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Geometric Topology

A biased and oversimplified viewpoint

Let M" be a closed, orientable, smooth n-manifold.
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Geometric Topology

A biased and oversimplified viewpoint

Let M" be a closed, orientable, smooth n-manifold.

Dichotomy
High dimensions (n > 5) Low dimensions (n < 4)
e Lots of room to move « Not as much room
around
o Algebra determines * (;.eomet.ry more important
topology e Dimension 4 is weird

For this talk we typically assume n = 2 or 3.
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From topology to algebra and geometry

Let M be a closed orientable manifold.

Topology
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From topology to algebra and geometry

Let M be a closed orientable manifold.

Topology

Algebra Geometry

» Forgets structure ¢ Adds structure
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Quantitative questions

Given M we may ask...
e What is the rank of H{(M)?
How many 5-fold covers of M are there?
What is the volume of M?
How many/what sorts of interesting surfaces live in M?
How many curves of length at most 10 are there?

A triangulation of M helps answer these questions by providing
a combinatorial description of M.

Even better, answering these questions is algorithmic
A computer can do it for you!!
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An n-simplex is given by

A" = (C1,...,Cn+1)€Rn+1|C,'>O, 20,':1

i
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A face of an n-simplex is obtained by restricting a coordinate to
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Let A = {A7,..., A} (Disjoint union of n-simplices)

A collection & of orientation reversing affine maps between
faces of simplices in A is a face pairing if
e pediffped
« every face of every simplex in A is the domain of a unique
¢ e o,
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Face pairings
Let A = {A7,..., A} (Disjoint union of n-simplices)
A collection & of orientation reversing affine maps between
faces of simplices in A is a face pairing if
e pediffped
« every face of every simplex in A is the domain of a unique

¢ e o,
Let M := A/CD (a triangulated pseudo-manifold)
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Pseudo-manifolds

M is almost, but not quite, a manifold.

M may contain a “small” subset of non-manifold points
(they live in the (n — 3)-skeleton)

e The boundary of a
neighborhood of a vertex is
a triangulated surface

¢ Need not be a sphere!
N
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Triangulations

Pseudo-manifolds

M is almost, but not quite, a manifold.

M may contain a “small” subset of non-manifold points
(they live in the (n — 3)-skeleton)

M := M\(n—S)—skeIeton is a (non-compact) manifold

If n = 2then M = M and if n = 3 then M = M\ {vertices}

e The boundary of a
neighborhood of a vertex is
a triangulated surface

¢ Need not be a sphere!

N
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Examples

Figure-eight complement
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The dual graph

We can build an embedded (multi)-graph I with

e a vertex for each simplex of M

¢ and edge if two simplices are glued along a face.
I is called the dual graph of M.

Recent work
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Generators

Every curve in M can be homotoped onto I

7

Vi

~

Inclusion ¢ : I — M gives v, : m (") — 71 (M).

Generators for 71 (I) give generators for 1 (M)
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Relations
s nNot an isomorphism
(There are some “obvious” elements in the kernel)
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Relations

(There are some “obvious” elements in the kernel)
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These are all the relations, so

(M) = (o, 8| aBa87T)
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Summary

In general
e Dual graph gives generators for w1 (M)

e Codimension 2 cells give relations for 71 (M)
(vertices for n = 2, edges for n = 3)

Another Example

(M) =, B,y [ aB a By a1 87T
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Summary

In general
e Dual graph gives generators for w1 (M)

e Codimension 2 cells give relations for 71 (M)
(vertices for n = 2, edges for n = 3)

Another Example

(M) =, B,y [ aB a By a1 87T
so Hi(M) =Z

Recent work
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Metrics on surfaces

Let >4 be a surface of genus g. We want to build a nice metric
on X,
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Metrics on surfaces

Let >4 be a surface of genus g. We want to build a nice metric
on X,

o g =0: ¥4 = S? (spherical metric)
o g =1: ¥4 = T? (Euclidean metric)
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Metrics on surfaces

Let >4 be a surface of genus g. We want to build a nice metric
on X,

o g =0: ¥4 = S? (spherical metric)
o g =1: ¥4 = T? (Euclidean metric)
e g > 2: ¥4 admits a hyperbolic metric (Lots of them!)
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Hyperbolic 2-space

A crash course

o H2 ~ B?
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Hyperbolic 2-space

A crash course

H* = B° v W
e JH? = S'" =R U {0}

G = PSLy(R) := SLo(R)/{+/}

G acts on 0H? via

-\
a b\ _ax+ b b
c d Cox+d

G acts simply transitively on .

triples of distinct points in JH? o
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Hyperbolic 2-space

e G —~ 0H? induces G —~ H?
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e There is G-invariant metric H?
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Hyperbolic 2-space

G —~ 0H? induces G —~ H?
There is G-invariant metric H?
G = Isom™ (H?)

