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Geometric Topology
A biased and oversimplified viewpoint

Let Mn be a closed, orientable, smooth n-manifold.

Dichotomy

High dimensions (n ě 5)

• Lots of room to move
around

• Algebra determines
topology

Low dimensions (n ď 4)

• Not as much room
• Geometry more important
• Dimension 4 is weird

For this talk we typically assume n “ 2 or 3.
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From topology to algebra and geometry

Let M be a closed orientable manifold.
Topology

• Forgets structure • Adds structure
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Quantitative questions

Given M we may ask...

• What is the rank of H1pMq?
• How many 5-fold covers of M are there?
• What is the volume of M?
• How many/what sorts of interesting surfaces live in M?
• How many curves of length at most 10 are there?

A triangulation of M helps answer these questions by providing
a combinatorial description of M.

Even better, answering these questions is algorithmic
A computer can do it for you!!
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Simplices

An n-simplex is given by

∆n “

#

pc1, . . . , cn`1q P Rn`1 | ci ě 0,
ÿ

i

ci “ 1

+
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Faces

A face of an n-simplex is obtained by restricting a coordinate to
zero
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Face pairings

Let ∆̂ “ t∆n
1, . . . ,∆

n
ku (Disjoint union of n-simplices)

A collection Φ of orientation reversing affine maps between
faces of simplices in ∆̂ is a face pairing if
• φ P Φ iff φ´1 P Φ

• every face of every simplex in ∆̂ is the domain of a unique
φ P Φ.

Let M̂ :“ ∆̂{Φ (a triangulated pseudo-manifold)
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Pseudo-manifolds

M̂ is almost, but not quite, a manifold.

M̂ may contain a “small” subset of non-manifold points
(they live in the pn ´ 3q-skeleton)

M :“ M̂z(n-3)-skeleton is a (non-compact) manifold

If n “ 2 then M “ M̂ and if n “ 3 then M “ M̂ztverticesu

of boundaries ⌃
⇡! C = @M and ⌃�i

⇡! C� = @� are related by a lattice symplectic

reduction,

H�
1 (⌃, Z) ' �N

i=1H
�
1 (⌃�i , Z)//G (modulo K-torsion) , (1.1)

where G is a certain isotropic subgroup of gluing cycles. Setting up all the right structure

and definitions needed to understand (1.1) and the non-abelianization map that relates (1.1)

to a statement about gluing equations is a little tricky. In this paper, we will provide the

necessary definitions in the case K = 2, i.e. for spaces of framed flat PGL(2, C) connections.

Once the definitions are in place, all proofs are elementary.

We now describe our constructions and main results in a little more detail.

1.1 Symplectic structures from homology

Figure 1. Truncated tetrahe-

dron

To generalize the notion of an ideal triangulation, we work

with a class of “framed” 3-manifolds (Section 2.3). They

are oriented manifolds M that can be constructed by gluing

together pairs of big, hexagonal faces of truncated tetrahedra

(Figure 1). We call this a triangulation t of M . A framed

3-manifold has its boundary C = @M split into several parts

C = Cbig [ Csmall [ Cdef . The “big” boundary Cbig is tiled by

unglued hexagonal tetrahedron faces (we call this tiling a 2d

ideal triangulation t2d), while the “small” boundary Csmall is

tiled by the small triangular faces of truncated tetrahedra.

If only interiors of some tetrahedron faces are glued there

may be also be a “defect” boundary Cdef , consisting of annuli

around unglued edges.

One example of a framed 3-manifold is the tetrahedron � itself. Its big boundary is a 4-

holed sphere and it small boundary contains four discs that fill in the holes. Another example

is a cusped hyperbolic manifold, such as a knot complement M = S3\K. Its small boundary

consists of a torus T 2 at each cusp, and its big boundary is empty. (An ideal hyperbolic

triangulation of M induces a triangulation t as a framed 3-manifold, with @M tiled by

truncated vertices of tetrahedra.) A closed hyperbolic 3-manifold with a spun triangulation

[11] (cf. [43]) is a framed 3-manifold whose boundary only contains small spheres, at the

vertices of the spun triangulation. Taking either the cusped or closed hyperbolic examples

and deleting all (big) edges of the triangulation t produces framed 3-manifolds with with

defects, Cdef 6= ↵. See also Figures 5–6 on page 14.

