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Flexibility and Rigidity of Three-Dimensional Convex

Projective Structures

Samuel Aaron Ballas, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Alan W. Reid

This thesis investigates various rigidity and flexibility phenomena of

convex projective structures on hyperbolic manifolds, particularly in dimension

3. Let Mn be a finite volume hyperbolic n-manifold where n ≥ 3 and Γ be its

fundamental group. Mostow rigidity tells us that there is a unique conjugacy

class of discrete faithful representation of Γ into PSO(n, 1). In light of this

fact we examine when this representations can be non-trivially deformed into

the larger Lie group of PGLn+1(R) as well as the relationship between these

deformations and convex projective structures on M . Specifically, we show

that various two-bridge knots do not admit such deformations into PGL4(R)

satisfying certain boundary conditions. We subsequently use this result to

show that certain orbifold surgeries on amphicheiral knot complements do

admit deformations.

vi



Table of Contents

Acknowledgments v

Abstract vi

List of Figures ix

Chapter 1. Introduction 1

Chapter 2. Background 5

2.1 (G,X)-structures . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Representation and Character Varieties . . . . . . . . . 9

2.1.2 Deformation Spaces . . . . . . . . . . . . . . . . . . . . 10

2.2 Local and Infinitesimal Deformations . . . . . . . . . . . . . . 13

2.2.1 Infinitesimal Deformations . . . . . . . . . . . . . . . . 14

2.3 Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Projective Space . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Affine/Euclidean Geometry . . . . . . . . . . . . . . . . 18

2.3.3 Hyperbolic Geometry . . . . . . . . . . . . . . . . . . . 19

2.3.3.1 Hyperbolic Manifolds . . . . . . . . . . . . . . . 21

Chapter 3. Convex Projective Structures on Manifolds 24

3.1 Convex Projective Geometry . . . . . . . . . . . . . . . . . . . 24

3.1.1 Convex Projective Isometries . . . . . . . . . . . . . . . 27

3.2 Convex Projective Manifolds . . . . . . . . . . . . . . . . . . . 32

3.2.1 The Closed Case . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1.1 Bending . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1.2 Flexing . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 The Non-compact Case . . . . . . . . . . . . . . . . . . 39

3.2.2.1 More Bending . . . . . . . . . . . . . . . . . . . 43

vii



Chapter 4. Rigid Two-Bridge Knots and Links 49

4.1 Some Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Two-Bridge Examples . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 The Figure-Eight Knot . . . . . . . . . . . . . . . . . . 59

4.2.2 The Whitehead Link . . . . . . . . . . . . . . . . . . . . 61

Chapter 5. Deformations Coming from Symmetry 63

5.1 Decomposing H∗(Γ, sl(4)ρgeo) . . . . . . . . . . . . . . . . . . . 63

5.2 Cuspidal Cohomology and Poincaré Duality . . . . . . . . . . 65
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Chapter 1

Introduction

Mostow-Prasad rigidity for hyperbolic manifolds is a crucial tool for

understanding the deformation theory of lattices in Isom(Hn). Specifically,

it tells us that the fundamental groups of hyperbolic manifolds of dimension

n ≥ 3 admit a unique conjugacy class of discrete, faithful representations of

their fundamental group into Isom(Hn).

Using the Klein model we can view hyperbolic structures on manifolds

as specific instances of strictly convex projective structures. Recent work of [5–

7, 17] has revealed several parallels between the geometry of hyperbolic n-space

and the geometry of arbitrary strictly convex domains in RPn. For example,

the classification and interaction of isometries of strictly convex domains is

analogous to the situation in hyperbolic geometry. Additionally, if the isom-

etry group of the domain is sufficiently large then the strictly convex domain

is known to be δ-hyperbolic. Despite the many parallels between these two

types of geometry, there is no analogue of Mostow-Prasad rigidity for arbitrary

strictly convex domains. This observation prompts the following question: is

it possible to deform the hyperbolic structure on a finite volume manifold to

a non-hyperbolic strictly convex structure on the same manifold?
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Currently, the answer is known only in certain special cases. For ex-

ample, when the manifold contains a totally geodesic, hypersurface there exist

non-trivial deformations at the level of representations coming from the bend-

ing construction of Johnson and Millson [30]. In the closed case, work of Koszul

[33] shows that these new projective structures arising from bending remain

properly convex. Further work of Benoist [6] shows that these structures are

actually strictly convex. In the non-compact case recent work of Marquis [37]

has shown that the projective structures arising from bending remain properly

convex in this setting as well.

In contrast to the previous results, there are examples of closed 3-

manifolds for which no such deformations exist (see [16]). Additionally, there

exist 3-manifolds that contain no totally geodesic surfaces, yet still admit

deformations (see [15]). Henceforth, we will refer to these deformations that

do not arise from bending as flexing deformations. Prompted by these results

a natural question to ask is whether or not there exist flexing deformations for

non-compact finite volume hyperbolic manifolds.

Subtleties arising from the presence of peripheral subgroups complicate

the non-compact situation making it more difficult to analyze. For example,

while Mostow-Prasad rigidity guarantees the uniqueness of complete structures

on finite volume 3-manifolds, work of Thurston [47] shows that if we remove

the completeness hypothesis then there is an interesting deformation theory of

representations into PSL2(C) for cusped hyperbolic 3-manifolds. In order to

obtain a complete hyperbolic structure we must insist that the holonomy of the
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peripheral subgroup be parabolic. As we shall see, there is a similar boundary

condition for representations that must be satisfied in order for the deformation

to correspond to complete strictly convex structures, and we use this fact to

analyze strictly convex structures on certain knot and link complements.

Two bridge knots and links provide a good place to begin our analysis

of strictly convex deformations because they have particularly simple presen-

tations for their fundamental groups making them amenable to the normal

forms techniques. Additionally, work of [25] has shown that they contain no

closed, totally geodesic, embedded surfaces and thus there are no bending

deformations. Using the normal form techniques developed in Chapter 4 we

are able to prove that several two bridge knot and link complements enjoy a

certain rigidity property.

Theorem 4.2.1. The two bridge knots and links with rational number 5
3

(figure-eight), 7
3
, 9

5
, and 8

3
(Whitehead link) do not admit strictly convex de-

formations near their complete hyperbolic structures.

In [28] it is shown that there is a strong relationship between defor-

mations of a cusped hyperbolic 3-manifold and deformations of surgeries on

that manifold. In particular they are able to use the fact that the figure-eight

knot is infinitesimally projectively rigid relative to the boundary to deduce

that there are strictly convex deformations of certain orbifold surgeries of the

figure-eight knot. We are able to extend this result to all amphicheiral knot

complements that enjoy a certain rigidity property in the following theorem.
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Theorem 5.3.1. Let M be the complement of a hyperbolic, amphicheiral knot,

and suppose that M is infinitesimally projectively rigid relative to the boundary

and the longitude is a rigid slope. Then for sufficiently large n, M(n/0) has

a one dimensional space of strictly convex projective deformations near the

complete hyperbolic structure.

Here M(n/0) is the orbifold obtained by surgering a solid torus with

cone singularities along its longitude of cone angle 2π/n along the meridian of

M .

The organization of the thesis is as follows. Chapter 2 provides some

background material on geometric structures, hyperbolic geometry, and repre-

sentation spaces. Chapter 3 discusses projective geometry, convex structures,

and convex deformations. Section 4 is dedicated to the setup and proof of

Theorem 4.2.1. In Chapter 5 set up and prove Theorem 5.3.1. Finally, in

Chapter 6 we discuss future directions of research.
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Chapter 2

Background

Throughout this chapter, unless otherwise stated, M will be a con-

nected, compact, orientable manifold (possibly with boundary).

2.1 (G,X)-structures

Let X be a manifold on which a Lie group G acts analytically by

diffeomorphisms, where analyticity means that the action of an element of G

is determined by its restriction to an open subset of X. If U is an open subset of

X, then a function f : U → X is locally (G,X) if for each connected component

Ui of U there exists a (necessarily unique) gi ∈ G such that gi |Ui= f . A

(G,X)-atlas on M is a collection {Uα, φα} such that

1. {Uα} is a covering of M by open sets,

2. {φα : Uα → X} is a collection of maps such that if Uα ∩ Uβ 6= ∅ then

φα ◦ φ−1
β restricted to φβ(Uα ∩ Uβ) is locally (G,X), and

3. φα(∂M ∩ Uα) is a smooth embedding into X.

A (G,X)-structure on M is a maximal (G,X)-atlas on M . It is worth noting

that this definition implies that M and X have the same dimension. If M and
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N are two (G,X)-manifolds, then a map ξ between them is a (G,X)-map if

for each chart (U, φ) of M and (V, ψ) of N such that U and ξ−1(V ) overlap

the function

ψξφ−1 : φ(U ∩ ξ−1(V ))→ ψ(ξ(U) ∩ V )

agrees with an element of G in a neighborhood of each point of its domain.

Typically we think of X as being endowed with some sort of geometry and G

as being the group of transformations that preserve the geometry.

A simple way to get new (G,X)-manifolds from existing ones it to pass

to covers. If p : M ′ → M is a covering and M has a (G,X)-structure then

we get a (G,X)-structure on M ′ as follows. Pick an atlas for M consisting of

simply connected, evenly covered (with respect to p) sets {(Uα, φα)}. For each

α let {(U j
α, φ

j
α)} be pairs such that U j

α evenly covers Uα and φjα is a lift of φα

restricted to U j
α. The union of these sets over α forms a (G,X)-atlas of M ′

for which p is a (G,X)-map. In fact this is the unique (G,X)-structure on M ′

such that p is a (G,X)-map.

The local nature of our definition of (G,X)-structures makes it hard to

gain insight into global properties of (G,X)-manifolds. Fortunately, there is a

tool for globalizing the data of a (G,X)-structure on a manifoldM , which takes

the shape of a local diffeomorphism D : M̃ → X where M̃ is the universal cover

of M . The map D is called the developing map and is constructed via analytic

continuation as follows (see Figure 2.1). Pick a chart (U0, φ0) and a base point

q ∈ U0 and recall that M̃ can be identified with the space of homotopy classes

relative to endpoints of paths γ : [0, 1] → M such that γ(0) = q. Suppose
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Figure 2.1: Developing via analytic continuation

that [γ(t)] is a homotopy class with representative γ(t). If γ(t) is contained

entirely in U0 then D(γ(t)) = φ0(γ(1)). If γ(t) is not contained in U0 then

pick charts {(Ui, φi)}ki=1 that cover γ(t) such that consecutive charts overlap.

By the definition of the (G,X)-structure we know that there exists transition

functions gii+1 ∈ G that agree with φi ◦ φ−1
i+1. Therefore, if γ(1) ∈ Ui then we

define

D(γ(t)) = g01g12 . . . gi−1iφi(γ(1)).

It is a simple exercise to show that this map is well defined independent of

the covering and the choice of representative γ(t). In fact, the only choice

that our construction depended on was the initial chart U0 and the base point

q. Additionally, D is a (G,X)-map if we equip M̃ with the (G,X)-structure

induced by M . Next we examine the ambiguity of developing maps arising

from choices of initial chart and base point. Before proceeding we prove the

following proposition
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Proposition 2.1.1. Let M be a simply connected (G,X)-manifold and let

f1, f2 : M → X be (G,X)-maps, then there is a unique element g ∈ G such

that f2 = gf1

Proof. Pick a chart φ : U → X such that φf−1
i is a chart of X for i =

1, 2. Using the same analytic continuation technique we used to construct the

developing map we can extend φf−1
i to a (G,X)-map on all of X. However, a

self (G,X)-map of X is just an element gi ∈ G. Therefore we see that φ = gifi

for i = 1, 2 and since g1f1 = g2f2 on an open set, analyticity tells us that they

must be equal and so we can choose g = g−1
2 g1. Finally, analyticity again tells

us that g is unique.

Let D1 and D2 be developing maps coming from different choices of

initial charts, then Proposition 2.1.1 tells us that D2 = gD1 for a unique

g ∈ G, which we record in the following corollary.

Corollary 2.1.2. Let D1 and D2 be developing maps for a (G,X)-structure

on M then there exists a unique g ∈ G such that D2 = gD1.

Another consequence of Proposition 2.1.1 is that it allows us to attach

an algebraic object to a (G,X)-structure. Let M be a (G,X)-manifold, let

Γ = π1(M), and let D be a developing map for this structure. If γ ∈ Γ (which

we think of as being the group of deck transformations of M̃) then Proposition

2.1.1 tells us that there is a unique element ρ(γ) ∈ G such that

Dγ = ρ(γ)D. (2.1)
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Equation (2.1) tells us that the map D is equivariant with respect to ρ. It is

a simple exercise to show that ρ : Γ → G defines a homomorphism which we

call a holonomy representation. Finally, Corollary 2.1.2 also tells us that if we

choose a different developing map D′ = gD then the holonomy ρ′ is given by

ρ′(γ) = gρ(γ)g−1 (2.2)

2.1.1 Representation and Character Varieties

The relationship between (G,X)-structures and representations re-

quires us to understand the set of representations from a fixed finitely presented

group Γ into a fixed Lie group G. When the group G is algebraic this set can be

endowed with extra algebraic and geometric structure that can simplify their

study. In this section we review some basics of representation varieties for

algebraic groups. Let G be an algebraic group, let Γ = 〈g1, . . . , gn | r1, . . . , rm〉

be a finitely presented group, and let R(Γ, G) := Hom(Γ, G), which we now

refer to as the G-representation variety of Γ into G or just the representation

variety when no confusion concerning Γ or G will arise. This presentation

allows us to identify R(Γ, G) with the subset in Gn of points where each of the

words ri is equal to the identity in G. Since G is algebraic, multiplication and

inversion are polynomial maps and this identifies R(Γ, G) with an algebraic

variety. If we select a different presentation Γ = 〈g′1, . . . , g′k | r1, . . . , rl〉, then

we will get a different realization of R(Γ, G) inside Gk, but the two will be

isomorphic as varieties (see [46] for details). One of the utilities of this con-

struction is that it provides a way to concretely think about points of R(Γ, G)
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as solutions to a finite set of polynomial equations.

There is a natural action of G on R(Γ, G) by conjugation, and we define

the G-character variety to be the set of conjugacy classes of representations of

Γ into G, which we denote X(Γ, G). When no confusion can occur we will often

refer to this set as the character variety. Due to pathologies of this action,

X(Γ, G) may not have the global structure of a variety (see [40] for details).

However, in all cases of interest to us the action of G will be nice enough

to guarantee that X(Γ, G) has the local structure of a variety, and in many

instances X(Γ, G) can be identified with the set of characters of representations

of Γ into G. For more details about the variety structure of X(Γ, G) and the

relationship to characters see [22, §3] and [18].

2.1.2 Deformation Spaces

The discussion of the previous few paragraphs can be packaged nicely as

follows. Let S(M ;G,X) be the set of all (G,X)-structures on M . S(M ;G,X)

can be realized as the quotient of G acting on the space of developing maps

of M by post-composition, and so the compact C∞ topology on the space of

developing maps induces a topology on S(M ;G,X). If we topologize X(Γ, G)

using the compact-open topology1 on R(Γ, G) then there is a continuous map

hol : S(M ;G,X)→ X(Γ, G)

1Since Γ is finitely generated this is the same as the topology of pointwise convergence
on a generating set.

10



that associates to a (G,X)-structure the conjugacy class of the holonomy of

one of its developing maps. By Corollary 2.1.2 and the discussion immediately

thereafter we see that this map is well defined.

In general, the fibers of this map can be quite complicated, but they

have nice local structure. In particular, they form equivalence classes of a

natural equivalence relation on S(M ;G,X) which we now describe. A marked

(G,X)-structure on M is a pair (N, f) where N is a (G,X)-manifold and

f : M → N is a diffeomorphism, which we think of a way of identifying the

topological manifold M with the geometric manifold N . Two marked (G,X)-

structures (Ni, fi) i = 1, 2 are isotopic if there exists a (G,X)-diffeomorphism

φ defined on all but a collar neighborhood of ∂N1 and onto all but a collar

neighborhood of ∂N2 (see Remark 2.1.1) such that φ is isotopic to f2f
−1
1 . We

call the set of isotopy classes of (G,X)-structures on M the deformation space

of (G,X)-structures on M and denote it D(M ;G,X). We can topologize

D(M ;G,X) using the quotient topology. It is a simple exercise to see that

isotopic (G,X)-structures induce the same conjugacy class of representations

and so hol descends to a map which we continue to call hol from D(M ;G,X) to

X(Γ, G). The following theorem concerning hol is originally due to Ehresmann

and Thurston (see [13, 22] for details).

