parenthesis , then (A.2.5) simply permutes them

(. . . ((Fc1Fc2)Fc3) . . . F cm+n)→(. . . ((Fc2Fc1)Fc3) . . . F cm+n), (A.2.6)
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or they are in different pairs of parenthesis and (A.2.5) first groups them together
by moving the appropriate pair of parenthesis to the right, then permutes the
letters, and moves the pair of parenthesis moved to the right to the left, that is

((. . . ((((. . . (Fc1Fc2) . . .)Fck−1)Fck+1)Fck) . . .)Fcm+n)→
((. . . (((. . . (Fc1Fc2) . . .)Fck−1)(Fck+1Fck)) . . .)Fcm+n)→
((. . . (((. . . (Fc1Fc2) . . .)Fck−1)(FckFck+1)) . . .)Fcm+n)→
((. . . ((((. . . (Fc1Fc2) . . .)Fck−1)Fck)Fck+1) . . .)Fcm+n)

(A.2.7)

where ck is a letter of w2 in w1 + w2 with 1 < k < m+ n and ck−1 is a letter of
w1 such that ck ≺ ck−1.

We repeat the above process to every letter of w2 in w1 +w2. We define the morphism
(A.2.5) as composition of the morphisms of the form (A.2.6) or (A.2.7).

We can illustrate the map (A.2.5) by the lattice paths [12, Chapter 7.3D]. It is clear
that there is a 1-1 correspondence between the lattice paths from (0, 0) to (m,n)
and the (m,n)-shuffles. (A.2.2) can be seen as the lattice path corresponding to the
(m,n)-shuffle of the words w1, w2 that defines w1 + w2 and (A.2.1) as the lattice
path corresponding to the concatenation of the words w1 and w2 (i.e. the empty
(m,n)-shuffle). We denote these paths by Lw1+w2 and Lw1,w2 , respectively. From
this perspective, the map (A.2.5) can be thought as applying an (m,n)-shuffle to the
concatenation of the words w1 and w2.

(0, 0)

(m,n)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

a1 . . . am

b1

...

...

bn

Lattice Path Lw1,w2

-

(0, 0)

(m,n)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

a1 . . . am

Lattice Path Lw1+w2

b1

...

...

bn

The morphisms (A.2.6) and (A.2.7) describe the basic movement. They substitute
the point (i, j) on the lattice path with the point (i− 1, j+ 1) as shown in the picture
below.

-

(i− 1, j + 1)

(i− 1, j)

(i, j + 1)

(i, j)

(i− 1, j + 1)

(i− 1, j)

(i, j + 1)

(i, j)
• •

• •

• •

• •
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The overall movement is described by the morphism (A.2.5) where each step is a
basic movement. We define the following special point on the lattice path in order
to explain the mechanism of the movements. We call the point (i, j) on the lattice
path the corner point if the points (i− 1, j) and (i, j + 1) are on the lattice path, as
well. The morphism (A.2.5) picks at every step the corner point (i, j) with the least y-
coordinate that is not on the lattice path Lw1+w2 and substitutes it with (i−1, j+ 1).
We show in the picture below the transformation of the lattice path Lw1,w2 to the
lattice path Lw1+w2 .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

a1 . . . am

b1

...

...

bn

-

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

a1 . . . am
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The morphism (A.2.3) obtained in the first step followed by the morphism (A.2.5)
constructed in the second step defines λw1,w2 .

We remark that if all the letters of w1 are less than all the letters of w2, then w1 + w2

is obtained by concatenating the words w1 and w2 without the shuffle. That is Lw1+w2

coincides with Lw1,w2 . In this case λw1,w2 is of the form (A.2.3).
We also observe that the morphism λw1,w2 is a path in the 1-skeleton of permuto-

associahedron KΠm+n−1 where m and n are lengths of the words w1 and w2, respectively.
KΠm+n−1 is a polytope whose vertices are all possible orderings and groupings of strings
of length m + n and whose edges are all possible adjacent permutations and all possible
parenthesis movements. For more details about permuto-associahedron, we refer to [20] and
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[34].

Definition of ψw1,w2,w3. For any three words w1, w2, w3 in N(E), we define the 2-
morphism ψw1,w2,w3

((F (w1)F (w2))F (w3))

a

��

λw1,w2// F (w1 + w2)F (w3)
λw1+w2,w3 //

�����
 ψw1,w2,w3

F (w1 + w2 + w3)

(F (w1)(F (w2)F (w3)))
λw2,w3

// F (w1)F (w2 + w3)
λw1,w2+w3

// F (w1 + w2 + w3)

(A.2.8)

between the 1-morphisms λw1,w2+w3◦λw2,w3◦a and λw1+w2,w3◦λw1,w2 from ((F (w1)F (w2))F (w3))
to F (w1 +w2 +w3)1. These 1-morphisms are paths in the 1-skeleton of KΠm+n+p−1 where
n,m, and p are the lengths of the words w1, w2, and w3, respectively. This follows from the
fact that every map in the diagram (A.2.8) is in the 1-skeleton of KΠm+n+p−1.