Given a framed 3-manifold M , there exists a canonical two-fold branched cover of its

boundary ⌃
⇡! C. The cover can be constructed by placing a branch point in every face of

a triangulation t2d of Cbig, and branch cuts along a trivalent graph dual to the triangulation

t2d (Figure 8, page 15), as well as along the noncontractible cycles of Cdef . It turns out that

the topological type of the cover is independent of the choice of triangulation used to define

it (Lemma 1).

– 4 –

• The boundary of a
neighborhood of a vertex is
a triangulated surface

• Need not be a sphere!
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Examples
Torus
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Examples
Figure-eight complement
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The dual graph

We can build an embedded (multi)-graph Γ with
• a vertex for each simplex of M
• and edge if two simplices are glued along a face.

Γ is called the dual graph of M.
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Generators

Every curve in M can be homotoped onto Γ

Inclusion ι : Γ Ñ M gives ι˚ : π1pΓq� π1pMq.

Generators for π1pΓq give generators for π1pMq
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Relations
ι˚ not an isomorphism
(There are some “obvious” elements in the kernel)

These are all the relations, so

π1pMq “ xα, β | αβα´1β´1y
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Summary

In general
• Dual graph gives generators for π1pMq
• Codimension 2 cells give relations for π1pMq

(vertices for n “ 2, edges for n “ 3)

Another Example

π1pMq “ xα, β, γ | αβ´1α´1βγ´1, γαγ´1β´1y

so H1pMq “ Z



Motivation Triangulations Calculating π1pMq Building hyperbolic metrics Recent work

Summary

In general
• Dual graph gives generators for π1pMq
• Codimension 2 cells give relations for π1pMq

(vertices for n “ 2, edges for n “ 3)

Another Example

π1pMq “ xα, β, γ | αβ´1α´1βγ´1, γαγ´1β´1y

so H1pMq “ Z



Motivation Triangulations Calculating π1pMq Building hyperbolic metrics Recent work

Summary

In general
• Dual graph gives generators for π1pMq
• Codimension 2 cells give relations for π1pMq

(vertices for n “ 2, edges for n “ 3)

Another Example

π1pMq “ xα, β, γ | αβ´1α´1βγ´1, γαγ´1β´1y

so H1pMq “ Z



Motivation Triangulations Calculating π1pMq Building hyperbolic metrics Recent work

Summary

In general
• Dual graph gives generators for π1pMq
• Codimension 2 cells give relations for π1pMq

(vertices for n “ 2, edges for n “ 3)

Another Example

π1pMq “ xα, β, γ | αβ´1α´1βγ´1, γαγ´1β´1y

so H1pMq “ Z



Motivation Triangulations Calculating π1pMq Building hyperbolic metrics Recent work

Summary

In general
• Dual graph gives generators for π1pMq
• Codimension 2 cells give relations for π1pMq

(vertices for n “ 2, edges for n “ 3)

Another Example

π1pMq “ xα, β, γ | αβ´1α´1βγ´1, γαγ´1β´1y

so H1pMq “ Z



Motivation Triangulations Calculating π1pMq Building hyperbolic metrics Recent work

Motivation

Triangulations

Calculating π1pMq

Building hyperbolic metrics

Recent work



Motivation Triangulations Calculating π1pMq Building hyperbolic metrics Recent work

Metrics on surfaces

Let Σg be a surface of genus g. We want to build a nice metric
on Σg

• g “ 0: Σg – S2 (spherical metric)
• g “ 1: Σg – T 2 (Euclidean metric)
• g ě 2: Σg admits a hyperbolic metric (Lots of them!)
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Hyperbolic 2-space
A crash course

• H2 – B2

• BH2 – S1 – RY t8u
• G “ PSL2pRq :“ SL2pRq{t˘Iu
• G acts on BH2 via

ˆ

a b
c d

˙

¨ x “
ax ` b
cx ` d

• G acts simply transitively on
triples of distinct points in BH2
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Hyperbolic 2-space

• G ñ BH2 induces G ñ H2

• There is G-invariant metric H2

• G “ Isom`
pH2q

• Geodesics in this metric are
straight lines
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Pair of pants
A toy example

Triangulate a pair of pants, P, using two ideal (no vertices)
triangles

Decorate the edges of P with positive real numbers
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Pair of pants
Get a tiling in H2.