Theorem 2.1.3. The map hol descends to D(M ;G,X) on which it is a local

homeomorphism.

We think of Theorem 2.1.3 as saying that, up to isotopy, (G,X) struc-

tures on M are locally parameterized by conjugacy class of representation from

11



Γ to G.

Remark 2.1.1. In [13] it is shown that when M has boundary, any (G,X)-

structure on M is induced by a (G,X)-structure on a manifold without bound-

ary, of the same dimension, containing M as a a submanifold. The manifold

without boundary is called a thickening and is denoted MT . Topologically,

MT is obtained from M by adding an open collar, and therefore has the same

fundamental group as M . Theorem 2.1.3 is proven by defining structures

on MT and restricting to M . If two (G,X)-structures on M have the same

holonomy they are induced by two different embeddings M into MT . For this

reason we will often blur the distinction between (G,X) structures on M and

(G,X)-structures on the interior of M when M has boundary.

As an example consider a hyperbolic surface S1 with totally geodesic

boundary of length L. This can be embedded into a hyperbolic surface S∞

with an infinite volume funnel as an end. If we truncate the end of S∞ so that

it is totally geodesic of length 2L we will get another hyperbolic surface S2

that is isotopic to S1 and thus has the same holonomy (see Figure 2.2).

We close this section by discussing how properties of the developing

map translate into properties of (G,X)-structures. We say a representation ρ is

discrete if it has discrete image and that a group Γ acts properly discontinuously

on X if for each compact set K ⊂ X the set {γ ∈ Γ|γK ∩ K 6= ∅} is finite.

When M has no boundary we say that a (G,X)-structure on M is complete if

the developing map D is a covering map onto its image. In the case where X is

simply connected the developing map is a homeomorphism onto its image and

12



Figure 2.2: Two isotopic hyperbolic surfaces S1 (purple) and S2 (blue) are
superimposed on top of one another.

we can identify D(M̃) ⊂ X with M̃ . In this case the holonomy representation

ρ is discrete, faithful, and has a properly discontinuous action that allows us

to identify M with D(M̃)/ρ(Γ).

2.2 Local and Infinitesimal Deformations

We have previously seen that X(Γ, G) locally parameterizes isotopy

classes of (G,X)-structures on M , and so to understand small deformations of

geometric structures it suffices to understand the local structure of X(Γ, G).

Let ρ0 : Γ → G be a representation and [ρ0] be the class it represents in

X(Γ, G). A deformation of ρ0 is a smooth2 map σ(t) : (−ε, ε)→ R(Γ, G) such

that σ(0) = ρ0. To simplify notation we will denote σ(t) by ρt. A deformation

is non-trivial if t 7→ [ρt] is not the constant path in X(Γ, G). If [ρ0] is an

isolated point of X(Γ, G) then we say that [ρ0] is locally G-rigid at ρ0 or just

2By smooth we mean that for each γ ∈ Γ, the map t 7→ σ(t)(γ) is smooth near t = 0

13



locally rigid when the group G and the representation ρ0 are clear from the

context. From the correspondence arising from Theorem 2.1.3 we see that if

[ρ0] is locally rigid then the isotopy class of any geometric structure on M with

holonomy ρ0 is an isolated point in D(M ;G,X) and its geometry cannot be

deformed.

2.2.1 Infinitesimal Deformations

In practice it is often very difficult to understand X(Γ, G) locally near

a particular representation ρ0. In order to simplify the problem we will study

X(Γ, G) infinitesimally, which allows us to linearize the problem.

Let g be the Lie algebra of G (which we think of as being the tangent

space to G at the identity). The group G admits an action on g as follows. For

each g ∈ G define ψg : G → G by ψg(h) = ghg−1. Since ψg fixes the identity,

the derivative of ψg at the identity gives an automorphism of g. Thus we get

a map Ad : G→ Aut(g) by mapping g to the derivative of ψg at the identity.

This gives rise to an action that we call the adjoint action and we denote the

adjoint action of an element g ∈ G on an element h ∈ g by Adg · h. When

G = GLn(R) then g = End(Rn) and the adjoint action is given by matrix

conjugation.

Let ρt : Γ→ G be a deformation. Then we can define a map z : Γ→ g

by γ 7→ ρ′(γ)ρ0(γ)−1, where ρ′(γ) =
(
d
dt

∣∣
t=0
ρt(γ)

)
. From the homomorphism

condition for ρt and the Leibniz rule for derivatives of products, we see that if

14



γ, γ′ ∈ Γ then

z(γγ′) = ρ′(γγ′)ρ0(γγ′)−1 = (ρ(γ)ρ(γ′))
′
ρ0(γγ′)−1

= (ρ′(γ)ρ0(γ′) + ρ0(γ)ρ′(γ′)) ρ0(γγ′)−1

= ρ′(γ)ρ0(γ)−1 + ρ0(γ)ρ′(γ′)ρ0(γ′)ρ0(γ)

= ρ′(γ)ρ0(γ)−1 + Adρ0(γ) · ρ′(γ′)ρ0(γ′)−1

= z(γ) + Adρ0(γ) · z(γ′). (2.3)

Equation (2.3) is known as the cocycle condition and we denote the space

of functions satisfying the cocycle condition by Z1(Γ, gρ0) and refer to its

elements as group cocycles. Next, suppose that ρt is a trivial deformation, that

is ρt = gtρ0g
−1
t , where gt is a smooth path in G such that g0 is the identity.

A simple computation similar to Equation (2.3) shows that the cocycle of this

path is given by

z(γ) = g′ − Adρ0(γ) · g′. (2.4)

Cocycles that satisfy Equation (2.4) for some element g′ ∈ g are called group

coboundaries and we denote the space of coboundaries by B1(Γ, gρ0). The

quotient H1(Γ, gρ0) := Z1(Γ, gρ0)/B
1(Γ, gρ0) is the first group cohomology of

Γ with coefficients in g (see [11] for more details about group cohomology).

There is also a notion of cohomology with twisted coefficients for man-

ifolds which we denote H∗(M, gρ0), where ρ0 is a representation from π1(M)

to G (see [26, 28] for details). In most cases of interest to us the manifold

M will be aspherical, in which case there is a natural isomorphism between
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H∗(π1(M), gρ0) and H∗(M, gρ0) [51]. For this reason we will frequently not

distinguish between these two cohomology theories.

In this context we think of elements of Z1(Γ, gρ0) as parameterizing

infinitesimal deformations near ρ0 and that if ρ0 is a smooth point of R(Γ, G)

then Z1(Γ, gρ0) can be identified with the tangent space to R(Γ, G) at ρ0 (when

ρ0 is not a smooth point Z1(Γ, gρ0) can still be identified with the Zariski

tangent space at ρ0 [35, §2]). The coboundaries infinitesimally parametrize

trivial deformations, and the group H1(Γ, gρ0) infinitesimally parameterizes

X(Γ, G) near ρ0.

When H1(Γ, gρ0) = 0 we say that Γ is infinitesimally G-rigid at ρ0

or just infinitesimally rigid if no confusion about G or ρ0 will arise. The

following theorem of Weil [50], whose proof is essentially contained in the

previous paragraphs, determines the relationship between infinitesimal and

local rigidity.

Theorem 2.2.1. If Γ is infinitesimally G rigid at ρ0 then Γ is locally G rigid

at ρ0.

Remark 2.2.1. More generally, the dimension of H1(Γ, gρ0) is an upper bound

for the dimension of X(Γ, G) at [ρ0] (see [35]), however if [ρ0] is not a smooth

point of X(Γ, G) then this bound need not be sharp and so the converse to

Theorem 2.2.1 is false in general.
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2.3 Projective Geometry

In this section we review some preliminaries of projective geometry and

its relationship to other geometries

2.3.1 Projective Space

Let Rn+1 be the real vector space of dimensions n + 1. We define an

equivalence relationship ∼ on Rn+1\{0} by x ∼ λx, where λ ∈ R× is a non-

zero real number. Equivalence classes [v] of ∼ are called lines and the quotient

of Rn+1 by ∼ is known as real projective n-space and is denoted RPn. RPn

can also be realized as the quotient of the n-dimensional sphere Sn by the

antipodal map, and is thus easily seen to be a manifold of dimension n. A

projective line is the image of a 2-dimensional subspace of Rn+1 in RPn and

a projective hyperplane is the image of an n-dimensional subspace of Rn+1 in

RPn.

An element A ∈ GLn+1(R) sends lines to lines and thus descends to

a self map of RPn. Conversely, every automorphism of RPn arises in this

way. Additionally, an element acts as the identity on RPn if and only if

A = λIn+1, where In+1 is the n × n identity matrix and λ ∈ R×, thus we

identify the automorphism group of RPn with GLn+1(R)/{λIn+1} and denote

it PGLn+1(R).

The structure of RPn and PGLn+1(R) depends on whether n is even

or odd. When n is even the antipodal map is orientation reversing and RPn

is non-orientable. In this case, PGLn+1(R) is connected and isomorphic to
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SLn+1(R). When n is odd the antipodal map is orientation preserving and

RPn is orientable. In this case, PGLn+1(R) has two connected components and

the identity component is isomorphic to PSLn+1(R) (see [23, §2] for details)

Fixed points of elements in PGLn+1(R) correspond to eigenvectors of

elements of GLn+1(R) with real eigenvalues. As a consequence we see that

when n is even every element of PGLn+1(R) fixes a point in RPn, whereas

when n is odd there exist elements of PGLn+1(R) that have no fixed points.

We call (G,X)-structures where X = RPn and G = PGLn+1(R) pro-

jective structures. In most examples of interest the developing map of a pro-

jective structure is not a surjection. We will discuss several such examples in

the subsequent section. One benefit of studying projective geometry is that it

contains many other geometries and thus provides a unified setting to examine

the interaction between different types of geometries.

2.3.2 Affine/Euclidean Geometry

Let An denote the affine plane in Rn+1 given by the equation xn+1 = 1.

No two points in An belong to the same line and so we get an embedding

of An into RPn which we also refer to as An. Additionally, An contains a

representative of every line not contained in the plane xn+1 = 0 and we see

that RPn can be decomposed as An tRPn−1. If A ∈ PGLn+1(R) preserves An

then A must also preserve the copy of RPn−1 coming from the plane xn+1 = 0
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and therefore we can find a representative of A in GLn+1(R) of the form(
B c
0 1

)
,

where B ∈ GLn(R) and c ∈ Rn is a vector. Under the map(
B c
0 1

)
7→ Bx+ c, (2.5)

we get an identification between the subgroup of PGLn+1(R) preserving An

and the affine group Aff(Rn) ∼= Rn o GLn(R). If we place the standard Eu-

clidean metric on An and we restrict to the case where B ∈ O(n) then (2.5)

gives an identification with Euc(Rn) ∼= RnoO(n) (Euclidean isometries of Rn).

Notable examples of (G,X)-structures arising in this context are (Aff(Rn),An)

structures (affine structures) and (Euc(Rn),An) structures (Euclidean struc-

tures), which can be thought of in this way as specific instances of projective

structures.

2.3.3 Hyperbolic Geometry

We define a bilinear form of signature (n, 1) on Rn+1 by

〈x, y〉 = x1y1 + . . .+ xnyn − xn+1yn+1. (2.6)

Using (2.6) we define a cone (see Figure 2.3) in Rn+1 by

Cn = {x ∈ Rn+1 | 〈x, x〉 < 0} (2.7)

The image Dn of Cn in RPn is commonly referred to as the Klein model

of hyperbolic space (see [41, §6.1] for more details). There is a convenient
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Figure 2.3: Multiple views of Cn and An when n = 2

Figure 2.4: The Klein model Dn sitting inside An

way to visualize Dn inside of An ⊂ RPn as follows: observe that the plane

xn = 1 in Rn+1 used in Section 2.3.2 to define An intersects C in the unit

disk (see Figure 2.4). Given two points x, y ∈ Dn the affine line segment

between x and y intersects ∂Dn in two points a and b (see Figure 2.4). Let

[a, x; y, b] := |y−a||x−b|
|y−b||x−a| be the projective cross ratio of a, x, y, and b. Then we

can define the hyperbolic metric on Dn by

dH(x, y) :=
|log([a, x; y, b])|

2
. (2.8)
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With the metric dH , Dn is a complete Riemannian metric space with constant

curvature -1 whose geodesics are intersections of straight lines in An with Dn.

Let PGL(Dn) be the subgroup of PGLn+1(R) that preserves Dn. A simple

exercise shows that PGL(Dn) = PO(n, 1) (the projective orthogonal group of

the form (2.6)). Additionally, it is well known that the projective cross ratio

of 4 collinear points is preserved by any projective transformation, and so we

see that PGL(Dn) ⊆ Isom(Dn), where Isom(Dn) is the set of isometries of Dn

with the metric dH . Furthermore, it is shown in [41, §6.1] that the previous

inclusion is actually an equality.

Isometries of Dn can be classified by their fixed points as follows [41].

Let A ∈ PGL(Dn), then A is

1. elliptic if it fixes a point in Dn

2. parabolic if it acts freely on Dn and fixes a unique point on ∂Dn, or

3. hyperbolic if it acts freely on Dn and fixes exactly two points on ∂Dn.

2.3.3.1 Hyperbolic Manifolds

Any Riemannian manifold M of constant sectional curvature -1 is called

a hyperbolic manifold and can be realized as a (G,X)-manifold where X = Dn

and G = Isom(Dn). These types of (G,X)-structures are called hyperbolic

structures and serve as another example of projective structures. In this set-

ting completeness of the metric is equivalent to completeness of the (G,X)-

structure [47]. Therefore, when M is complete it can always be realized as
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Dn/Γ, where Γ = π1(M) and the action is given by the holonomy representa-

tion.

If M = Dn/Γ is a complete hyperbolic n-manifold, then M inherits a

volume form dV from the Riemannian metric on Dn and we say that M is

finite volume if
∫
M
dV <∞. We close this section by introducing a dichotomy

concerning hyperbolic structures on finite volume hyperbolic manifolds based

on dimension. When n = 2 there is a rich deformation theory of complete

finite volume structures on M and these structures are parameterized by the

Teichmüller space, which is a topologically a ball of dimension 6g − 6 + 2n

where g is the genus of the surface and n is the number of cusps (see [20] for

details). On the other hand, when n ≥ 3 and M has finite volume there is a

strong uniqueness theorem about complete hyperbolic structures on M .

Theorem 2.3.1 (Mostow-Prasad Rigidity [39]). Let M = Dn/Γ1 and N =

Dn/Γ2 be complete, finite volume hyperbolic n-manifolds with n ≥ 3. Suppose

we have a homotopy equivalence F : M → N , then there exists g ∈ Isom(Dn)

homotopic to F . Furthermore, Γ1 and Γ2 are conjugate subgroups of Isom(Dn).

Mostow-Prasad rigidity implies that if Γ is the fundamental group of a

finite volume hyperbolic manifold of dimension at least 3 then there is a unique

conjugacy class of discrete, faithful representations from Γ to Isom(Dn). We

refer to a representative of this conjugacy class as the geometric representa-

tion of M (or Γ) and denote it by ρgeo. We now observe a few consequences

of Mostow-Prasad rigidity. First, in dimension at least 3 there are no defor-

mations of complete hyperbolic structures on M through complete structures.
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As we will see later, when M is non-compact and dimension 3 then there

is an interesting deformation theory of incomplete structures on M . Addi-

tionally, when M is closed then it is automatically metrically complete and

thus complete as a (G,X) manifold. In this case we see that M is locally

Isom(Dn)-rigid.

23



Chapter 3

Convex Projective Structures on Manifolds

In this chapter we will introduce convex projective geometry, convex

projective structures on manifolds, and deformations in this setting.

3.1 Convex Projective Geometry

Let Ω ⊂ An ⊂ RPn be an open set that is convex and has compact

closure. Such sets are called properly convex and are the object of study in

convex projective geometry. If Ω is properly convex and ∂Ω contains no non-

trivial affine line segments then Ω is strictly convex. It is easily seen that Dn

is both properly and strictly convex. A standard example of a properly, but

not strictly convex set is a simplex in An.