In order to better understand these paths, we interpret them in terms of 3-dimensional
lattice paths. Assume that the letters of the words w1, w2, and w3 represent respectively
the unit intervals on the x, y, and z-axis. F (w1 + w2 + w3) can be represented by the
3-dimensional lattice path corresponding to the (m,n, p)-shuffle of the words w1, w2, w3

that defines w1 + w2 + w3 and ((F (w1)(F (w2))F (w3)) by the 3-dimensional lattice path
corresponding to the empty shuffle of the words w1, w2, w3. Therefore, the paths λw1,w2+w3 ◦
λw2,w3 ◦a and λw1+w2,w3 ◦λw1,w2 can be thought as two different ways of shuffling w1, w2, w3

to obtain w1 +w2 +w3. The path λw1,w2+w3 ◦λw2,w3 ◦ a first does the (n, p)-shuffle then the
(m,n)-shuffle. On the other hand the path λw1+w2,w3 ◦ λw1,w2 does the (m,n)-shuffle first,
then the (n, p)-shuffle. In this sense the 2-morphism ψw1,w2,w3 can be seen as the connection
between the two different ways of doing the (m,n, p)-shuffle.

To define the 2-morphism ψw1,w2,w3 , we need the following Lemmas .

Lemma A.2.2. Let w1 and w2 be two elements of N(E). λw2,w3 = c and λw1,w2 = id if
and only if λw1,w2+w3 ◦ λw2,w3 ◦ a = λw1+w2,w3 ◦ λw1,w2

Proof. We first remark that λw2,w3 = c and λw1,w2 = id is equivalent to assuming w2 and w3

are letters such that w2 is greater than w3 and w2 is greater than or equal to all letters of
w1. These facts imply that the map λw1+w2,w3 first permutes F (w2) and F (w3) then shuffles
F (w1) and F (w3) without changing the position of F (w2). Thus λw1,w2+w3 ◦ λw2,w3 ◦ a =
λw1+w2,w3 ◦ λw1,w2 .

In the other direction, we observe that the morphism a can be only part of the morphism
λw1,w2+w3 which means λw1,w2 = id. This requires w2 to be a letter greater than or equal to
all letters of w1 and λw1,w2+w3 ◦ λw2,w3 ◦ a = λw1+w2,w3 . We also observe that a parenthesis
movement caused by λw2,w3 effects only the places of the parenthesis around the letters of
w2 and w3 and such a movement can not be caused by λw1+w2,w3 . This means λw2,w3 does
not cause any parenthesis movements. Hence, we deduce that w3 is also a letter. If w2 � w3

then λw2,w3 and λw1+w2,w3 become identity morphisms and we obtain λw1,w2+w3 ◦ a = id
which is not possible. Therefore λw2,w3 should consist of a single permutation.

1We commit an abuse of notation in diagram (A.2.8). By λw1,w2 and λw2,w3 we mean λw1,w2 ⊗ idw3 and
idw1 ⊗ λw2,w3 , respectively.
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Lemma A.2.3. Let w1, w2, and w3 be three elements of N(E). Then the followings are
equivalent.

1. The path λw1+w2,w3 ◦ λw1,w2 is strictly included in λw1,w2+w3 ◦ λw2,w3 ◦ a. That is
V(w1,w2|w3) the vertex set of the path λw1+w2,w3◦λw1,w2 is strictly included in V(w1|w2,w3)

the vertex set of the path λw1,w2+w3 ◦ λw2,w3 ◦ a.

2. λw1,w2+w3 ◦ λw2,w3 = λw1+w2,w3 ◦ λw1,w2 ◦ a−1.

3. λw2,w3 = id.

Proof. It is clear that (2) implies (1).
(3) ⇒ (2): λw2,w3 = id is equivalent to assuming that both w2 and w3 are letters and

w2 ≺ w3. This requires F (w1)F (w2 + w3) to be of the form F (w1)(F (w2)F (w3)). Since all
the morphisms λ’s start with moving parenthesis to the left, λw1,w2+w3 starts exactly with
a−1. Therefore λw1,w2+w3 ◦ λw2,w3 = λw1+w2,w3 ◦ λw1,w2 ◦ a−1.