Metric on H2 pulls back to a metric on P!
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Pair of pants
Get a tiling in H2.

Metric on H2 pulls back to a metric on P!

Triangles disjoint ô x ą 0
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Pair of pants

This metric is typically not complete
Metric completion is closed pair of pants with geodesic
boundary

tpx , y , zq PR3
ą0u

“ – “

tPants with boundary lengths α, β, γ ą 0u

(Thurston’s shear coordinates)
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Other surfaces

Let S be a closed surface of genus g ě 2.

Decompose S into pants by cutting along 3g ´ 3 curves

• Each pants has 3-dims of
metrics

• Metric can be glued if
“cuff” lengths match

• Lots of metrics on S!
T pSq“ “ ”thyperbolic metrics on Su{isometries – R6g´6

(Teichmüller space)
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Metrics on 3-manifolds

Let M be a closed 3-manifold.

Fact: “Most” closed 3-manifolds admit hyperbolic metrics

We want to construct a hyperbolic metric on M.
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Dehn Filling

Let M 1 be a manifold with torus boundary and let D be a solid
torus.

We can build a closed manifold M by gluing M 1 and D along
their boundaries (Dehn filling)

(Lickorish-Wallace, 60’s): All closed 3-manifolds are obtained
via Dehn filling
Idea: Start by constructing metric on M 1
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Hyperbolic 3-space
A crash course

Story is similar to dimension 2

• H3 – B3

• BH3 – S2 – CY t8u
• G “ PSL2pCq :“

SL2pCq{t˘Iu
• G acts on BH3 via

ˆ

a b
c d

˙

¨ z “
az ` b
cz ` d

• G acts simply transitively
on triples of distinct points
in BH3

• G ñ BH3 induces G ñ H3
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Metrics for 3-manifolds
Let M be a 3-manifold with torus boundary components

Let M be its interior

Take an ideal triangulation of T of M.



Motivation Triangulations Calculating π1pMq Building hyperbolic metrics Recent work

Metrics for 3-manifolds
Let M be a 3-manifold with torus boundary components

Let M be its interior

Take an ideal triangulation of T of M.



Motivation Triangulations Calculating π1pMq Building hyperbolic metrics Recent work

Coordinates for tetrahedra

Take an ideal (no vertices) tetrahedron T

Label the edges of T with complex numbers

Labelling tells us how to build T in H3
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Tetrahedra in H3
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Gluing Tetrahedra

Tetrahedra can be glued along faces
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Thurston’s gluing equations

Given a collection of ideal tetrahedra, we can glue them
together around an edge

In order for the cycle to close up we need to impose an
equation
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Thurston’s gluing equations

Given an orientable 3-manifold M with an ideal triangulation T
we get a system of complex equations
(Thurston’s gluing equations)

• Variables:
• 1 variable for each tetrahedron of T

• Equations:
• 1 edge equation for each edge in T .

A solution to these equations is geometric if each component
has positive imaginary part (No inside out tetrahedra)
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Building the metric

Start with geometric solution to gluing equations
1. Build tetrahedra comprising M in H3

2. Pull back metric on H3 to M

• In general, metric is not complete
• For complete metric, we need more equations
• Some (but not all) incomplete structures can be completed

to give hyperbolic metrics on closed manifolds
(hyperbolic Dehn filling)

• (Thurston, 70’s): All but finitely many (topological) Dehn
fillings of M admit hyperbolic metrics
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Coordinates for projective strucures

Previous approach is constrained to build tetrahedra inscribed
in BH3.
In recent work with A. Casella we extend these techniques to
build arbitrary straight tetrahedra in R3 (really RP3)

Each tetrahedron comes with coordinates

• 6 Edge coordinates: 1 per
edge: Describe the shape
of the tetrahedron

• 4 Gluing coordinates: 1 per
face: Describe how this
tetrahedron will be glued to
adjacent tetrahedra.
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Projective gluing equations

Given an orientable 3-manifold M with an ideal triangulation T
we get a system of real equations

• Variables:
• 6 edge variables for each tetrahedron of T
• 4 face variables for each tetrahedron

• Equations:
• 2 face equations for each face
• 5 edge equations for each edge in T .

A solution to these equations is geometric if each component is
positive (No inside out tetrahedra)
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Some pictures

Families of solutions give rise to tilings of families of convex
regions in R3
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Thank you
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