Similar to the case of Dn, we can put a metric on a properly convex set

Ω. Let x, y ∈ Ω, then by proper convexity, the affine line segment between x

and y intersects ∂Ω in two points a and b (where a is closer to x and b is closer

to y see Figure 3.1) and we define a metric as

dΩ(x, y) = |log([a, x; y, b])| . (3.1)

The function dΩ defines a complete Finsler metric on Ω. When Ω is

strictly convex this makes Ω a geodesic metric space, where geodesics are
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Figure 3.1: A properly, but not strictly, convex domain

intersections of affine lines with Ω. However, if Ω is not strictly convex then

geodesics between points are not (even locally) unique. We now use Figure

3.2 to explain this fact. From the definition of the cross ratio, we see that

[a, x; y, b] = [a, x; z′, b][a, z′; y, b]. Additionally, by projective invariance of the

cross ratio we see that [a, x; z′, b] = [a′, x; z, b′] and [a, z′; y, b] = [a′′, z; y, b′′]

and so we see that

dΩ(x, y) = |log[a, x; y, b]| = |log[a, x; z′, b]|+ |log[a, z′; y, b]|

= |log[a′, x; z, b′]|+ |log[a′′, z; y, b′′]| = dΩ(x, z) + dΩ(z, y).

Thus we see that the segments [x, y] and [x, z] ∪ [z, y] are both geodesics con-

necting x and y.

Let PGL(Ω) be the elements of PGLn+1(R) that preserve Ω and

Isom(Ω) be the set of isometries of Ω with respect to the metric dΩ. Again,

since the projective cross ratio is invariant under projective transformations

we see that PGL(Ω) ⊆ Isom(Ω). If Ω is strictly convex then this inclusion

is an equality, however, if Ω is not strictly convex then the inclusion may be

proper. For example, when ∆ is a 2-simplex in A2 then PGL(∆) is an index

2 subgroup of Isom(∆) (see [19] for details).
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Figure 3.2: An example of non-unique geodesics in a properly convex domains

As observed by Benoist [5], there is a strong relationship between strict

convexity and δ-hyperbolicity. Recall that in a geodesic metric space a geodesic

triangle T is δ-thin if each side of T is contained in a δ-neighborhood of the

union of the other two sides and a metric space is δ-hyperbolic if all geodesic

triangles are δ-thin. We can now state the following result

Theorem 3.1.1 (Benoist [5]). Let Ω be a properly convex domain. If Ω is

δ-hyperbolic then Ω is strictly convex. Additionally, when PGL(Ω) contains a

discrete subgroup such that Ω/Γ is compact, then the converse is true.

Figure 3.3 demonstrates how to construct fat triangles when Ω is not

strictly convex. The converse of Theorem 3.1.1 is also true in cases where Ω

admits certain non-compact quotients [17].

One benefit of a PGL(Ω) invariant metric is that it allows us to prove

that discrete subgroups always act properly discontinuously [41, §5.3]. As
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Figure 3.3: A sequence of fat triangles in a non-strictly convex domain

a consequence we see that if we take the quotient of Ω by Γ, where Γ is a

discrete, torsion-free subgroup of PGL(Ω) then Ω/Γ will be a complete (with

respect to metric induced by dΩ) manifold. In this way we can often reduce

questions of geometry on a manifold to more manageable questions about

discrete subgroups.

3.1.1 Convex Projective Isometries

In general, elements of PGLn+1(R) are equivalence classes of matrices

and so subgroups of PGLn+1(R) do not have well defined lifts to GLn+1(R).

However, when Ω is properly convex then there is a canonical lift of PGL(Ω)

into GLn+1(R). Let Sn = R̃Pn be the universal cover of RPn, which we identify

with Rn+1\{0}/R+, where R+ is the set of positive scalars. The automorphism

group of Sn is the group of matrices with determinant ±1 which we denote

SL±n+1(R). Since Ω is properly convex, its preimage in Sn has two disjoint

components. Each element of PGL(Ω) has two lifts to SL±n+1(R), one that

preserves the components and another that interchanges them. By select-
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ing the lift that preserves the components we get an isomorphism with the

subgroup of SL±n+1(R) that preserves the components of Ω which we denote

SL±(Ω). In light of this identification we will freely identify PGL(Ω) with

SL±(Ω) and will regard elements of PGL(Ω) as matrices when convenient.

Following [17] we can separate isometries in PGL(Ω) into 3 types. Since

Ω is properly convex, its closure can be realized as a compact, convex subset

of An and thus by the Brouwer fixed point theorem every element of PGL(Ω)

fixed a point in the closure Ω of Ω. Thus we see that generic elements of

PGLn+1(R) cannot preserve a properly convex domain. With this in mind we

say that A ∈ PGL(Ω) is:

1. elliptic if it fixes a point in Ω

2. parabolic if it acts freely on Ω and all of its eigenvalues have modulus

one, or

3. hyperbolic otherwise.

In the case where Ω = Dn this classification agrees with the standard clas-

sification of isometries of hyperbolic space (see [41]). Additionally, there are

strong similarities between isometries of strictly convex domains and their hy-

perbolic counterparts as illustrated by the next few results. The first of which

is contained in [17].

Theorem 3.1.2. Let Ω be a strictly convex domain and A ∈ SL±(Ω) an

isometry. If A is parabolic then A fixes precisely one point in ∂Ω. If A is
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hyperbolic then it has precisely two fixed points on ∂Ω and acts as a translation

on the geodesic in Ω connecting the fixed points.

The main idea behind the proof of Theorem 3.1.2 is that fixed points

of projective isometries correspond to the projectivization of eigenspaces with

real eigenvalues. If A is parabolic or hyperbolic it will act freely on Ω and so

these eigenspaces can only intersect Ω in ∂Ω. However, strict convexity then

implies that this intersection is a single point for each eigenspace. When Ω is

properly, but not strictly, convex then the intersection with these eigenspaces

with the boundary can be larger and give rise to isometries that fix higher

dimensional portions of ∂Ω.

The next result, which is also contained in [17], shows that parabolic

elements must satisfy certain linear algebraic constraints.

Theorem 3.1.3. Suppose that Ω is a properly convex domain and that A ∈

SL±(Ω) is parabolic. Then one of largest Jordan blocks of A has eigenvalue 1.

Additionally, the size of this Jordan block is odd and at least 3. If Ω is strictly

convex then this is the only Jordan block of this size.

Later we will make use of the following corollary of this result which

tells us that in dimension 3 there is a unique conjugacy class of parabolic

elements preserving any properly convex domain.

Corollary 3.1.4. Let Ω be a properly convex domain of dimension 3 and that
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A ∈ SL±(Ω) is parabolic. Then A is conjugate in SL4(R) to
1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 .

The next result can be viewed as a properness property of the action

of PGL(Ω) on Ω.

Lemma 3.1.5. Let Ω be a properly convex domain and let x be a point in the

interior of Ω, then the set ΩK
x = {T ∈ PGL(Ω) | dΩ(x,Tx) ≤ K} is compact.

Proof. Let B = {x0, . . . , xn} be a projective basis of RPn (that is a set of n+1

points no n of which live in a common hyperplane) that are contained in Ω

and such that x0 = x. There is a homeomorphism between PGLn+1(R) and

an open set of (RPn)n+1 that arises in much the same way that the action of

an element of GLn+1(R) on a basis gives rise a homeomorphism to an open

set in (Rn)n. Next, let γi be a sequence of elements of ΩK
x . The elements

γix0 all live in the compact ball of radius K centered at x and so by passing

to a subsequence we can assume that γix0 → x∞0 ∈ Ω. Next, we claim that

by passing to subsequences that γixj → x∞j ∈ Ω for 1 ≤ j ≤ n. To see this

observe that

dΩ(x∞0 , γixj) ≤ dΩ(x∞0 , γix0) + dΩ(γix0, γixj) = dΩ(x∞0 , γix0) + dΩ(x0, xj),

and so all of the γixj live in a compact ball centered at x∞0 , and so we can

find the desired subsequence. Therefore the proof will be complete if we can
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show that the set {x∞0 . . . , x∞n } is a projective basis. Suppose that this set

is not a basis, then without loss of generality we can assume that the set

{v∞0 , . . . , v∞n−1} is linearly dependent, where v∞i is a vector in the class of x∞i .

Thus v∞0 = c1v
∞
1 + . . . + cn−1v

∞
n−1 is a non-trivial linear combination, and we

find that γi[c1v1 + . . .+ cn−1vn−1]→ [v∞0 ]. However,

dΩ([v0], [c1v1 + . . .+ cn−1vn−1]) = dΩ(γi[v0], γi[c1v1 + . . .+ cn−1vn−1])

and

dΩ(γi[v0], γi[c1v1 + . . .+ cn−1vn−1])→ dΩ([v∞0 ], [c1v
∞
1 + . . .+ cn−1v

∞
n−1]) = 0,

which contradicts the fact that B is a basis.

Lemma 3.1.5 helps us prove the following proposition which will be

useful in our analysis of strictly convex geometry on manifolds.

Proposition 3.1.6. Let Ω be a strictly convex domain and φ, ψ ∈ PGL(Ω)

with φ hyperbolic. If φ and ψ have exactly one fixed point in common, then

the subgroup generated by φ and ψ is not discrete.

Similar proofs of this proposition can be found in [3, 17], and both

proofs use an adaptation of a well known argument in hyperbolic geometry

(see [41, Thm 5.5.4]). A simple corollary of Proposition 3.1.6 is the following

Corollary 3.1.7. Let Ω be a strictly convex domain and let Γ ≤ PGL(Ω) be a

discrete subgroup. If A,B ∈ Γ are parabolic and hyperbolic, respectively, then

A and B do not commute.
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We close this section with a lemma about the behavior of elements that

preserve a common geodesic.

Lemma 3.1.8. Let Ω be strictly convex and let Γ ≤ PGL(Ω) be a discrete

torsion free subgroup of elements that all fix a common geodesic in Ω, then Γ

is an infinite cyclic group generated by a hyperbolic element.

Proof. Since the elements of Γ all preserve a geodesic γ there is a homomor-

phism from Γ to R that assigns to each element its translation length (mea-

sured in the Hilbert metric) along γ. Since Γ is torsion free, it acts freely on

Ω and we see that this map has trivial kernel. Therefore Γ is isomorphic to a

discrete subgroup of R and is thus infinite cyclic. The last statement follows

from fact that parabolic elements have unique fixed points and thus do not

preserve geodesics.

3.2 Convex Projective Manifolds

Let M be a manifold and let Ξ ∈ D(M ; PGLn+1(R),RPn) be an isotopy

class of projective structures on M . We say that Ξ is a convex projective struc-

ture if any (hence all) developing map D is a homeomorphism onto a properly

convex set and we denote the set of such isotopy classes by CP(M). From the

definition, we see that convex projective structures are always complete. If in

addition the image of D is a strictly convex set then we say that Ξ is a strictly

convex projective structure and we denote the set of such isotopy classes by

SCP(M). The simplest examples of (strictly) convex projective structures on
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manifolds come from complete hyperbolic structures. A convex projective de-

formation (resp. strictly convex projective deformation ) of Ξ0 is a smooth

path in CP(M) (resp. in SCP(M)) through Ξ0. With this in mind we ask the

following question.

Question 1. Let M be a complete finite volume hyperbolic n-manifold. Does

M admit non-trivial, strictly convex projective deformations near the1 complete

hyperbolic structure?

This question naturally breaks into two cases according to whether M

is closed or not and we discuss these two cases separately.

3.2.1 The Closed Case

Throughout this section let M be a closed manifold and let Γ = π1(M),

then via the holonomy map we see that a strictly convex projective structure

gives rise to a discrete, faithful representation ρ : Γ → PGLn+1(R) that pre-

serves a strictly convex open subset of RPn. When M is hyperbolic we see that

strictly convex projective deformations of the complete hyperbolic structure

give rise to curves in X(Γ,PGLn+1(R)) passing through [ρgeo]. On the other

hand Theorem 2.1.3 tells us that if we have a curve in X(Γ,PGLn+1(R)) pass-

ing through [ρgeo] and consisting of discrete, faithful representations then we

will get a curve of projective structures on M passing through the complete

hyperbolic structure, but a priori we have no guarantee that these projective

1when n = 2 there is not a unique complete hyperbolic structure and we look at defor-
mations near a given hyperbolic structure.
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structures are strictly or even properly convex. However in the closed case we

have the following theorem of Koszul [33]

Theorem 3.2.1. Let M be a closed manifold, then CP(M) is an open subset

of D(M ; PGLn+1(R),RPn).

When M is hyperbolic we get the following corollary by combining the

previous result and Theorem 3.1.1.

Corollary 3.2.2 (Benoist [5]). If M is hyperbolic, then CP(M) = SCP(M)

Proof. The inclusion SCP(M) ⊆ CP(M) follows directly from the definition.

Conversely, suppose that we are given a convex projective structure with holon-

omy ρ. Observe that Γ acts cocompactly by isometries on Dn and so by the

Švarc-Milnor lemma (see [10, Ch 8] for details) Γ is quasi-isometrically equiva-

lent to Dn and hence δ-hyperbolic (with respect to the word metric on Γ). As

ρ is the holonomy of a convex projective structure ρ(Γ) preserves a properly

convex set Ω and acts cocompactly on Ω by isometries. Therefore by applying

the Švarc-Milnor lemma again we see that Ω is quasi-isometrically equivalent

to Γ and hence δ-hyperbolic. Finally, since Ω is δ-hyperbolic Theorem 3.1.1

implies that Ω is strictly convex.

Combining these results with Theorem 2.1.3 we see that if M is hy-

perbolic and [ρ] is close enough to [ρgeo] in X(Γ,PGLn+1(R)) then ρ is the

holonomy of a strictly convex projective structure on M , in particular ρ is

discrete and faithful. One benefit of Theorem 3.2.1 is that it tells us that if
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we are able to deform ρgeo through a family of non-conjugate representations

then this corresponds to a strictly convex deformation of M .

In dimension 2 the convex deformation theory is well understood thanks

to work of Goldman [24] and Choi and Goldman [14]. Here the situation is

similar to that of hyperbolic structures in that there is a well understood space

of convex projective structures on M that is topologically a ball, this time of

dimension 16g−16, where g is the genus of M . By Corollary 3.2.2 we see that

these structures are all strictly convex.

3.2.1.1 Bending

In this section we will discuss a technique for finding strictly convex

projective deformations of closed hyperbolic manifolds in arbitrary dimen-

sions. The rough idea is that totally geodesic hypersurfaces give rise to non-

trivial curves of representations in X(Γ,PGLn+1(R)). This idea goes back to

Apanasov [1] and Thurston [47] in the case of quasi-Fuchsian deformations.

Later the construction was generalized by Johnson and Millson [30], and it is

their approach that we will take moving forward.

Let M be a closed hyperbolic manifold and let S be an orientable

totally geodesic hypersurface and let ∆ = π1(S). Recall that the Lie algebra

of PGLn+1(R) is sl(n+ 1) and Γ acts on sl(n+ 1) via

γ · x = Ad(ρgeo(γ)) · x.

The following lemma tells us that in this situation we can find a unique 1-
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dimensional subspace of sl(n + 1) that is invariant under the adjoint action

restricted to ∆.

Remark 3.2.1. An element of sl(n+ 1) is invariant under the adjoint action of

γ precisely when ρgeo(γ) and x are commuting matrices.

Lemma 3.2.3. Let M be a closed hyperbolic manifold and S a totally geodesic

hypersurface. Then there exists a unique 1-dimensional subspace generated by

a vector xS ∈ sl(n + 1) that is invariant under the action of ∆. Furthermore

this subspace is generated by a conjugate in PGLn+1(R) of(
−n 0
0 I

)
,

where I is the n× n identity matrix.

Proof. Γ is a subgroup of PO(n, 1) (the projective orthogonal group of the

form x2
1 + x2

2 + . . . x2
n − x2

n+1). Since S is totally geodesic we can assume

after conjugation that ∆ preserves both the hyperplane where x1 = 0 and its

orthogonal complement which is generated by (1, 0, . . . , 0). Hence if A ∈ ∆

then

A =

(
1 0T

0 Ã

)
,

where Ã ∈ PO(n − 1, 1) (the projective orthogonal group of the form x2
2 +

x2
3 + . . . + x2

n − x2
n+1) and 0 ∈ Rn. If x ∈ sl(n + 1) is invariant under ∆

then we know that B(t) = exp (tx) commutes with every A ∈ ∆. If we write

B(t) =

(
b11 b12

b21 b22

)
, where b11 ∈ R, bT12, b21 ∈ Rn, and b22 ∈ SLn(R), then(
b11 b12

Ãb21 Ãb22

)
=

(
1 0

0 Ã

)(
b11 b12

b21 b22

)
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=

(
b11 b12

b21 b22

)(
1 0

0 Ã

)
=

(
b11 b12Ã

b21 b22Ã

)
.