(1) ⇒ (3): In all the vertices that λw2,w3 pass through, F (w1) is grouped separately
from F (w2) and F (w3). Therefore any parenthesis movement or permutation that is
part of λw2,w3 does not change the parenthesis around F (w1). However, on the path
λw1+w2,w3 ◦ λw1,w2 the same movements that describe λw2,w3 are part of the morphism
λw1+w2,w3 . Since this path passes through the vertices that group F (w1) and F (w2), the
parenthesis movements and permutations change the parenthesis around F (w1). This con-
tradicts to the fact that λw1+w2,w3 ◦ λw1,w2 is included in λw1,w2+w3 ◦ λw2,w3 ◦ a.

We remark that the Lemma (A.2.3) can be also expressed as λw1+w2,w3 ◦λw1,w2 is strictly
included in λw1,w2+w3◦λw2,w3◦a if and only if V(w1|w2,w3) = V(w1,w2|w3)∪{(F (w1)(F (w2)F (w3)))}.

We can return to the definition of the 2-morphism ψw1,w2,w3 . By the Lemmas (A.2.2)
and (A.2.3), the paths λw1,w2+w3 ◦λw2,w3 ◦ a and λw1+w2,w3 ◦λw1,w2 are going to satisfy one
of the following three cases.

1. The paths may be the same. In this case, the 2-morphism ψw1,w2,w3 is identity.

2. The path λw1+w2,w3 ◦ λw1,w2 is strictly included in λw1,w2+w3 ◦ λw2,w3 ◦ a. In this case,
by Lemma (A.2.3), the 2-morphism ψw1,w2,w3 is aa−1⇒id.

3. The paths may enclose a 2-cell. This 2-cell is a tiling of pentagonal and rectangular
2-cells. The pentagonal 2-cells are either MacLane Pentagones or their derivatives
obtained by inverting the direction of an edge. The rectangular 2-cells are of the form

• a1 //

a2
��

•
a2
��

•
a1
// •

• a1 //

c1
��

•
c1
��

•
a1
// •

• c1 //

c2
��

•
c2
��

•
c1
// •

(A.2.9)

where a1, a2 are either leftward or rightward parenthesis movements and c1, c2 permute
adjacent objects. Rectangular 2-cells can be also derived from (A.2.9) by inverting
the direction of an edge. These 2-cells commute up to structural 2-morphisms defined
by the Picard structure of the 2-category C. The Theorem 3.3 in [29] implies that
these 2-morphisms compose in a unique way. We let ψw1,w2,w3 be this composition.

86



Definition of φw1,w2. The last piece of the additive structure of F is the 2-morphism
φw1,w2

F (w1)F (w2)

c

��

λw1,w2//

������ φw1,w2

F (w1 + w2)

F (w2)F (w1)
λw2,w1

// F (w2 + w1)

(A.2.10)

between the 1-morphisms λw2,w1 ◦ c and λw1,w2 from F (w1)F (w2) to F (w1 +w2) where w1

and w2 are any two words in N(E). We notice that the path λw2,w1◦c is not necessarily in the
1-skeleton of KΠm+n−1. The reason is that the braiding c is not an adjacent permutation
unless w1 and w2 are letters.

In the case where the words w1 and w2 are letters, φw1,w2 is defined by the table

w1 w2 φw1,w2

a a id

a b id⇒c2

b a id

where id⇒c2 is given by the Picard structure of the 2-category C.

Now, we assume that w1 and w2 are two words such that their sum of lengths ism+n ≥ 3.
The 2-morphism φw1,w2 is defined in the following way. We first transform the path λw2,w1◦c
to a path in the 1-skeleton of KΠm+n−1. Second we apply the process that defines ψw1,w2,w3

to the new path and the path λw1,w2 . φw1,w2 is then defined as the appropriate composition
of the 2-morphisms obtained at the first and the second step. Therefore to define φw1,w2 ,
it suffices to describe how we transform the path λw2,w1 ◦ c into a path in the 1-skeleton of
KΠm+n−1.

The main idea is to substitute the edge c that is not in the 1-skeleton by a sequence of
five other edges. This sequence is an alternating collection of three leftward or rightward
parenthesis movements and two braidings. The parenthesis movements are certainly in the
1-skeleton; however the braidings may not be. If they are not, then we substitute each of
those braidings by a sequence of five other edges as above. We keep substituting until all
the braidings become permutations of adjoint objects, therefore part of the 1-skeleton. We
know that the substitution process is going to terminate because after each substitution
braidings permute parenthesized objects with shorter length.