Geodesics in this metric are
straight lines
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Pair of pants

A toy example
Triangulate a pair of pants, P, using two ideal (no vertices)
triangles

N

[ 77\




Building hyperbolic metrics

Pair of pants
A toy example
Triangulate a pair of pants, P, using two ideal (no vertices)
triangles
Decorate the edges of P with positive real numbers

s/{,‘V \
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Get a tiling in H2.

DA
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Pair of pants

This metric is typically not complete
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Pair of pants

This metric is typically not complete
Metric completion is closed pair of pants with geodesic
boundary

{(x.y,2) eR%,}

" “

{Pants with boundary lengths «, 3, v > 0}

\ (Thurston’s shear coordinates)
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Other surfaces

Let S be a closed surface of genus g > 2.
Decompose S into pants by cutting along 3g — 3 curves

e Each pants has 3-dims of
metrics

e Metric can be glued if
“cuff” lengths match

e Lots of metrics on S!
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Other surfaces

Let S be a closed surface of genus g > 2.
Decompose S into pants by cutting along 3g — 3 curves

e Each pants has 3-dims of
metrics

e Metric can be glued if
“cuff” lengths match

e Lots of metrics on S!

T(S)" =" {hyperbolic metrics on S} /isometries >~ R89—6
(Teichmdller space)
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Metrics on 3-manifolds

Let M be a closed 3-manifold.
Fact: “Most” closed 3-manifolds admit hyperbolic metrics

We want to construct a hyperbolic metric on M.

Recent work
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Dehn Filling

Let M’ be a manifold with torus boundary and let D be a solid
torus.
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Let M’ be a manifold with torus boundary and let D be a solid
torus.

We can build a closed manifold M by gluing M’ and D along
their boundaries (Dehn filling)

‘ 0

M
&
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(Lickorish-Wallace, 60’s): All closed 3-manifolds are obtained
via Dehn filling
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Dehn Filling

Let M’ be a manifold with torus boundary and let D be a solid
torus.

We can build a closed manifold M by gluing M’ and D along
their boundaries (Dehn filling)

4 0

M
&

(Lickorish-Wallace, 60’s): All closed 3-manifolds are obtained
via Dehn filling
Idea: Start by constructing metric on M’
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Hyperbolic 3-space
A crash course
Story is similar to dimension 2
o H3 = B3
o JH® = 8% =~ C u{w}
e G=PSL,(C) :=
SL2(C)/{£1}
e G acts on JH? via

a b\ 5 az+b
c d cz+d
e @G acts simply transitively

on triples of distinct points
in oH3

e G —~ 0HS® induces G —~ H?®
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Let M be a 3-manifold with torus boundary components

Let M be its interior

Recent work
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Metrics for 3-manifolds
Let M be a 3-manifold with torus boundary components
Let M be its interior

Take an ideal triangulation of 7 of M.

Recent work
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Coordinates for tetrahedra
Take an ideal (no vertices) tetrahedron T

Label the edges of T with complex numbers

Labelling tells us how to build T in H3
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Gluing Tetrahedra

Tetrahedra can be glued along faces

Recent work
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Thurston’s gluing equations

Given a collection of ideal tetrahedra, we can glue them
together around an edge

(0.9)

H3 21

Recent work
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Thurston’s gluing equations

Given a collection of ideal tetrahedra, we can glue them
together around an edge

o0 H3
Z1
Z122
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Thurston’s gluing equations

Given a collection of ideal tetrahedra, we can glue them
together around an edge

©9)

H3

2122

212223

Recent work
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Thurston’s gluing equations

Given a collection of ideal tetrahedra, we can glue them
together around an edge

o0
3
IH o
Z1%9

212223

0 21222324

Recent work
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Thurston’s gluing equations