From this computation we learn that b12 and b21 are invariants of ∆ and that

b22 is in the centralizer of ∆ in SLn(R). However, the representation of ∆ into

PO(n− 1, 1) is irreducible, and so the only matrices that commute with every

element of ∆ are scalar matrices and the only invariant vector of ∆ is 0, and

so

B =

(
e−nλt 0

0 eλtI

)
,

where I is the identity matrix. Differentiating B(t) at t = 0 we find that

x =

(
−nλ 0

0 λI

)
,

and the result follows.

The vector xS from Lemma 3.2.3 will be called a bending cocycle. We

can now define a family of deformations of ρgeo. The construction breaks into

two cases depending on whether or not S is separating.

If S is separating then Γ splits as the following amalgamated free prod-

uct:

Γ ∼= Γ1 ∗∆ Γ2,

where Γi are the fundamental groups of the components of the complement of

S in M , and we can define a family of representations ρt as follows. Since ρgeo

is an irreducible representation we know that xS is not invariant under all of Γ

and so we can assume without loss of generality that it is not invariant under

Γ2. So let ρt|Γ1 = ρgeo and ρt|Γ2 = Adj(exp (txS)) · ρgeo. By the construction
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of xS these two maps agree on ∆ and so they give a well defined family of

homomorphisms of Γ, such that ρ0 = ρgeo.

If S is nonseparating, then Γ is realized as the following HNN extension:

Γ ∼= Γ′∗∆,

where Γ′ is the fundamental group of M\S. If we let α be a curve dual to S

then we can define a family of homomorphisms through ρgeo by ρt|Γ′ = ρgeo

and ρt(α) = exp (txS)ρgeo(α). Since xS is invariant under ∆ the values of

ρt(ι1(∆)) do not depend on t, where ι1 is the inclusion of the positive boundary

component of a regular neighborhood of S into M\S, and so we have well

defined homomorphisms of the HNN extension.

In both cases the fact that xS is not invariant under the action of Γ

implies that ρt gives rise to a non-trivial curve of representations. The family

ρt of representations is called a bending deformation of M along S. Further-

more, by examining the cohomology class coming from ρt, Johnson and Millson

[30] showed that [ρt] actually defines a non-trivial path in X(Γ,PGLn+1(R)).

Finally, by applying Theorem 3.2.1 and Corollary 3.2.2 we see that these de-

formed representations give rise to strictly convex projective deformations of

M .

3.2.1.2 Flexing

By work of Cooper, Long, and Thistlethwaite [15, 16] there are examples

of closed hyperbolic 3-manifolds that contain no totally geodesic hypersurfaces,
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but nevertheless admit strictly convex projective deformations. A deformation

that does not result from the bending procedure is known as a flexing. The

class of manifolds that they examined were closed census 3-manifolds with

2-generator fundamental groups. In this context, 2-generator 3-manifolds are

a natural class in which to look for flexing deformations as their fundamental

groups admit fairly simple presentations and by work of Mensaso and Reid

[38] they do not contain totally geodesic closed hypersurfaces.

In [16] a procedure is outlined to compute dimensions of cohomology

groups of 2-generator groups, and using these techniques the authors are able

to examine 4500 such manifolds, and they subsequently discovered that most

2-generator census 3-manifolds were infinitesimally projectively rigid at ρgeo.

In particular they found that only 61 of the manifolds they examined admitted

infinitesimal deformations at ρgeo. Using the numerical techniques developed

in [15] they were able to explicitly construct families of deformations of ρgeo for

25 of these 61 manifolds, and found strong numerical evidence that 27 others

admit actual deformations. Finally, Theorem 3.2.1 and Corollary 3.2.2 imply

that the deformations of ρgeo described above correspond to strictly convex

projective deformations.

3.2.2 The Non-compact Case

In this section M will be a non-compact finite volume n-hyperbolic

manifold and Γ = π1(M). The primary difference between the closed and

non-compact cases is the fact that Theorem 3.2.1 is no longer true if M
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is non-compact. The failure of Theorem 3.2.1 in the non-compact case can

be better understood by examining non-compact finite volume hyperbolic 3-

manifolds. By work of Thurston [47, §5] there are always deformations of

ρgeo and these deformations correspond to incomplete hyperbolic structures

on M with holonomies that are always either indiscrete or non-faithful. Fur-

thermore, the developing map has non-convex image near portions of M̃ that

correspond to ends of M . As a result we see that there are hyperbolic (and

hence projective) structures near the complete structure of M that are not

properly convex.

Next, we discuss some restrictions that are imposed on the holonomies

of strictly convex structures on finite volume hyperbolic manifolds. A standard

result in hyperbolic manifolds (see [41, Thm 12.7.4] for example) states that

M admits a decomposition

M = MK t
(
tki=1Ci

)
, (3.2)

where MK is is a compact submanifold and the Ci are called cusps and are

diffeomorphic to Ei×[0,∞), where Ei is a closed Euclidean manifold of dimen-

sion n−1. We call π1(Ci) a peripheral subgroup of M . Moreover, the universal

cover of Ci is An−1 × [0,∞) and the action of ρgeo on the universal cover re-

spects this product structure, acting discontinuously by Euclidean isometries

on the first factor and trivially on the second factor. Using this structure of

the cusps we can prove the following proposition.

Proposition 3.2.4. Let M have dimension at least 3 and let ρ be the holonomy
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of a strictly convex projective structure on M and let {Ci}ki=1 be the set of cusps

of M . If 1 6= γ ∈ π1(Ci) then ρ(γ) is parabolic.

Proof. Let Ω be a strictly convex domain preserved by ρ(Γ) and let ∆i =

π1(Ci). Since Γ is torsion free and ρ is a discrete faithful representation we

see that ρ(γ) is either hyperbolic or parabolic, and so it suffices to show that

ρ(γ) is not hyperbolic.

We will start by showing that ρ(∆i) has a global fixed point in ∂Ω.

It follows from the previous paragraph that ∆i can be realized as a discrete

group of Euc(Rn). By work of Bieberbach [8], it follows that ∆i is virtually

abelian, and in particular ∆i contains a finite index abelian subgroup ∆′i of

rank n − 1. Let γ′ ∈ ∆′, then γ′ has exactly one or two fixed points and we

pick a fixed point x of γ′. Since every element of ∆′i commutes with γ′ we

see that the elements of ∆′i permute the fixed points of γ′ and thus there is a

subgroup ∆0
i of index at most 2 in ∆′i (and hence of finite index in ∆i) that

fixes x. Observe that if δ ∈ ∆i is non-trivial then there exists some m such

that δm ∈ ∆0
i and thus fixes x. However, the fixed point set of a parabolic or

a hyperbolic is unchanged by taking powers and so δ fixes x, thus proving the

claim.

Next, suppose for contradiction that ρ(γ) is hyperbolic. If this is the

case then ρ(∆i) cannot contain any parabolic elements because by the previ-

ous claim they would share a single fixed point with ρ(γ) which contradicts

Proposition 3.1.6. Therefore every element of ρ(∆i) is hyperbolic and Propo-
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sition 3.1.6 tells us that each of these elements has the same fixed point set,

and thus they preserve a common geodesic. Finally, Lemma 3.1.8 tells us that

ρ(∆i) is infinite cyclic which contradicts the fact that ρ is faithful.

Let ρt be a family of holonomies of a strictly convex deformation of

a finite volume hyperbolic n-manifold. One consequence of Proposition 3.2.4

is that if n ≥ 3 then for each t, the holonomy of each peripheral subgroup

consists entirely of parabolic isometries. With this in mind we define the fol-

lowing refinement of the character variety. A matrix A ∈ SL±n+1(R) is a strictly

convex parabolic if all of its eigenvalues have modulus 1 and there is a unique

largest Jordan block that has odd dimension and eigenvalue 1. An element

of of PGLn+1(R) is strictly convex parabolic if one of its lifts to SL±n+1R is

strictly convex parabolic. Next, let Homscp(Γ,PGLn+1(R)) be the set of repre-

sentations from Γ into PGLn+1(R) such that all non-identity elements of each

peripheral subgroup are mapped to strictly convex parabolics. We now define

the relative character variety which we denote by Xscp(Γ,PGLn+1(R)) to be

the quotient of Homscp(Γ,PGLn+1(R)) by PGLn+1(R) acting by conjugation.

If [ρ0] is an isolated point of Xscp(Γ,PGLn+1(R)) then we say that M (or Γ) is

locally projectively rigid relative to the boundary at ρ0. A simple corollary of

Theorem 3.1.3 and the preceding paragraph is the following

Corollary 3.2.5. Let n ≥ 3 and ρt be a family of holonomies corresponding

to a strictly convex deformation of Mn. Then [ρt] ∈ Xscp(Γ,PGLn+1(R)).

Furthermore, if M is locally projectively rigid relative to the boundary at ρgeo
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then there are no non-trivial strictly convex deformations near the complete

hyperbolic structure on M .

3.2.2.1 More Bending

We now return our attention to the bending construction. In the con-

struction of the bending deformations we did not use the fact that M was

closed, and in fact the construction continues to work if M is non-compact

and S is finite volume. Let ρt be a family of representations obtained by

bending M along a finite volume surface S. A priori we have no guarantee

that these deformed representations that we have constructed correspond to

properly convex deformations of M . Fortunately, by work of Marquis [37, Thm

3.7] these representations do correspond to properly convex deformations.

The next question that we attempt to answer is when are these properly

convex deformations strictly convex. In light of Corollary 3.2.5 we see that a

necessary condition for the structures to be strictly convex is that the [ρt] ∈

Xscp(Γ,PGLn+1(R)). We begin by analyzing the simpler case where S is closed.

Proposition 3.2.6. Let S be a closed totally geodesic hypersurface of M and

let ρt be the family of representations obtained by bending along S. Then [ρt]

is contained in Xscp(Γ,PGLn+1(R)).

Proof. In the case that S is closed and separating a peripheral element, γ ∈

Γ, is contained in either Γ1 or Γ2 since it is disjoint from S. In this case

ρt(γ) is either ρ(γ) or some conjugate of ρ(γ). In either case we have not
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changed the conjugacy class of any peripheral elements and so [ρt] is a curve

of representations in Xscp(Γ,PGLn+1(R)). Similarly if S is closed and non-

separating then if γ ∈ Γ is peripheral, then γ ∈ π1(M\S), and so its conjugacy

class does not depend on t.

The case where S has finite volume, but is non-compact is more subtle.

However, when all of the cusps have torus cross sections then the situation

is greatly simplified. Let C = T × [1,∞), where T is an n − 1 dimensional

Euclidean torus, be a cusp of M . Since S is non-compact and properly em-

bedded we see that S∩C = tki=1 (ti × [1,∞)), where ti is an n−2 dimensional

Euclidean torus. Let ∆ = π1(T ) and δi = π1(ti) and we think of the situation

in the universal cover of M , which we view as the upper half space model,

see Figure 3.4. The universal cover of C is a horoball B with boundary T̃ .

Since S is properly embedded and totally geodesic in M we see after possibly

shrinking B that the lifts S̃ of S intersect B in a collection of parallel vertical

half spaces. The universal covers of the ti are realized as the intersection of S̃

and T̃ .

Next, we examine how δi sits inside of ∆. Observe that ∆ = Zn−1

and δi = Zn−2, and since ti is embedded in T we see that under the inclusion

δi ↪→ ∆ that primitive elements are taken to primitive elements. Therefore

∆/δi ∼= Z (this fact is easily seen by examining the Smith normal form of a

presentation matrix). Let α denote a choice of lift of the generator of ∆/δi to

∆, and we say that α is dual to ti. It should be noted that since the t̃i are all

parallel that the same α is dual to each ti. The element α can be realized as
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Figure 3.4: Bending viewed in upper half space with signed intersection +1

a curve in ∂M that is transverse to the intersection of S and ∂M and we can

compute the signed intersection ι(α, S ∩ T ) of S ∩ T and α In this setting we

can prove the following proposition.

Proposition 3.2.7. Let S be a non-compact, finite volume, totally geodesic

hypersurface of M . Suppose that each cusp Ci of M is diffeomorphic to Ti ×

[1,∞), where Ti is a torus. If ρt is the family of representations obtained by

bending along S then [ρt] is contained in Xscp(Γ,PGLn+1(R)) if and only if

ι(α, S ∩ Ti) = 0 for each i.

Proof. To simplify the exposition we assume that the manifold has a single

cusp T × [1,∞) as the general case follows if and only if it is true for each

individual cusp. The result of bending along S on the cusp can be realized by

bending T along the totally geodesic hypersurface surface S∩T . If this surface
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is disconnected then we are simultaneously bending along each of the connected

components. Each component of S∩T inherits an orientation from S and this

orientation determines the direction (i.e. a choice of xS or −xS as the bending

cocylce) of the bending and as a result it is possible for bendings to cancel

one another. More precisely, bending along oppositely oriented components of

S ∩ T cancel. Thus we see that if ι(α, S ∩ T ) = 0 then all the bendings will

cancel and ρt will be constant when restricted to ∂M . Since ρ0 = ρgeo we see

that [ρt] ∈ Xscp(Γ,PGLn+1(R)) for all t.

If ι(α, S ∩ T ) 6= 0, then by the previous argument some net bending

is occurring in the cusp and we will show that such a bending gives rise to

hyperbolic elements. We now switch to working in the hyperboloid model

of hyperbolic space. By conjugating we can assume that the fixed point of

ρ0(α) is v0 = (0, 0, . . . , 0,−1, 1). Since ρ0(α) is parabolic we see that v0 is an

eigenvector for ρ0(α) of eigenvalue 1 and so

ρt(α) =

(
e−nt 0

0 etI

)
ρ0(α) · v0 =

(
e−nt 0

0 etI

)
· v0 = etv0.

Thus we see that for t 6= 0 that ρt(α) has et as an eigenvalue and is thus

hyperbolic.

It should be noted that for orientable, finite volume hyperbolic 3-

manifolds the cusps are always of the form T 2 × [1,∞) and so Proposition

3.2.7 and Proposition 3.2.7 allow us to analyze all orientable finite volume

hyperbolic 3-manifolds.
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Figure 3.5: The Whitehead link and its totally geodesic surface S

We conclude this chapter by discussing an example of bending along

a non-compact surface. Consider the Whitehead link (see Figure 3.5) along

with the totally geodesic thrice punctured sphere S, its boundary components

t1, t2 and t3, and the cusps C1 and C2. The cusp C1 intersects S in t3 and

experiences non-trivial bending in this cusp. The cusp C2 intersects S in the

parallel 1-tori t1 and t2. These tori are oppositely oriented and cancel and

so this cusp experiences no bending. The result is a representation that is

constant on the fundamental group of C2 but non-trivial on the fundamental

group of C1. From a symmetry of the Whitehead link that exchanges C1 and

C2 we see that there is another totally geodesic thrice punctured sphere which

bends C2 trivially and C1 non-trivially.
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Figure 3.6: Bending of the cusps of the Whitehead link viewed from the uni-
versal cover
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Chapter 4

Rigid Two-Bridge Knots and Links

In this chapter we will focus our attention on strictly convex defor-

mations in dimension 3 and develop the necessary tools to demonstrate that

several two-bridge knots and links do not admit strictly convex deformations

near their complete hyperbolic structure. The rough idea is to prove that there

are no conjugacy classes of representations near [ρgeo] where the peripheral el-

ements are all mapped to strictly convex parabolics. We begin by describing

some useful normal forms for matrices.

4.1 Some Normal Forms

In this section we will examine various normal forms into which we can

put two non-commuting strictly convex parabolic elements of PGL4(R). One

of the difficulties in working with X(Γ,PGL4(R)) is that you are dealing with

conjugacy classes instead of actual representations. One way to deal with this

difficulty is to use normal forms which contain exactly one representation from

each conjugacy class. In this way we can reduce proofs to examining actual

representations which are nicer algebraic objects. The normal forms that we

have chosen are very much in the spirit of those introduced by Riley [42], and
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we now recall his construction. Let a and b be two non-commuting parabolic

(here parabolic is being used in the sense of hyperbolic geometry) elements

of SL2(C), then a and b can be simultaneously conjugated into the following

form:

a =

(
1 1
0 1

)
b =

(
1 0
ω 1

)
, (4.1)

where ω is a non-zero complex number. By Corollary 3.1.4 we know that any

strictly convex parabolic element in PGL4(R) must be conjugate to
1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1


.