We describe this process on the sample w1 = b + e and w2 = a + c + d. The braiding
c permutes F (w1) and F (w2). First, we substitute c by the braidings c(a,c,d|e) and c(a,c,d|b).
c(a,c,d|e) permutes the parenthesized object ((FaFc)Fd) with Fe and c(a,c,d|b) permutes
((FaFc)Fd) with Fb. They are going to be substituted by c(d|e) and c(a,c|e) and by c(a,c|b)
and c(d|b), respectively. Since c(d|e) permutes Fd and Fe and c(d|b) permutes Fd and Fb,
they are edges in the 1-skeleton and therefore can not be substituted. In the diagram below,
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we illustrate the complete process of substituting c by adjacent permutations c(a|b), c(c|b),
c(d|b), c(a|e), c(c|e), and c(d|e) using lattice paths.

• • •

• • •

• • •

• • •
~

c

b e
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-
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@
@
@@R
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• • •

• • •

• • •

b e

a

c

d

-
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?
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@
@
@
@@R
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�
���
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�
�
�
���
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���
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• • •

• • •

• • •

• • •

b e

a

c

d

�
�
�
���

c(c|b)

This process defines a 2-morphism as follows. Substituting a braiding by an alternating
sequence of three leftward or rightward parenthesis movements and two braidings means
substituting an edge in a hexagonal 2-cell by the other five edges. Such hexagonal 2-cells
commute up to a 2-morphism given by the Picard structure of the 2-category C. The
appropriate composition of these 2-morphisms defines the 2-morphism of the first step.

88



A.2.3 Extending the Additive Structure to Free Abelian Gorup

Here we extend the additive structure of the 2-functor F to the free abelian group Z(E)
generated by the set E.

Extending λw1,w2. The extension of λw1,w2 , denoted by λ̃w1,w2 , to the words in Z(E)
should take into consideration the cancelations that might occur in w1 +w2. If w2 does not
have a letter that appears with an opposite sign in w1 then there aren’t any cancelations
in w1 + w2 and λ̃w1,w2 = λw1,w2 . Otherwise, λ̃w1,w2 orders the letters of w1 and w2 from
least to greatest, left parenthesizes, and does the cancelations starting with the image of
the least letter. That is λ̃w1,w2 is equal to post composition of λw1,w2 with the morphisms
of the form

(. . . (((F (w)Fci)(Fci)
∗)Fci+1) . . . F cn+m) // (. . . ((F (w)(Fci(Fci)

∗))Fci+1) . . . F cn+m) ED
BC

GF
invFci

@A
// (. . . ((F (w)I)Fci+1) . . . F cn+m) rF (w)

// (. . . (F (w)Fci+1) . . . F cn+m)

(A.2.11)
for every cancelation. In (A.2.11) w is a subword of w1+w2, I is a unit element in the Picard
2-category and invFci and rF (w) are structural morphisms due to the Picard structure of

the 2-category. By the Picard structure, we can also assume for simplicity that when λ̃w1,w2

orders letters from least to greatest the inverse of an object is always adjacent to the object
and it is on its left. We note that using λw1,w2 for the morphism that orders the letters of
w1 and w2 from least to greatest and left parenthesizes them is an abuse of notation. Here
λw1,w2 does not map to the object F (w1 + w2) but to an object that we denote F (w1,2).
F (w1,2) is product of the images of all letters in w1 and w2 parenthesized from the left,
ordered from least to greatest, and if there exists inverse of an object is placed on its left.
For instance, if w1 = b+ c and w2 = a− b, then

λw1,w2 : (FbFc)(Fa(Fb)∗) //(((FaFb)Fb)∗)Fc),

where F (w1,2) = ((FaFb)(Fb)∗)Fc). Thus λ̃w1,w2 can be expressed as composition of

F (w1)F (w2)
λw1,w2 //F (w1,2)

τw1,w2 //F (w1 + w2), (A.2.12)

where τw1,w2 is composition of morphisms of the form (A.2.11) for every cancelation. We
remark that λw1,w2 as in the monoidal case defines a path in the 1-skeleton of the permuto-

associahedron KΠm+n−1. However if there are cancelations, λ̃w1,w2 is not a path in the
1-skeleton of KΠm+n−1.

