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An Overview

e Convex projective geometry is a generalization of
hyperbolic geometry.

¢ Retains many features of hyperbolic geometry.
* No Mostow rigidity.
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Projective Space

There is a natural action of R* on R"*'\ {0} by scaling.
Let RP" = P(R""\{0}) be the quotient of this action.
The automorphism group of RP" is

PGLp1(R) := GLp11(R)/R*.

Let H be a hyperplane in R"*1,

H gives rise to a splitting of RP" = R” LIRP"~! into an
affine part and an ideal part (homogeneous coordinates).




The Klein Model

o Let (x,y) =X1y1 + ...+ Xo¥n — Xnt1Yn+1
be standard form of signature (n,1) on R"*1.

o Let C = {x ¢ R"|(x, x) < 0}
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tangent to the 0C




Upper Half Space Model
If we choose homogenous coordinates defined by a plane
tangent to the 0C

Parabolic translations fixing oo will be of the form

1 v Ly
0 ln_1 V
0 O 1
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Nice Properties of Hyperbolic Space

e Convex: Intersection with projective lines is connected.

e Properly Convex: Convex and closure embeds in affine
space < Disjoint from some projective hyperplane.

« Strictly Convex: Properly convex and boundary contains
no non-trivial line segments.

Convex projective geometry focuses on the geometry of
properly (and sometimes strictly) convex domains.
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Convex Projective Manifolds

Let M" be a manifold with 71(M) = I'. A convex projective
structure on M is a pair (€2, p) such that

1. Q is a properly convex open subset of RP".
2. p: T — PGL(Q) is a discrete and faithful representation.
3. M=Q/p(l)

e pis called the holonomy of the structure
e The structure is strictly convex if Q is strictly convex

o Complete hyperbolic manifolds are examples of strictly
convex projective manifolds.
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Projective Equivalence

Suppose that M" = Q;/p;i(I") for i = 1,2, then (Q4, p1) and
(Q2, p2) are projectively equivalent if there exists
h € PGLp;1(R) such that h(Q21) = Q5 and for each v € m1(M)

Q1 i>Qg

P1 (’Y)i lﬂz(w)
h

Q1 *>Qg

o If (24, p1) and (2, po) are projectively equivalent then
p2(T) = hpy (M)A~

e Projective equivalence classes of M are in bijective
correspondence with p : ' — PGL,; 1(R) that are faithful,
discrete, and preserve a properly convex set.
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Rigidity and Flexibility

Let M be a finite volume hyperbolic 3-manifold. By Mostow
rigidity, there is a distinguished projective equivalence class
containing the complete hyperbolic structure on M.

Questions

1. Are there other projective equivalence classes?
Yes in certain cases.

¢ Bending (Johnson-Millson)
¢ Flexing (Cooper-Long-Thistlethwaite)
e Surgery on rigid knots (Heusener-Porti,B)

2. How do we know if they exist in general?
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The Closed Case

Theorem 1 (Koszul)

Let M be a closed 3-manifold and py be the holonomy of a
properly convex structure on M. If p; is sufficiently close to pg in
Hom(I", PGL4(R)) then p; is the holonomy of a convex projective
structure on M

» Small deformations of holonomy correspond to small
deformations of the convex projective structure

e Space of convex projective structures is open inside of
Hom(I", PGL4(R)).
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Non-Compact Case

Let M is a non-compact finite volume hyperbolic 3-manifold and
let pg be the holonomy of the complete hyperbolic structure.

e There are representations near pg that are not discrete and
non-faithful (Dehn surgery space).

» We need to control the behavior near the boundary of M in
order to get an analogue of Theorem 1.
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Non-Compact Case

Let M be an orientable, non-compact, finite volume hyperbolic
3-manifold, then M = My Li; C;, where My is compact and

C = T2 x [1,00).

Theorem 2 (Cooper-Long)

Let M be as above and pg the holonomy of the complete
hyperbolic structure on M. Let p; € Hom(I', PGL4(R)) such that

1. p¢ is sufficiently close to pg in Hom(I', PGL4(R))

2. For each cusp C, the restriction of p; to 71(C) is the
holonomy of a properly convex structure on C that is
sufficiently close to the hyperbolic structure on C coming
from pg.

Then p; is the holonomy of a properly convex structure on M.



Figure-8 Deformations

Let M be the figure-8 knot complement and I' = 71(M). Then
I = (o, Blaw = wp), where a and 5 are meridians and

w=B"TaBa".



Figure-8 Deformations

Theorem 3 (B)
There is a family p; of nonconjugate representations of I' into
PGL4(R).
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Figure-8 Deformations
Let 1 (OM) = (u, \). For t # 1, after conjugation
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Figure-8 Deformations
Let 1 (OM) = (u, \). For t # 1, after conjugation

1.0 b(t) Zb(t)? 1 0
o1 0 0 W |0 e
00 O 1 0 0

where a(t) — 0 and b(t) —» 0as t — .
(pt(1), pt(N)) preserves a properly convex domain

Cross sections are affine tori.
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Figure-8 Deformations
We can further conjugate to prevent this collapse so that
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Figure-8 Deformations

Theorem 4 (B-Cooper-Long)

The representations p; are holonomies of convex projective
structrures on the figure-8 knot complement.