Given a collection of ideal tetrahedra, we can glue them
together around an edge

00 Hﬂ3 2

2122

1= Z1R29Z2324%5

212223

0 21727374

In order for the cycle to close up we need to impose an
equation
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Thurston’s gluing equations

Given an orientable 3-manifold M with an ideal triangulation 7
we get a system of complex equations
(Thurston’s gluing equations)
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we get a system of complex equations
(Thurston’s gluing equations)
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e 1 variable for each tetrahedron of 7
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Thurston’s gluing equations

Given an orientable 3-manifold M with an ideal triangulation 7
we get a system of complex equations
(Thurston’s gluing equations)

e Variables:

¢ 1 variable for each tetrahedron of T
e Equations:

¢ 1 edge equation for each edge in 7.
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Thurston’s gluing equations

Given an orientable 3-manifold M with an ideal triangulation 7
we get a system of complex equations
(Thurston’s gluing equations)

e Variables:

¢ 1 variable for each tetrahedron of T
e Equations:

¢ 1 edge equation for each edge in 7.

A solution to these equations is geometric if each component
has positive imaginary part (No inside out tetrahedra)
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Building the metric

Start with geometric solution to gluing equations
1. Build tetrahedra comprising M in H?®
2. Pull back metric on H3 to M
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1. Build tetrahedra comprising M in H?®
2. Pull back metric on H3 to M

¢ In general, metric is not complete
e For complete metric, we need more equations

e Some (but not all) incomplete structures can be completed
to give hyperbolic metrics on closed manifolds
(hyperbolic Dehn filling)
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Building the metric

Start with geometric solution to gluing equations
1. Build tetrahedra comprising M in H?®
2. Pull back metric on H3 to M

¢ In general, metric is not complete
e For complete metric, we need more equations

e Some (but not all) incomplete structures can be completed
to give hyperbolic metrics on closed manifolds
(hyperbolic Dehn filling)

e (Thurston, 70’s): All but finitely many (topological) Dehn
fillings of M admit hyperbolic metrics
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Coordinates for projective strucures

Previous approach is constrained to build tetrahedra inscribed
in OH?.

In recent work with A. Casella we extend these techniques to
build arbitrary straight tetrahedra in R® (really RP?)
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Coordinates for projective strucures

Previous approach is constrained to build tetrahedra inscribed
in OH?.

In recent work with A. Casella we extend these techniques to
build arbitrary straight tetrahedra in R® (really RP?)

Each tetrahedron comes with coordinates

e 6 Edge coordinates: 1 per
edge: Describe the shape
of the tetrahedron

€13
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€23
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Coordinates for projective strucures

Previous approach is constrained to build tetrahedra inscribed
in OH3.

In recent work with A. Casella we extend these techniques to
build arbitrary straight tetrahedra in R? (really RP®)

Each tetrahedron comes with coordinates

e 6 Edge coordinates: 1 per
edge: Describe the shape
of the tetrahedron

€13
€12

g123

¢ 4 Gluing coordinates: 1 per
face: Describe how this
tetrahedron will be glued to
adjacent tetrahedra.

9243
€23
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Projective gluing equations

Given an orientable 3-manifold M with an ideal triangulation 7
we get a system of real equations
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Given an orientable 3-manifold M with an ideal triangulation 7
we get a system of real equations

e Variables:

e 6 edge variables for each tetrahedron of 7
e 4 face variables for each tetrahedron
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Projective gluing equations

Given an orientable 3-manifold M with an ideal triangulation 7
we get a system of real equations

e Variables:

e 6 edge variables for each tetrahedron of 7
e 4 face variables for each tetrahedron

e Equations:

o 2 face equations for each face
¢ 5 edge equations for each edge in 7.
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Projective gluing equations

Given an orientable 3-manifold M with an ideal triangulation 7
we get a system of real equations

e Variables:
e 6 edge variables for each tetrahedron of 7
e 4 face variables for each tetrahedron
e Equations:
o 2 face equations for each face
¢ 5 edge equations for each edge in 7.

A solution to these equations is geometric if each component is
positive (No inside out tetrahedra)



Recent work

Some pictures

Families of solutions give rise to tilings of families of convex
regions in R3
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