(4.2)

With this fact in mind we would like to show that if A0 and B0 are non com-

muting parabolic elements of SO(3, 1) then any two strictly convex parabolic

elements A and B that are sufficiently close to A0 and B0 of PGL4(R) can

be simultaneously conjugated into a normal form similar to (4.1). Before we

proceed we set some notation. Let F2 =< α, β > be the free group on two

letters and let Homscp(F2,PGL4(R)) be the set of homomorphism of F2 that

send α and β to strictly convex parabolics. The remainder of this section will

be dedicated to proving the following proposition.

Proposition 4.1.1. Let f0 ∈ Homscp(F2,PGL4(R)) satisfy the following con-

ditions

1. 〈f0(α), f0(β)〉 is irreducible and conjugate into SO(3, 1).

2. 〈f0(α), f0(β)〉 is not conjugate into SO(2, 1).
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Then for f ∈ Homscp(F2,PGL4(R)) sufficiently close to f0 there exists a unique

(up to ±I) element G ∈ SL4(R) such that

G−1f(α)G =


1 0 1 a14

0 1 1 a24

0 0 1 a34

0 0 0 1

 , G−1f(β)G =


1 0 0 0
b21 1 0 0
b31 1 1 0
1 1 0 1


.

(4.3)

Additionally, the map taking f to its normal form is continuous.

In order to do this we will first show that A and B can be conjugated

into the normal form

A =


1 0 2 1 + a14

0 1 2 1
0 0 1 1
0 0 0 1

 B =


1 0 0 0
b21 1 0 0

b31 + b21b32 2b32 1 0
b21 + b41 2 0 1


.

(4.4)

At first, (4.4) may appear an odd normal form, however it provides a

nice symmetry between A and B and their inverses. For example,

A−1 =


1 0 −2 1− a14
0 1 −2 1
0 0 1 −1
0 0 0 1


,

and there is a similar relation for B−1. To begin we need to show that if A0

and B0 are conjugate into a fixed copy of SO(3, 1) then they can be put into

our normal form. In particular, we would like to build a homomorphism from

SL2(C) to PGL4(R) that send elements in the normal form (4.1) to elements

in the normal form (4.4).
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The standard way to build homomorphisms from SL2(C) to PGL4(R)

is by using quadratic forms of signature (3, 1). The standard way to realize

the group SO(3, 1) is the isometry group of the quadratic form coming from

the symmetric matrix

J =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


.

There is a map, ψ, from R4 into 2× 2 hermitian matrices given by

ψ((x, y, z, t)) =

(
t− z x+ iy
x− iy t+ z

)
.

The negative determinant gives a quadratic form on the set of hermitian ma-

trices and it is a simple computation to see that ψ respects these quadratic

forms. Since hyperbolic space can be realized as vectors v ∈ R4 such that

vTJv = −1, we see that this map takes hyperbolic space onto the set of her-

mitian 2 × 2 matrices of determinant 1. Next, let M be a 2 × 2 matrix and

N ∈ SL2(C). Then we can define an action on via N ·M = NMN∗, where

∗ denotes the conjugate transpose operator. This action is clearly linear and

preserves determinants and thus gives us a representation ψ from SL2(C) to

SO(3, 1). The problem with ψ is that it does not take elements in the normal

form (4.1) to elements in the normal form (4.4). To fix this problem we need

to choose our quadratic form more judiciously.

Let

X =


1 x12 x13 x14

x12 x22 x23 x24

x13 x23 x33 x34

x14 x24 x34 x44
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be a symmetric matrix and observe that X has signature (3, 1) (up to ±I)

if and only if detX < 0. We now examine the restriction placed on the

coefficients of A, B, and X by knowing that the quadratic form determined by

X is preserved by matrices of the type (4.4). The restrictions that ATXA = X

and BTXB = X tell us that

a14 = −2b32, b31 = 0, b41 = −2, x12 = −1, x13 = 2b32, x14 = −b21/2, (4.5)

x22 = 1, x23 = −2b32, x24 = 2b2
32, x33 = b21, x34 = −b21b32, x44 = b21b

2
32.

With these restrictions, we see that our matrix X looks like
1 −1 2b32 −b21/2
−1 1 −2b32 2b2

32

2b32 −2b32 b21 −b21b32

−b21/2 2b2
32 −b21b32 b21b

2
32


,

and we now assume that the entries of A and B satisfy (4.5). If we let x, y, z,

and t, be coordinates for R4 then we see that the quadratic form given by X

is

x2 − 2xy + y2 − b21xt+ 4b2
32yt− 2b21b32zt+ 4b32xz − 4b32yz + b21z

2 + b21b
2
32t

2.

If we let D = b21− 4b2
32, then a simple calculation shows that detX < 0 if and

only if D > 0. We can now define a new map, ψ′, from R4 to 2× 2 hermitian

matrices that takes (x, y, z, t) to(
x x− y + 2b32z − 2b232t+ i(

√
Dz − b32

√
Dt)

x− y + 2b32z − 2b232t− i(
√
Dz − b32

√
Dt) Dt

)
.

It is again easy to see that this map respects the quadratic forms given by X

on R4 and the negative determinant on hermitian matrices, and so as above
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we get a map φ′ from SL2(C) to SO(3, 1)1. Another simple calculation shows

that

φ′
((

1 i/
√
d

0 1

))
=


1 0 2 1 + a14

0 1 2 1
0 0 1 1
0 0 0 1


.

However, by precomposing by a conjugation in SL2(C) we get a new map φ

such that

φ

((
1 1
0 1

))
=


1 0 2 1 + a14

0 1 2 1
0 0 1 1
0 0 0 1


.

A simple, yet tedious, computation shows that if

b21 = |ω|2 and b32 = Re(ω)/2 (4.6)

then φ will take elements of the form (4.1) to elements of the form (4.4). With

these assumptions on b21 and b32 we see that

D = b21 − 4b2
32 = |ω|2 − Re(ω)2 = Im(ω)2,

and so as long as Im(ω) 6= 0 we will be able to put a and b into (4.4).

We are now in position to prove that A and B can be put in the normal

form (4.4).

Lemma 4.1.2. Let f0 ∈ Homscp(F2,PGL4(R)) satisfy the following conditions

1. 〈f0(α), f0(β)〉 is irreducible and conjugate into SO(3, 1).

1The images of ψ and φ′ are conjugate in PGL4(R), but not equal
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2. 〈f0(α), f0(β)〉 is not conjugate into SO(2, 1).

Then for f ∈ Homscp(F2,PGL4(R)) sufficiently close to f0 there exists a unique

(up to ±I) element G ∈ SL4(R) such that

G−1f(α)G =


1 0 2 1 + a14

0 1 2 1
0 0 1 1
0 0 0 1

 G−1f(β)G =


1 0 0 0
b21 1 0 0

b31 + b21b32 2b32 1 0
b21 + b41 2 0 1


.

Additionally, the map taking f to its normal form is continuous.

Proof. The previous argument combined with properties 1 and 2 ensure that

f0(α) and f0(β) can be put into the form (4.4). Let A = f(α) and B = f(β).

Let EA and EB be the 1-eigenspaces of A and B, respectively. Since both

A and B are strictly convex parabolics we know they are each conjugate to

(4.2) and so both of these spaces are 2-dimensional. Irreducibility is an open

condition and so we can assume that f is also irreducible and so EA and EB

have trivial intersection. Therefore R4 = EA ⊕ EB. If we select a basis with

respect to this decomposition then our matrices will be of the following block

form. (
I AU
0 AL

)
,

(
BU 0
BL I

)
.

(4.7)

Observe that 1 is the only eigenvalue of AL (resp. BU) and that neither of

these matrices is diagonalizable, otherwise (A − I)2 = 0 (resp. (B − I)2 = 0)

and so A (resp. B) would not have the right Jordan form. Thus we can further
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conjugate EA and EB so that

AL =

(
1 a34

0 1

)
, BU =

(
1 0
b21 1

)
,

where a34 6= 0 6= b21. Conjugacies that preserve the block form (4.7) are all of

the form 
u11 0 0 0
u21 u22 0 0
0 0 u33 u34

0 0 0 u44


.

Finally, a tedious computation2 allows us to determine that there exist unique

values of the uijs that will finish putting our matrices in the desired normal

form. Note that the existence of solutions depends on the fact that the entries

of A and B are close to the entries of f0(α) and f0(β), which live in SO(3, 1).

Finally, observe that the entries of G continuously depend on the entries of A

and B and so taking f to its normal form is a continuous operation.

Proof of Proposition 4.1.1. By Lemma 4.1.2 we can assume that A and B are

in the normal form (4.4), then by conjugation by the matrix

V =


1 0 0 0

2−b21−b42
4

2+b21+b41
4

0 0
0 0 1

2
2b32+b21b32+b32b41−1

2

0 0 0 2+b21+b41
2


we can put A and B into the desired form. Since the entries of V are continuous

functions of the entries of A and B we see that this operation is continuous.

2This computation is greatly expedited by using Mathematica.
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Remark 4.1.1. Conjugation by V makes sense because A and B are close to

matrices satisfying equations (4.5) and (4.6). Thus 2 + b21 + b41 6= 0 and we

conclude that V is non-singular.

4.2 Two-Bridge Examples

In this section we will prove that several two-bridge knots and links do

not admit strictly convex deformations near their complete hyperbolic struc-

tures. Two-bridge knots and links are an ideal class of examples to study

because, as we will see, they have relatively simple two generator one relator

presentations where the generators can be taken as meridians. Furthermore

they do not contain any closed totally geodesic surfaces [25]. We will analyze

representations of the fundamental groups of two-bridge knots and links by us-

ing the normal forms from the previous section to show that these two-bridge

examples are locally projectively rigid with respect to the boundary at [ρgeo].

We begin with some background information about two-bridge knots

and links (see [12, 36] for details). A knot (or link) L in S3 is two-bridge if it

can be isotoped so that the natural height function coming from its embedding

into R3 has exactly 2 minima and 2 maxima as its critical points. Two-bridge

knots and links are determined by a pair of relatively prime integers p/q where

0 < q < p and q is odd and the parity of p determines whether we have a knot

or a link. Two pairs p/q and p′/q′ give rise to the same knot if and only if

they satisfy the following relationship (see [12] for details).
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p = p′ and qq′ = ±1 (mod p). (4.8)

If q = 1 then then the resulting knot is a torus knot and hence not hyperbolic,

however if q > 1 then the knots are hyperbolic by work of Thurston [47]

We say that L has tunnel number 1 if there exists an arc ` in its

complement with endpoints on the L such that the complement of a regular

neighborhood of L ∪ ` is homeomorphic to a genus 2 handlebody. The arc `

is called an unknotting tunnel. Two-bridge knots and links are all of tunnel

number 1 which can be seen by taking an unknotted arc connecting the maxima

(or minima). The existence of an unknotting tunnel gives a 2 generator 1

relator presentation of π1(S3\L), and when L is two-bridge these generators

can be chosen to be meridians. Given the data of p/q an explicit presentation

can be written down [36, §4.5] which takes the following form.

π1(S3\L) = 〈a, b|aw = wb〉, (4.9)

where w a word in a and b that depends explicitly on p/q. Therefore we can

apply the techniques of the previous section to analyze fundamental groups

of two-bridge knot and link complements and spend the rest of this chapter

proving the following theorem.

Theorem 4.2.1. The two bridge knots and links with rational number 5
3

(figure-eight) , 7
3
, 9

5
, and 8

3
(Whitehead link) do not admit strictly convex de-

formations near their complete hyperbolic structures.
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Remark 4.2.1. The knots and links mentioned in Theorem 4.2.1 correspond to

the 41, 52, 61, and 52
1 in Rolfsen’s table of knots and links [44]

The idea of the proof is as follows: by Corollary 3.2.5 it suffices to

show that these knot complements are locally projectively rigid relative to

the boundary at ρgeo. Using Proposition 4.1.1 we can reduce the problem to

finding representations of π1(S3\L) into PGL4(R) sending peripheral elements

to parabolics to finding generators A and B that are in the normal form (4.3)

and satisfy the matrix equation

AW −WB = 0 or AW −WA = 0, (4.10)

depending on whether L is a knot or link, respectively. Any knot or link for

which this solution set is a discrete subset of R5 (coming from the 5 unknown

entries of (4.3)) will satisfy the conclusion of Theorem 4.2.1.

4.2.1 The Figure-Eight Knot

In this section we prove Theorem 4.2.1 for the figure-eight knot (see

Figure 4.1). The exact computations described in this section can be found in

Appendix 1. The figure-eight knot is a two bridge knot with rational number

5/3 and in this case the word w from the presentation (4.9) is given by w =

ba−1b−1a. Using Mathematica we solve Equation (4.10) and find that there is

the following 1-dimensional solution set
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Figure 4.1: The figure-eight knot

A =


1 0 1 3−t

t−2

0 1 1 1
2(t−2)

0 0 1 t
2(t−2)

0 0 0 1

 , B =


1 0 0 0
t 1 0 0
2 1 1 0
1 1 0 1


,

(4.11)

with ρgeo occurring at t = 4. However, most of these representations do

not correspond to strictly convex deformations, as they map non-meridional

peripheral elements to hyperbolic elements. For example, the element L =

BA−1B−1A2B−1A−1B is a longitude of the knot complement and hence a

peripheral element. A simple calculation shows that tr(L) = 48+(t−2)4

8(t−2)
, and

so L is parabolic if and only if t = 4. Thus there are no strictly convex

deformations of the complete hyperbolic structure on the figure-eight knot,

proving Theorem 4.2.1 for this knot.
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4.2.2 The Whitehead Link

The Whitehead link (see Figure 3.5) is a two-bridge link with rational

number 8/3 and the word w from the presentation (4.9) is given by w =

bab−1a−1b−1ab. Again using Mathematica we see that (4.10) has a unique

solution given by

A =


1 0 1 0
0 1 1 −2
0 0 1 2
0 0 0 1

 , B =


1 0 0 0
4 1 0 0
−1 1 1 0
1 1 0 1


.

(4.12)

The explicit computation can again be found in Appendix 1. Thus there are

no strictly convex deformations of the complete hyperbolic structure on the

Whitehead link, proving Theorem 4.2.1 for this link. In this case it was not

necessary to place any restriction on the trace of any other peripheral element

in order to get a unique solution. We have previously seen in our discussion

of bending that the Whitehead link contains totally geodesic surfaces that

give rise to non-trivial deformations of [ρgeo], however Theorem 3.2.7 tells us

that these deformations do not send peripheral elements to parabolics. This

explains why our previous calculation did not detect these deformations.

Remark 4.2.2. Details of similar calculations for the two-bridge knots with

rational numbers 7/3 and 9/5 can be found in Appendix 1. For these two knots

the solution sets form discrete sets, but contain multiple points. This is to be

expected, as it is known that there are multiple representations of π1(S3\L)

into SL2(C) for these knots that send peripheral elements to parabolics, but

only one of them is discrete and faithful. These representations correspond to
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solutions to a 1-variable polynomial [36, §4.5]. These computations complete

the proof of Theorem 4.2.1 for these knots.
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Chapter 5

Deformations Coming from Symmetry

In this chapter we will discuss certain relationships between symmetries

of infinitesimally rigid knot complements and deformations of certain surgeries

on the knot.

5.1 Decomposing H∗(Γ, sl(4)ρgeo)

As we have previously mentioned, the cohomology group

H1(Γ, sl(4)ρgeo) can be thought of as the space of infinitesimal deforma-

tions of representations of Γ into SL4(R), up to conjugacy. Therefore,

understanding this group can help us to understand various rigidity and

flexibility phenomena. To simplify the situation we will exploit a splitting of

H1(Γ, sl(4)ρgeo) coming from a splitting of sl(4) introduced in [30].

The standard quadratic form used to define H3 is given by the following

matrix

J =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


,

and we realize the group SO(3, 1) as {A ∈ SL4(R) | ATJA = J} with Lie

algebra so(3, 1) = {a ∈ sl(4) | aTJ = −Ja}. Via the adjoint action we see
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that sl(4) is an SO(3, 1)-module and that J gives rise to a module isomor-

phism given by a 7→ −JaTJ . This map is clearly an involution and so we

can decompose sl(4) into submodules coming from the ±1-eigenspaces of this

involution. A simple computation shows that so(3, 1) is the 1-eigenspace and

the -1-eigenspace is given by

v = {a ∈ sl(4) | atJ = Ja}.