Extending ψw1,w2,w3. The extension of ψw1,w2,w3 , denoted by ψ̃w1,w2,w3 , to the words
w1, w2, w3 in Z(E) is a 2-morphism
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((F (w1)F (w2))F (w3))

a

��

λ̃w1,w2// F (w1 + w2)F (w3)
λ̃w1+w2,w3 //

�����
 ψ̃w1,w2,w3

F (w1 + w2 + w3)

(F (w1)(F (w2)F (w3)))
λ̃w2,w3

// F (w1)F (w2 + w3)
λ̃w1,w2+w3

// F (w1 + w2 + w3)

(A.2.13)

between the 1-morphisms λ̃w1,w2+w3 ◦ λ̃w2,w3 ◦ a and λ̃w1+w2,w3 ◦ λ̃w1,w2 . As noticed, these
paths may not be in the 1-skeleton of KΠm+n+p−1. However, there exists a vertex V0 of

the permuto-associahedron KΠm+n+p−1 that both paths λ̃w1+w2,w3 ◦ λ̃w1,w2 and λ̃w1,w2+w3 ◦
λ̃w2,w3 pass through it. Therefore the diagram (A.2.13) can be rewritten as:

((F (w1)F (w2))F (w3))

a

��

//

������ ψ′w1,w2,w3

V0
// F (w1 + w2)F (w3)

λ̃w1+w2,w3 //

�����
 ρw1,w2,w3

F (w1 + w2 + w3)

(F (w1)(F (w2)F (w3))) // V0
// F (w1)F (w2 + w3)

λ̃w1,w2+w3

// F (w1 + w2 + w3)

(A.2.14)
where both vertical morphisms to V0 are paths on KΠm+n+p−1. So we compute ψ′w1,w2,w3

in
the same way as ψ of the monoidal case. After the vertex V0, the morphisms on the diagram
(A.2.14) are not any more in the 1-skeleton of KΠm+n+p−1 because of the cancelations. The
region between the two paths from V0 to F (w1 +w2 +w3) can be filled with the structural
2-morphisms of the Picard structure in particular involving the ones related with inverse
and unit objects. The 2-morphism ρw1,w2,w3 is then the unique pasting of those structural
2-morphisms. Hence, we define ψw1,w2,w3 as pasting of ψ′w1,w2,w3

and ρw1,w2,w3 .

Extending φw1,w2. The extension of φw1,w2 , denoted by φ̃w1,w2 is a 2-morphism

F (w1)F (w2)

c

��

λ̃w1,w2//

������ φ̃w1,w2

F (w1 + w2)

F (w2)F (w1)
λ̃w2,w1

// F (w2 + w1)

(A.2.15)

between the 1-morphisms λ̃w2,w1 ◦ c and λ̃w1,w2 from F (w1)F (w2) to F (w1 +w2) where w1

and w2 are any two words in Z(E). We rewrite the diagram (A.2.15) by expressing λ̃w1,w2

and λ̃w2,w1 as compositions using (A.2.12).

F (w1)F (w2)

c

��

λw1,w2//

������ φ′w1,w2

F (w1,2)
τw1,w2// F (w1 + w2)

F (w2)F (w1)
λw2,w1

// F (w2,1) τw2,w1

//// F (w2 + w1)

(A.2.16)
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The square on the left commutes up to the 2-morphism φ′w1,w2
obtained inthe same way as

φ of the monoidal case. The square on the right commutes since F (w1,2) = F (w2,1) and

therefore τw1,w2 = τw2,w1 . Hence, φ̃w1,w2 is the whiskering φ′w1,w2
∗ τw1,w2 .
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[16] Monique Hakim. Topos annelés et schémas relatifs. Springer-Verlag, Berlin, 1972.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 64.

[17] Andre Hirschowitz and Carlos Simpson. Descente pour les n-champs (descent for n-
stacks), 1998.

[18] Andre Joyal and Joachim Kock. Coherence for weak units, 2009.

[19] M. M. Kapranov and V. A. Voevodsky. 2-categories and Zamolodchikov tetrahe-
dra equations. In Algebraic groups and their generalizations: quantum and infinite-
dimensional methods (University Park, PA, 1991), volume 56 of Proc. Sympos. Pure
Math., pages 177–259. Amer. Math. Soc., Providence, RI, 1994.

[20] Mikhail M. Kapranov. The permutoassociahedron, Mac Lane’s coherence theorem and
asymptotic zones for the KZ equation. J. Pure Appl. Algebra, 85(2):119–142, 1993.

[21] Joachim Kock. Elementary remarks on units in monoidal categories. Math. Proc.
Cambridge Philos. Soc., 144(1):53–76, 2008.

[22] Stephen Lack. Bicat is not triequivalent to Gray. Theory Appl. Categ., 18:No. 1, 1–3
(electronic), 2007.

[23] Gérard Laumon and Laurent Moret-Bailly. Champs algébriques, volume 39 of Ergeb-
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