In this way we get the following splitting as SO(3, 1) modules:

sl(4) = so(3, 1)⊕ v. (5.1)

It should be noted that this is not a splitting as Lie algebras since v is not

closed under the Lie bracket.

The Killing form, denoted B(X, Y ), is a non-degenerate bilinear form

defined on sl(4) by B(X, Y ) = 8tr(XY ). Invariance of trace function under

conjugation tells us that B is invariant under the adjoint action of SL4(R)

on sl(4). Another simple computation shows that B is non-degenerate when

restricted to so(3, 1) and that v is the orthogonal complement of so(3, 1) and

so the splitting (5.1) is an orthogonal decomposition. Finally, given a repre-

sentation ρ : Γ→ SO(3, 1), the splitting (5.1) gives rise to a splitting

H∗(Γ, sl(4)ρ) = H∗(Γ, so(3, 1)ρ)⊕H
∗(Γ, vρ), (5.2)

in the obvious way.
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5.2 Cuspidal Cohomology and Poincaré Duality

Henceforth, let M be a finite volume hyperbolic 3-manifold with Γ =

π1(M), and let ρgeo be the geometric representation of M . Assume that M

has k cusps which we denote ∂iM for 1 ≤ i ≤ k. Recall that since M is

aspherical there is a natural isomorphism between H∗(π1(M), sl(4)ρgeo) and

H∗(M, sl(4)ρgeo). Let ∂M be the (possibly empty) boundary of M and let

ι : ∂M →M be the map induced by inclusion. The map ι induces a map

ι∗gρgeo : H∗(M, gρgeo)→ H∗(∂M, gρgeo), (5.3)

where g denotes sl(4), so(3, 1), or v. When no confusion will arise we refer

to ι∗gρgeo as ι∗. For any such system of coefficients we refer to the kernel of

ι∗gρgeo as gρgeo-cuspidal cohomology, and we say that M (or Γ) is infinitesimally

projectively rigid relative to the boundary if it has trivial sl(4)ρgeo-cuspidal

cohomology. Being infinitesimally projectively rigid relative to the boundary

means that any deformation of ρgeo in G is infinitesimally induced by a de-

formation of ρgeo restricted to π1(∂M). This definition is an extension of the

notion of infinitesimal projective rigidity to non-compact manifolds, and when

M is closed the two definitions coincide.

Next, we will describe a twisted cohomology version of Poincaré duality

and how it is used to analyze ι∗vρgeo . The Killing form gives rise to a perfect

pairing which we call the cup product (see [28] for details of this construction)

∪ : H i(M, gρgeo)×H3−i(M,∂M, gρgeo)→ R. (5.4)
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Using this pairing we get the natural identification

H i(M, gρgeo)
∼= H3−i(M,∂M, gρgeo)

∗,

where in this setting ∗ refers to the vector space dual. This identification is

commonly called Poincaré duality. Combining Poincaré duality with the long

exact sequences coming from the pair (M,∂M) we get the following diagram:

H1(M, gρgeo)

��

ι∗ // H1(∂, gρgeo)

��

β // H2(M,∂M, gρgeo)

��
H2(M,∂M, gρgeo)

∗ β∗ // H1(∂M, gρgeo)
∗ (ι∗)∗ // H1(M, gρgeo)

∗
.

(5.5)

Using (5.5) and elementary linear algebra we arrive at the following result.

Lemma 5.2.1. Let M be a finite volume hyperbolic 3 manifold then

dim ι∗gρgeo (H1(M, gρgeo)) =
1

2
dimH1(∂M, gρgeo).

This result admits several generalizations, including to arbitrary com-

pact 3-manifolds with untwisted Q coefficients [27] as well as twisted coeffi-

cients in a semisimple Lie algebra [29]. Results of this type are often referred

to as half-lives/half-dies.

Due to its relevance in hyperbolic geometry, the map

ι∗so(3,1) ρgeo
: H1(M, so(3, 1)ρgeo)→ H1(∂M, so(3, 1)ρgeo)

has been well studied. By work of Garland, [21] ι∗so(3,1) ρgeo
is an injection (this

includes the case where ∂M = ∅ where it is known as Weil rigidity [49]).

Additionally,

H0(∂M, so(3, 1)ρgeo)
∼= ⊕ki=1H

0(∂Mi, so(3, 1)ρgeo),
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where ∂Mi is the ith boundary component. For each i, H0(∂Mi, so(3, 1)ρgeo)
∼=

H0(Z2, so(3, 1)ρgeo), the latter of which consists of the elements of so(3, 1)

on which that adjoint action of Z2 is trivial. Therefore the dimension of

H0(∂M, so(3, 1)ρgeo) is 2k dimensional. Combining this with Poincaré du-

ality and the fact that the Euler characteristic of ∂M is zero we find that

H1(∂M, so(3, 1)ρgeo) is 4k dimensional. Finally, by half-lives/half-dies we see

that

dimH1(M, so(3, 1)ρgeo) = dim ι∗so(3,1) ρgeo
(H1(M, so(3, 1)ρgeo)) = 2k.

We close this section by mentioning two lemmas from [28] about the

cohomology of ∂M with coefficients in vρgeo . If ∂iM is a component of ∂M

and m and l are generators of π1(∂M) then ρgeo(m) and ρgeo(l) are affine

translations and can thus be identified with vectors in R2.

Lemma 5.2.2 ([28, Lem 5.5]). Let m and l be generators of π1(∂iM) and let

ι∗m and ι∗l be the maps induced by inclusion. If the angle between m and l is

not an integral multiple of π/3 then the map

H1(∂iM, vρgeo)
ι∗m⊕ι∗l→ H1(m, vρgeo)⊕H1(l, vρgeo)

is an injection. Furthermore, ι∗m and ι∗l both have rank 1.

We previously mentioned that there are representations near ρgeo that

correspond to incomplete structures on M . Let ρu be such a representation,

then we have the following lemma
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Lemma 5.2.3 ([28, Lem 5.3]). If ρu is the holonomy of an incomplete hyper-

bolic structure on M then there is a natural isomorphism

H∗(∂iM, vρgeo)
∼= H∗(∂iM,R)⊗ vρu(π1(∂i(M))),

where vρu(π1(∂iM)) are elements of v on which the adjoint action is trivial.

5.3 Deformations Coming From Surgery

In this section we describe how to build deformations near the geometric

representation of certain hyperbolic manifolds (and orbifolds) resulting from

surgery on certain knot complements. We begin with a discussion of hyperbolic

Dehn filling (see [41, 47] for more details). Let M be a finite volume hyperbolic

3-manifold with a single cusp. A slope α of ∂M is a homotopy class of a

simple closed curve on ∂M . Since π1(∂M) ∼= Z2 we see that after identifying

the generators of Z2 with m and l that α = pm + ql where (p, q) = 1. It

then follows that slopes are in bijective correspondence with Q∪{∞}, and we

write a slope α = p/q. Given a slope α we can form a new manifold M(α) by

gluing a solid torus to M along their boundaries so that the meridian of the

solid torus is mapped to α. The manifold M(α) is called the Dehn filling of

M along α. A simple Van-Kampen argument shows that

π1(M(α)) ∼= π1(M)/〈〈α〉〉, (5.6)

where 〈〈α〉〉 is the normal closure of α in π1(M).

We now relate this construction to hyperbolic geometry. By work of

Thurston [47] there is a parameterization of hyperbolic structures on M by
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a neighborhood of ∞ in R2 ∪ {∞} such that ∞ corresponds to the complete

hyperbolic structure and points in R2 correspond to incomplete structures.

The coordinates of a point (p, q) ∈ R2 help us to understand the metric com-

pletion of these incomplete structures on M , which we refer to as M̂ . These

completions come in the following three flavors.

1. If p/q ∈ R\Q then M̂ is the one point compactification of M . Neighbor-

hoods of the added point are solid tori and thus M̂ is not a manifold.

We will not be interested in completions of this type.

2. If p and q are a pair of relatively prime integers then M̂ is the Dehn

filling M(p/q).

3. If p/q = p′/q′ where p′ and q′ are relatively prime integers then M̂ is a

cone manifold. This case is the singular version of type 2. Geometrically,

this manifold can be realized by gluing a solid torus with longitudinal

cone singularity with cone angle 2πp′/p so that the meridian of this

singular torus is mapped to the slope p′/q′ and we denote the completion

by M(p/q). When p/p′ = n is an integer then M(p/q) is an orbifold with

orbifold fundamental group πorb1 (M(p/q)) = π1(M)/〈〈αn〉〉, where α is

the slope corresponding to p′/q′ (see [31, §6] for definitions concerning

orbifolds and πorb1 (M(p/q))).

Suppose now that M(α) is hyperbolic and that ρ0 : π1(M(α)) →

PGLn+1(R) is its geometric representation. Let ρt be a non-trivial deformation
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of ρ0 in PGL4(R). From (5.6) we see that we are able to pull ρt back to a

curve of representations ρ̃t : Γ → PGLn+1(R) such that ρt(α) = 1 for all t.

In terms of cohomology we see that if ω ∈ H1(M, sl(4) ρ̃0)) is the cohomol-

ogy class coming from ρ̃t then ω has trivial image in H1(α, sl(4) ρ̃0). Thus

we would like to know given a cohomology class θ ∈ H1(M, sl(4) ρ̃0) whose

image in H1(α, sl(4) ρ̃0) is trivial when does this cohomology class come from

a deformation of M(α).

In order to begin answering this question we need to carefully analyze

the image of the map

H1(M, vρu)→ H1(∂M, vρu),

when ρu is the holonomy of an incomplete structure on M . Combining Lemma

5.2.3 with half-lives/half-dies we see that this map has rank 1. With this in

mind we say that a slope α is rigid if the map H1(M, vρgeo)→ H1(α, vρgeo) is

not the zero map. In Section 4.2.2 we saw that bending along the appropriate

totally geodesic thrice punctured spheres we were able to deform the meridian

of each of the cusps of the Whitehead link, and thus we conclude that both

meridians are rigid slopes. Additionally, in [28] it is shown that the figure-

eight knot has trivial sl(4)ρgeo-cuspidal cohomology. Combining this with the

calculations from Section 4.2.1 exhibiting a family of deformations that do not

deform the meridian shows that the meridian of the figure-eight is not a rigid

slope. Since the longitude non-trivially deforms under the deformation (4.11)

this same computation shows that the longitude of the figure-eight is a rigid

slope.
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We now examine how certain symmetries of M constrain the way this

image sits inside of H1(∂M, vρu). For the remainder of this chapter assume

that M is the complement of a hyperbolic amphicheiral knot complement, Γ =

π1(M), and m and l are a meridian/longitude pair generating π1(∂M). From

amphicheirality we know that M admits an orientation reversing symmetry φ

such that φ(l) = l and φ(m) = m−1. The map φ also induces an isomorphism,

which we will also denote by φ, on Γ. The existence of this symmetry places

strong restrictions on the holonomy of ∂M . Let ρu be the holonomy of some

(possibly incomplete) hyperbolic structure on M .

If we view ρu as a representation into PSL2(C) then after conjugation

we can arrange so that

ρu(m) =

(
eau/2 1

0 e−au/2

)
,

ρu(l) =

(
ebu/2 τu

0 e−bu/2

)
, (5.7)

where au, bu, and τu are complex numbers and we call τu the τ -invariant of

ρu (see also [9, App B]). The values of au, bu and τu are all invariants of the

conjugacy class of ρu and thus the form (5.7) contains geometric information

about ρu. Specifically, ρu(m) and ρu(l) preserve a common geodesic and au

and bu represent the complex translation length of the isometry. When au

(resp. bu) is real then we say that ρu(m) (resp. ρu(l)) is a pure translation,

which is equivalent to tr2ρu(m) (resp. tr2ρu(l)) being real and greater than 4.

Similarly if au (resp. bu) is imaginary then we say that ρu(m) (resp. ρu(l)) is

a pure rotation, which is equivalent to tr2ρu(m) (resp. tr2ρu(l)) being real and

between 0 and 4. Additionally, if ρu is the geometric representation of M then
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au = bu = 0 and τu coincides with the cusp shape and identifies the Euclidean

structure on the cusp of M .

Suppose now that ρu is a representation such that the completion of the

corresponding hyperbolic structure is M(α/0), that is to say the completion is

realized by gluing a singular solid torus with longitudinal singularity of angle

2π/α along the meridian of M . We will be most interested in the case where

M is an amphicheiral hyperbolic knot complement and α = n is an integer.

In this case the representation ρu naturally factors through a representation

Γn := πorb1 (M(n/0)) → PSL2(C), which we also call ρu. In this case, ρu is

the geometric representation of the hyperbolic orbifold M(n/0) and to avoid

confusion with the geometric representation of M we will henceforth refer to

ρu as ρn. In this setting we can prove the following theorem whose proof will

comprise the remainder of this chapter.

Theorem 5.3.1. Let M be the complement of a hyperbolic, amphicheiral knot,

and suppose that M is infinitesimally projectively rigid relative to the boundary

at ρgeo and the longitude is a rigid slope. Then for sufficiently large n, M(n/0)

has a one dimensional space of strictly convex projective deformations near the

complete hyperbolic structure.

Remark 5.3.1. This result generalizes work of Heusener and Porti [28, Thm

1.8] who proved Theorem 5.3.1 for the figure-eight knot, and many of our

arguments closely parallel theirs.

The idea behind the proof will be to build a curve of representations
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tangent to a cohomology class in H1(Γn, sl(4)ρn) which by the orbifold gen-

eralizations of Theorem 3.2.1 and Corollary 3.2.2 give rise to strictly convex

projective deformations. We begin by proving the following lemma about the

holonomy ρu.

Lemma 5.3.2. Let M be an amphicheiral hyperbolic knot complement and let

ρu be the holonomy of an incomplete hyperbolic structure on M such that the

completion of M is M(α/0). If α ≥ 2 then ρu(m) is a pure rotation and ρu(l)

is a pure translation. Furthermore, the cusp shape of M is imaginary.

Proof. Since the completion associated to ρu is M(α/0) we know that ρu(m)

is elliptic and thus fixes its axis pointwise and acts as a pure rotation. We

now show that tr2ρu(l) is real and greater than 4. Since α ≥ 2 we can apply

rigidity results of cone manifolds from [29, 32] to show that there exists and

element Au ∈ PSL2(C) such that ρu(φ(γ)) = Auρu(γ)A−1
u , where M denotes

complex conjugation of the entries of the matrix M . Since the τ -invariant

is independent of conjugacy we find that τρu◦φ = τu. On the other hand φ

preserves l and sends m to its inverse and so we see that τρu◦φ = −τu, and

thus τu is imaginary. Since ρu → ρgeo as α→∞ and τ coincides with the cusp

shape for ρgeo this proves the second part of the lemma. It should be noted

that this fact about the cusp shape was originally observed by Riley [43] and

that the proof that τ is imaginary is similar in spirit to Riley’s proof for the

cusp shape.

The fact that ρu(m) and ρu(l) commute gives rise to the following
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relationship between au, bu and τu:

τu sinh(au/2) = sinh(bu/2). (5.8)

Using the fact that trρu(m)/2 = cosh(a/2) and the analogous relationship for

l we see that when we square both sides of (5.8) we get

τ 2
u(tr2ρu(m)− 4) + 4 = tr2ρu(l).

Finally, we have seen already that tr2ρu(m) is real and between 0 and 4, and

combining this with the fact that τu is imaginary forces tr2ρu(l) to be real and

greater than 4.

The map φ induces a map φ∗ : H1(∂M,R) → H1(∂M,R) which can

be easily understood. The cohomology group H1(∂M,R) ∼= H1(Z2,R) ∼= R2

and φ∗ is an involution with m and l serving as an eigenbasis for φ∗. Since φ

send m to m−1 we see that φ descends to a map φn : Γn → Γn and in [28] it

is shown that φn induces a map

φ∗n : H1(Γn, sl(4)ρn)→ H1(Γn, sl(4)ρn).

The rough idea is that φ induces a map from H1(Γn, sl(4)ρn) to

H1(Γn, sl(4)ρn◦φ), however by Mostow-Prasad rigidity we know that there ex-

ists An ∈ O(3, 1) such that ρn ◦ φ = Adj An ◦ ρn, which allows to identify

sl(4)ρn◦φ with sl(4)ρn . As n → ∞ the representations ρn → ρgeo so we also

get a map

φ∗∞ : H1(Γ, sl(4)ρgeo)→ H1(Γ, sl(4)ρgeo).
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By Weil rigidity [49] we know that the first factor in the splitting (5.2)

is trivial and so we focus our attention on the maps

φ∗n : H1(Γn, vρn)→ H1(Γn, vρn),

which in turn gives rise to a maps

φ∗n : H1(∂M, vρn)→ H1(∂M, vρn),

implicit in which is the identification between group and singular cohomology.

In [28] it is shown how understanding the action of φ∗n on H1(∂M, vρn) can

help to understand its action on H1(Γn, vρn). With this in mind we prove the

following two lemmas that generalize [28, Lem 8.2].

Lemma 5.3.3. Let M be an amphicheiral hyperbolic knot complement, then

H∗(∂, vρn) ∼= H∗(∂M,R)⊗ vρn(π1(∂M)) and φ∗n = φ∗ ⊗ Id.

Proof. By Lemma 5.2.3 we know that there is a natural identification

H∗(∂, vρn) ∼= H∗(∂M,R) ⊗ vρn(π1(∂M)) and so φ∗n = φ∗ ⊗ ψ, and we would

like to show that ψ = Id. Since M is amphicheiral Lemma 5.3.2 tells us that

after conjugating the standard embedding of PSL2(C) into SO(3, 1) that

ρn(m) =


cos(2π/n) − sin(2π/n) 0 0
sin(2π/n) cos(2π/n) 0 0

0 0 1 0
0 0 0 1


and

ρn(l) =


1 0 0 0
0 1 0 0
0 0 cosh(λn) sinh(λn)
0 0 sinh(λn) cosh(λn)


,
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where λn is the translation length of ρn(l). After this observation the proof

that ψ = Id is the identical to the proof found in [28, Lem 8.2], to which we

refer the reader.

The next lemma examines the action of φ∗∞. When M is amphicheiral

Lemma 5.3.2 tells us that ρgeo(m) and ρgeo(l) are Euclidean translations by

orthogonal vectors (when viewed in the upper half space model). Therefore

by Lemma 5.2.2 we know that

H1(∂M, vρgeo)
ι∗m⊕ι∗l→ H1(m, vρgeo)⊕H1(l, vρgeo)

is injective.

Lemma 5.3.4. Let M be an amphicheiral hyperbolic knot complement then

ι∗l ◦ φ∗∞ = ι∗l and ι∗m ◦ φ∗∞ = −ι∗m

Proof. Since M is amphicheiral Lemma 5.3.2 tells us that the cusp shape is

imaginary and thus after conjugation

ρgeo(m) =

(
1 1
0 1

)
and ρgeo(l) =

(
1 ic
0 1

)
,

where c is a positive real number. By post composing with the standard

embedding of PSL2(C) into SO(3, 1) we see that

ρgeo(m) = exp


0 0 0 0
0 0 −1 1
0 1 0 0
0 1 0 0

 and ρgeo(l) = exp


0 0 −c c
0 0 0 0
c 0 0 0
c 0 0 0


,
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where exp denotes the matrix exponential. By Mostow-Prasad rigidity we

know that there exists an element A∞ ∈ O(3, 1) such that ρgeo ◦φ = Adj A∞ ◦

ρgeo. Since φ takes preserves l and sends m to its inverse we see that

A∞ = T


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

where T is a parabolic element of SO(3, 1) that fixes the vector (0, 0, 1, 1)

(which corresponds to the common fixed point of ρgeo(m) and ρgeo(l)). Such a

T will be of the form

T = exp


0 0 −a a
0 0 −b b
a b 0 0
a b 0 0


,

where a and b are real numbers which can be thought of as the real and imag-

inary parts of the complex number that determines the parabolic translation.

From arguments in the proof of [28, Lem 5.5] we know that H1(∂M, vρgeo)

is generated by cocycles zm and zl, where zm is given by zm(l) = 0 and

zm(m) = al, where

al =


−1 0 0 0
0 3 0 0
0 0 −1 0
0 0 0 −1


,

and zl is given by zl(m) = 0 and zl(l) = am, where

am =


3 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


.
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Next, observe that φ∞(zl(m)) = 0 = zl(m) and that

φ∞(zm(m)) = Ad A−1
∞ ◦ zm(m−1) = −Ad A−1

∞ ρgeo(m−1) ◦ al.

We have previously seen that the Killing form on v gives rise to a cup product

on cohomology, and we now use this cup product to show that ι∗m ◦φ∗∞(zm(m))

is cohomologous to −ι∗m(zm(m)). The cup product yields a map

∪ : H1(m, vρgeo)⊗H0(m, vρgeo)→ H1(m,R) ∼= R

via the formula

(a ∪ b)(m) = B(a(m), b) = 8tr(a(m)b), (5.9)

where B is the killing form and we think of H1(m,R) as homomorphisms from

Z to R where m is the generator of Z. A simple matrix calculation reveals

that

(ι∗m ◦ φ∗∞(zm) ∪ am)(m) = B(φ∗∞(zm(m)), am) = 32

= −B(al, am) = −(ι∗m(zm) ∪ am)(m).

By Lemma 5.2.2 we know that [ι∗m ◦ φ∗∞(zm)] and [−ι∗m(zm)] are in the same

1-dimensional subspace and thus ι∗m ◦ φ∗∞(zm) and −ι∗m(zm) are cohomologous

and so ι∗m ◦ φ∗∞ = −ι∗m.

Finally, a similar computation shows that

(ι∗l ◦ φ∗∞(zl) ∪ al)(l) = B(φ∗∞(zl(l)), al) = −32

= B(am, al) = (ι∗l (zl) ∪ zl)(l),

and a similar argument shows that ι∗l ◦ φ∗∞ = ι∗l .
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The previous two lemmas can be thought of as saying that φ∗n and φ∗∞

act the way we would expect them to on cohomology, namely they act as

involutions with eigenvalues coming from m and l respectively. Another con-

sequence of these lemmas is to help us understand the image of H1(M, vρn) in

H1(∂M, vρn) under the map ι∗. In particular, we see that π1(∂M) is invari-

ant under φ and thus the image of H1(M, vρn) under ι∗ will be an invariant

subspace for the action of φ∗∞ and must therefore be equal to either the ±1-

eigenspace of φ∗∞. By Lemmas 5.3.3 and 5.3.4 we see that these eigenspaces sit

inside of H1(l, vρn) and H1(m, vρn), respectively. The following lemma (similar

to [28, Cor 8.3]) tells us that under the hypotheses of Theorem 5.3.1 that the

image will live in the 1-eigenspace.

Lemma 5.3.5. Let M be the complement of a hyperbolic, amphicheiral knot,

and suppose that M is infinitesimally projectively rigid relative to the boundary

at ρgeo and the longitude is a rigid slope. For sufficiently large n the image un-

der ι∗ of H1(M, vρn) is contained in the 1-eigenspace of φ∗n inside H1(∂M, vρn)

Proof. Since ρ∞ = ρgeo the lemma also covers the case where n = ∞. Since

the longitude is a rigid slope and the maps φ∗∞ and ι∗ commute we see that

Lemma 5.2.2 implies that φ∗∞ acts as the identity on H1(M, vρgeo). Combining

this fact with the infinitesimal projective rigidity of M proves the lemma for

n =∞.

Furthermore, that fact that M is infinitesimally projectively relative

to the boundary combined with [28, Cor 6.6] implies that H1(M, vρn) injects
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into H1(∂M, vρn) as a 1-dimensional invariant subspace for φ∗n provided that

M(n/0) is hyperbolic. Thus the image is contained in either ±1-eigenspace of

φ∗n. Continuity implies that for sufficiently large n the image must be in the

1-eigenspace.

We will soon see how this fact can help us build representations, but

before we proceed we need to relate the group cohomology of Γn to a variant

of simplicial cohomology for orbifolds.

Henceforth, we will refer to M(n/0) as On. The theory of twisted coho-

mology for orbifolds is similar to that of manifolds and is detailed in [28]. The

rough idea is to choose a CW structure on the underlying manifold of the orb-

ifold (S3 in our case) for which the singular locus is a subset of the 1-skeleton

of the CW structure. For sufficiently large n, On is finitely covered by a hy-

perbolic (and hence aspherical) manifold. Combining this fact with a transfer

argument [28] shows that H∗(On, sl(4)ρn) ∼= H∗(Γn, sl(4)ρn)1. The utility of

this fact is that orbifold cohomology provides us with Mayer-Vietoris sequences

to calculate H∗(On, sl(4)ρn) and thus gain information about H∗(Γn, sl(4)ρn)

which can help us build representations.

We now discuss a technique to build representations. Suppose that we

are given a curve of representations ρt : Γ→ SL4(R), then for small values of

t and γ ∈ Γ we can use power series to write

ρt(γ) = (I + u1(γ)t+ u2(γ)t2 + . . .)ρ0(γ),

1This remains true if we replace sl(4)ρn
with either so(3, 1)ρn

or vρn
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where ui : Γ → sl(4) are 1-cochains. A direct calculation shows that ρt is a

homomorphism if and only if for all k ∈ Z+ we have

δuk +
k−1∑
i=1

ui ∪ uk−i = 0, (5.10)

where (a∪ b)(c, d) = a(c)c · b(d), where a, b are 1-cochains, c, d ∈ Γ, the action

is by conjugation and the multiplication is matrix multiplication in sl(4). The

map δ is the differential from group cohomology and is given by

δa(b, c) = a(b) + ρ0(b) · a(c)− a(bc),

where a is a 1-cochain and b, c ∈ Γ. In particular (5.10) tells us that u1 is a

1-cocyle and thus corresponds to an element of H1(Γ, sl(4)ρ0). Conversely, a

deep result of Artin [2] tells us that given a representation ρ0, a cohomology

class [u1], and a collection {ui}∞i=2 of 1-cochains satisfying (5.10) that there

is another collection of 1-cochains {u′i}∞i=2 and a positive real number T such

that for all γ ∈ Γ and 0 ≤ t < T the series

(I + u1(γ)t+ u′2(γ)t2 + . . .)ρ0(γ)

converges. The takeaway from this result is that if we are able to build a

formal representation near ρ0 (i.e. find 1-cochains satisfying (5.10)) then we

are able to find actual representation. If a cohomology class [ω] is tangent to

a curve of representations ρt then we say that [ω] is integrable. We can now

prove Theorem 5.3.1.

Proof of Theorem 5.3.1. Throughout this proof we will denote On as O and

for the purpose of a Mayer-Vietoris argument we decompose O as M ∪ N
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where N is a solid torus with cone singularities along the longitude of cone

angle 2π/n. Observe that M ∩ N ∼= ∂M . We now examine the cohomology

H∗(Γn, sl(4)ρn) ∼= H∗(On, sl(4)ρn). As On is 3 dimensional Hk(On, sl(4)ρn) =

0 if k > 3. Since ρn is irreducible we see that H0(Γn, sl(4)ρn) = 0 and thus

by Poincaré duality H3(Γn, sl(4)ρn) = 0 as well. Combining Weil rigidity

with the decomposition (5.2) we see that H1(Γn, sl(4)ρn) ∼= H1(Γn, vρn). Fi-

nally, another application of Poincaré duality tells us that H2(Γn, sl(4)ρn) ∼=

H2(Γn, vρn).

We now use a Mayer-Vietoris sequence to analyze H i(On, vρn) for i =

1, 2 as well as the action of ι∗n. To simplify notation H∗( , vρn) will now be

denoted H∗( ). Consider the following section of the Mayer-Vietoris sequence:

H0(M)⊕H0(N)→ H0(∂M)→ H1(O)→ H1(M)⊕H1(N)→ H1(∂M).

(5.11)

First, we will determine the cohomology of N . Since N has the ho-

motopy type of S1 it will only have cohomology in dimension 0 and 1. Since

ρn(∂M) = ρn(N) we see that H0(N) ∼= H0(∂M) (both are 1-dimensional). By

duality we see that H1(N) is also 1-dimensional. Combining these facts, we

see that the first arrow is an isomorphism and thus the penultimate arrow of

(5.11) is injective. We also learn that H1(O) injects into H1(M), because if

a cohomology class from H1(O) dies in H1(M) then exactness tells us that it

must also die when mapped into H1(N) (since H1(N) injects into H1(∂M)).
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However, this contradicts the fact that H1(O) injects into H1(M)⊕H1(N).

Since H1(O) injects into H1(M) Lemma 5.3.2 implies that φ∗n acts as

the identity on H1(O). Since H1(M) and H1(N) both have the 1-eigenspace

of φ∗n as their image in H1(∂M), and so we see that the last arrow of (5.11) is

not a surjection, and so H1(O) is 1-dimensional.

Duality tells us that H2(O) is also 1-dimensional and we will now show

that φ∗n act as multiplication by -1. As H3(O) = 0 we see that the Mayer-

Vietoris sequence also contains the following piece.

H1(M)⊕H1(N)→ H1(∂M)→ H2(O)→ H2(M)⊕H2(N)→ H2(∂M)→ 0.

(5.12)

Since H2(O) is 1-dimensional, the second arrow of (5.12) is either trivial

or surjective. If this arrow is trivial then the third arrow is an injection and

thus an isomorphism for dimensional reasons, but this is a contradiction since

the penultimate arrow is a surjection and H2(∂M) is non-trivial. Since the

first arrow of (5.12) has the 1-eigenspace of φ∗n as its image we see that the -1-

eigenspace of φ∗n surjects H2(O). However, since the Mayer-Vietoris sequence

is natural and φ respects the splitting of O into M ∪N we see that φ∗ acts on

H2(O) as -1.

By the previous arguments we know that H1(O) is 1-dimensional and

thus there is at most 1 dimensions worth of strictly convex deformations.

Let [u1] be a generator of H1(O). Since φ is an isometry of a finite volume
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hyperbolic manifold we know that it has finite order when viewed as an element

of Out(π1(M)) [47], and so there exists a finite order map ψ that is conjugate

to φ, and we let L be the order of ψ. Because φ and ψ are conjugate, they have

the same action on the cohomology groups [11]. Since ψ acts as the identity

on H1(O) we know that the cocycle

u∗1 =
1

L

(
u1 + ψ∗n(u1) + . . . (ψ∗n)L−1(u1)

)
is both invariant under ψ∗n and cohomologous to u1. By replacing u1 with u∗1

we can assume that u1 is invariant under ψ∗n
2. Next, observe that

−u1 ∪ u1 ∼ ψ∗n(u1 ∪ u1) = ψ∗n(u1) ∪ ψ∗n(u1) = u1 ∪ u1,

and so [u1∪u1] = 0 and there exist a 1-cochain u2 such that δu2 +u1∪u1 = 0.

Using the same averaging trick as before we can replace u2 with a ψ∗n invariant

cochain u∗2. By invariance of u1 we see that u∗2 has the same coboundary as

u2 and so this replacement does not affect the first part of our construction.

Again we see that

−(u1 ∪ u2 + u2 ∪ u2) ∼ ψ∗n(u1 ∪ u2 + u2 ∪ u1) = u1 ∪ u2 + u2 ∪ u1,

and so there exists u3 such that (5.10) is satisfied. Repeating this process

indefinitely, we can construct a sequence ui that satisfies (5.10), and thus by

Artin’s theorem we can construct our curve of representations.

2As a cocycle and not just as a cohomology class.
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Other than the figure-eight knot, we cannot yet prove that there exist

other knots satisfying the hypotheses of Theorem 5.3.1. However, there is

strong numerical evidence that the two bridge knot with rational number 13
5

satisfies these conditions. Also, in light of Theorem 4.2.1 and the rarity of

deformations in the closed examples computed in [16], it seems that two bridge

knots that are infinitesimally rigid relative to the boundary may be quite

abundant. Additionally, there are infinitely many amphicheiral two-bridge

knots and the condition of the longitude being a rigid slope is quite general,

and so there is hope that there are many situations in which Theorem 5.3.1

applies.
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Chapter 6

Future Directions

The results from the previous chapter suggest several future directions

of research which we briefly outline in this chapter.

6.1 Smoothness of Character Varieties and Geometry
of Representations

As previously discussed, if M is a finite volume hyperbolic 3-manifold

with π1(M) = Γ then the dimension of H1(M, sl(4)ρgeo) gives an upper bound

for the dimension of X(Γ, SL4(R)) near [ρgeo]. It is well known [29, 47] that

the dimension H1(M, so(3, 1)ρgeo) is equal to the dimension of X(Γ, SO(3, 1))

near [ρgeo]. Thus a natural question is whether this is true for X(Γ, SL4(R)).

However, using obstruction theoretic techniques, the authors in [16] found ex-

amples of closed M for which there are non-trivial elements of H1(Γ, sl(4)ρgeo)

that cannot be integrated to actual representations and so in general the an-

swer to this question is no. For this reason we restrict our attention to the

following question.

Question 2. Let M be a finite volume hyperbolic 3-manifold. Suppose that

M is infinitesimally projectively rigid relative to the boundary. Then is
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X(Γ, SL4(R)) smooth near [ρgeo]?

There is some evidence that the answer to Question 2 may be yes for

both the figure-eight knot complement and the Whitehead link complement.

For the figure-eight knot complement H1(M, sl(4)ρgeo)
∼= H1(M, so(3, 1)ρgeo)⊕

H1(M, vρgeo) has dimension 3 by half-lives/half-dies. As previously men-

tioned, any cohomology class in H1(M, so(3, 1)ρgeo) is integrable. Additionally,

H1(M, vρgeo) is 1-dimensional and Theorem 5.3.1 showed that any cohomol-

ogy class in this factor is integrable. Thus we have found deformations in 3

linearly independent directions, but we currently do not know if linear combi-

nations of these cohomology classes give rise to integrable cohomology classes.

In a similar fashion we can find 6 linearly independent deformations for the

Whitehead link (the cohomology classes of H1(M, vρgeo) arise from the bending

construction and are thus integrable).

Another related question deals with the geometry of representations

near ρgeo. Using hyperbolic Dehn surgery we know that there are hyperbolic

representations near ρgeo that do not correspond to convex structures on M .

However, in (4.11) we constructed a curve ρt of representations passing through

ρgeo that does not correspond to a strictly convex structure on M . However,

in future work with D. Cooper and D. Long it will be shown that this curve of

representations actually corresponds to a properly convex deformation of M .

This situation prompts the following question.

Question 3. Let M be a finite volume hyperbolic 3-manifold and let ρt be
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a curve of representations passing through ρgeo. What conditions on ρt will

guarantee that they correspond to properly convex structures on M?

The representations coming from hyperbolic Dehn surgery all have

peripheral elements whose holonomy have complex eigenvalues, whereas the

properly convex representations on the figure-eight send all peripheral elements

to matrices with real eigenvalues. Thus the answer to Question 3 probably in-

volves information about eigenvalues.

6.2 Cuspidal Cohomology and Totally Geodesic Sur-
faces

The Bianchi groups, Γd := PSL2(Od), where d is a positive, square

free integer and Od is the ring of integers of the imaginary quadratic field

Q(
√
−d), provide a 3-dimensional analogue of the classic modular group,

PSL2(Z). These groups are discrete inside of PSL2(C), and the cusped hy-

perbolic orbifolds, Od := H3/Γd, have been well studied from this perspective

[36].

The Z-cuspidal cohomology of the Bianchi groups is well known. Specif-

ically, the cuspidal cohomology of Od is trivial if and only if

d ∈ {1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71}

[48]. One consequence of an infinitesimal analogue of theorem 4.2.1 (see [28]

for these computations) is that the complements of the figure-eight and the

Whitehead link have trivial sl(4)ρgeo-cuspidal cohomology. The figure-eight
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knot and Whitehead link are both arithmetic (see [36]) and thus cover the

Bianchi orbifolds O3 and O1, respectively. Since cuspidal cohomology is in-

herited by finite covers, we see that this implies that O3 and O1 also have

trivial sl(4)ρgeo-cuspidal cohomology. Additionally, there is strong numerical

evidence that the two bridge link with rational number 12/5 is also locally pro-

jectively rigid relative to the boundary near ρgeo, which suggests that O7 also

has trivial sl(4)ρgeo-cuspidal cohomology. This result complements the van-

ishing results of for so(4, 1)-cuspidal cohomology found in [4, Cor 4.2]. This

observation prompts the following question:

Question 4. For which values of d is the sl(4)ρgeo-cuspidal cohomology of Od

trivial?

Another motivation for investigating rigidity results for hyperbolic knot

complements is that the previously mentioned cuspidal cohomology techniques

can also be used to address the Menasco-Reid conjecture. This conjecture

(see [38]) states that a hyperbolic knot complement cannot contain a closed,

totally geodesic surface. The vanishing of R-cuspidal cohomology is enough to

obstruct the existence of closed, non-separating, totally geodesic surfaces, but

says nothing about separating surfaces. The following corollary of Proposition

3.2.6 tells us that sl(4)ρgeo-cuspidal cohomology is sensitive enough to detect

separating surfaces as well.

Corollary 6.2.1. Let M be a finite volume hyperbolic manifold. If M has

trivial sl(4)ρgeo-cuspidal cohomology then M does not contain a closed totally

geodesic hypersurface.
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This implies that the vanishing of sl(4)ρgeo-cuspidal cohomology pro-

vides an obstruction to the existence of closed totally geodesic hypersurfaces.

Therefore, any knot complement whose cuspidal cohomology vanishes will sat-

isfy the conclusion of the Menasco-Reid conjecture, prompting the following

question:

Question 5. Do there exist hyperbolic knot complements with non-trivial

sl(4)ρgeo-cuspidal cohomology?

6.3 Thin Subgroups of SL4(R)

A finitely generated, non-free subgroup, ∆, of a semi-simple Lie groupG

is thin if it is Zariski dense and has infinite index inside of a lattice of G. These

subgroups have become an active area of research due to recently discovered

connections with other areas of mathematics, including lattice point counting

problems and dynamics on Teichmüller space (see [45] for more details).

Recent work of Darren Long and Alan Reid [34] has produced examples

of thin subgroups inside of SL4(R). A key element of their construction of

thin subgroups relies on flexing projective structures on closed manifolds and

understanding the geometry of such flexings in order to produce subgroups

that are Zariski dense. Understanding the geometry of the space of properly

convex structures on non-compact manifolds would be the first step towards

extending this construction to produce thin subgroups isomorphic to non-

compact 3-manifolds. For example, the representations in (4.11) are faithful
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with discrete image inside of SL4(R) and are thus good candidates for thin

subgroups.
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Appendix 1

Computations

In this appendix we include the calculations showing that the two-

bridge knots and links in Theorem 4.2.1 are rigid. What follows is the raw

Mathematica code and so we explain some of the following notation. Logical

conjunction in Mathematica is written as either “&&” or “∧”, both of which

should be read as “and”. Logical disjunction in Mathematica is written as

“∨”, and should be read as “or”.

Several computations in the code refer to the roots of polynomials using

the Mathematica command “Root”. In this command the symbol “#1” is a

place holder for the variable of the polynomial whose roots we are considering.

For example,

Root
[
#13 + #12 + 2#1 + 1&, 1

]
refers to the first root of the polynomial x3 + x2 + 2x + 1. The convention

for ordering of roots is somewhat arbitrary, but real roots are ordered before

complex roots and conjugate pairs of roots are ordered consecutively.

1.1 The Code

“SO(3,1) parabolics could be put into the following form”;“SO(3,1) parabolics could be put into the following form”;“SO(3,1) parabolics could be put into the following form”;
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A = {{1, 0, 1, a14}, {0, 1, 1, a24}, {0, 0, 1, a34}, {0, 0, 0, 1}};A = {{1, 0, 1, a14}, {0, 1, 1, a24}, {0, 0, 1, a34}, {0, 0, 0, 1}};A = {{1, 0, 1, a14}, {0, 1, 1, a24}, {0, 0, 1, a34}, {0, 0, 0, 1}};

B = {{1, 0, 0, 0}, {b21, 1, 0, 0}, {b31, 1, 1, 0}, {1, 1, 0, 1}};B = {{1, 0, 0, 0}, {b21, 1, 0, 0}, {b31, 1, 1, 0}, {1, 1, 0, 1}};B = {{1, 0, 0, 0}, {b21, 1, 0, 0}, {b31, 1, 1, 0}, {1, 1, 0, 1}};

Map[MatrixForm, {MatrixPower[A− IdentityMatrix[4], 2],Map[MatrixForm, {MatrixPower[A− IdentityMatrix[4], 2],Map[MatrixForm, {MatrixPower[A− IdentityMatrix[4], 2],

MatrixPower[B − IdentityMatrix[4], 2]}]MatrixPower[B − IdentityMatrix[4], 2]}]MatrixPower[B − IdentityMatrix[4], 2]}]


0 0 0 a34
0 0 0 a34
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0

b21 0 0 0
b21 0 0 0




"So we see that in order to preserve the same Jordan type we must insist"So we see that in order to preserve the same Jordan type we must insist"So we see that in order to preserve the same Jordan type we must insist

that a34 6=0 and b216=0";that a34 6=0 and b216=0";that a34 6=0 and b216=0";

“Now we can compute some examples”;“Now we can compute some examples”;“Now we can compute some examples”;

“First the figure 8 knot”;“First the figure 8 knot”;“First the figure 8 knot”;

W = B.Inverse[A].Inverse[B].A;W = B.Inverse[A].Inverse[B].A;W = B.Inverse[A].Inverse[B].A;

L = W.A.Inverse[B].Inverse[A].B;L = W.A.Inverse[B].Inverse[A].B;L = W.A.Inverse[B].Inverse[A].B;

Reduce[A.W −W.B == 0&&a34 6= 0&&b21 6= 0]Reduce[A.W −W.B == 0&&a34 6= 0&&b21 6= 0]Reduce[A.W −W.B == 0&&a34 6= 0&&b21 6= 0]

b31 = 2 ∧ b21− 2 6= 0 ∧ a34 = b21
2(b21−2)

∧ a24 = 1
2
(2a34− 1) ∧

a14 = 1
2
(2a34− 3) ∧ b21 6= 0

"The fact that there is a 1 parameter family of deformations comes from"The fact that there is a 1 parameter family of deformations comes from"The fact that there is a 1 parameter family of deformations comes from

the fact that for the figure 8 the meridian is not a rigid slope";the fact that for the figure 8 the meridian is not a rigid slope";the fact that for the figure 8 the meridian is not a rigid slope";

"If we also insist that the trace of the longitude stay fixed then we"If we also insist that the trace of the longitude stay fixed then we"If we also insist that the trace of the longitude stay fixed then we

do not have any local deformations";do not have any local deformations";do not have any local deformations";

Reduce[A.W −W.B == 0&&Tr[L] == 4&&a34 6= 0&&b21 6= 0]Reduce[A.W −W.B == 0&&Tr[L] == 4&&a34 6= 0&&b21 6= 0]Reduce[A.W −W.B == 0&&Tr[L] == 4&&a34 6= 0&&b21 6= 0]
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b31 = 2 ∧
(
b21 = 4 ∨ b21 = −2i

√
2 ∨ b21 = 2i

√
2
)
∧

a34 = 1
48

(
−b213 + 6b212 − 12b21 + 64

)
∧

a24 = 1
48

(
−b213 + 6b212 − 12b21 + 40

)
∧

a14 = 1
48

(
−b213 + 6b212 − 12b21− 8

)
"These solutions form a discrete set and so we see that the hyperbolic"These solutions form a discrete set and so we see that the hyperbolic"These solutions form a discrete set and so we see that the hyperbolic

structure is locally rigid.";structure is locally rigid.";structure is locally rigid.";

“The discrete faithful representation occurs when b21=2”;“The discrete faithful representation occurs when b21=2”;“The discrete faithful representation occurs when b21=2”;

“Now 5 2”;“Now 5 2”;“Now 5 2”;

W = B.A.Inverse[B].Inverse[A].B.A;W = B.A.Inverse[B].Inverse[A].B.A;W = B.A.Inverse[B].Inverse[A].B.A;

list = Reduce[A.W −W.B == 0&&a34 6= 0&&b21 6= 0]//TraditionalFormlist = Reduce[A.W −W.B == 0&&a34 6= 0&&b21 6= 0]//TraditionalFormlist = Reduce[A.W −W.B == 0&&a34 6= 0&&b21 6= 0]//TraditionalForm(
b31 = 1

4

(
1− i

√
7
)
∨ b31 = 1

4

(
1 + i

√
7
)
∨

b31 = Root
[
#13 −#12 + 2#1− 1&, 1

]
∨

b31 = Root
[
#13 −#12 + 2#1− 1&, 2

]
∨

b31 = Root
[
#13 −#12 + 2#1− 1&, 3

])
∧

b21 = 4 ∧ a34 = 1
2

(
2b314 − b313 + 5b312 − 2b31 + 3

)
∧

a24 = 1
4

(
6b314 − 11b313 + 19b312 − 14b31 + 1

)
∧

a14 = 1
4

(
2b314 − b313 + 5b312 − 2b31− 1

)
“Next we do 6 1”;“Next we do 6 1”;“Next we do 6 1”;

W = B.Inverse[A].Inverse[B].A.B.Inverse[A].Inverse[B].A;W = B.Inverse[A].Inverse[B].A.B.Inverse[A].Inverse[B].A;W = B.Inverse[A].Inverse[B].A.B.Inverse[A].Inverse[B].A;

list = Reduce[A.W −W.B == 0&&a34 6= 0&&b21 6= 0];list = Reduce[A.W −W.B == 0&&a34 6= 0&&b21 6= 0];list = Reduce[A.W −W.B == 0&&a34 6= 0&&b21 6= 0];

list[[2]]//TraditionalFormlist[[2]]//TraditionalFormlist[[2]]//TraditionalForm
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(
b31 = 1

2

(
3−

√
4Root

[
#13 + 12#12 + 43#1 + 47&, 1

]
+ 9
)
∨

b31 = 1
2

(√
4Root

[
#13 + 12#12 + 43#1 + 47&, 1

]
+ 9 + 3

)
∨

b31 = 1
2

(
3−

√
4Root

[
#13 + 12#12 + 43#1 + 47&, 2

]
+ 9
)
∨

b31 = 1
2

(√
4Root

[
#13 + 12#12 + 43#1 + 47&, 2

]
+ 9 + 3

)
∨

b31 = 1
2

(
3−

√
4Root

[
#13 + 12#12 + 43#1 + 47&, 3

]
+ 9
)
∨

b31 = 1
2

(√
4Root

[
#13 + 12#12 + 43#1 + 47&, 3

]
+ 9 + 3

)
∨

b31 = Root
[
16#18 − 200#17 + 1156#16 − 4002#15 + 9021#14

−13496#13 + 13042#12 − 7422#1 + 1901&, 1
]
∨

b31 = Root
[
16#18 − 200#17 + 1156#16 − 4002#15 + 9021#14

−13496#13 + 13042#12 − 7422#1 + 1901&, 2
]
∨

b31 = Root
[
16#18 − 200#17 + 1156#16 − 4002#15 + 9021#14

−13496#13 + 13042#12 − 7422#1 + 1901&, 3
]
∨

b31 = Root
[
16#18 − 200#17 + 1156#16 − 4002#15 + 9021#14

−13496#13 + 13042#12 − 7422#1 + 1901&, 4
]
∨

b31 = Root
[
16#18 − 200#17 + 1156#16 − 4002#15 + 9021#14

−13496#13 + 13042#12 − 7422#1 + 1901&, 5
]
∨

b31 = Root
[
16#18 − 200#17 + 1156#16 − 4002#15 + 9021#14

−13496#13 + 13042#12 − 7422#1 + 1901&, 6
]
∨

b31 = Root
[
16#18 − 200#17 + 1156#16 − 4002#15 + 9021#14

−13496#13 + 13042#12 − 7422#1 + 1901&, 7
]
∨

b31 = Root
[
16#18 − 200#17 + 1156#16 − 4002#15 + 9021#14

−13496#13 + 13042#12 − 7422#1 + 1901&, 8
])
∧

b21 = 4 ∧
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a34 = 1
31956192720

(
−179796413616b3115 + 3733995033256b3114

−37452502661204b3113 + 238886942932090b3112

−1075958795921889b3111 + 3597489474076549b3110

−9140675598222262b319 + 17750454679395481b318

−26045001320077501b317 + 27816300271275448b316

−19526453475128180b315 + 5698801365850447b314

+4263650630430149b313 − 5854678735677884b312

+2868426513794067b31− 557399676045503) ∧

a24 = 1
63912385440

(
722812004784b3115 − 14964003858344b3114

+149418614136916b3113 − 947978297826170b3112

+4244298734746401b3111 − 14098782932080061b3110

+35573539006408718b319 − 68570468324339849b318

+99825608272345469b317 − 105716578643568632b316

+73461399550231780b315 − 20924114085212303b314−

16388753271093661b313 + 22092444941813956b312

−10785037897132083b31 + 2100160181211727) ∧

a14 = 1
63912385440

(
574264051664b3115 − 12012269104664b3114

+121248755334796b3113 − 778031186453110b3112

+3525504039482231b3111 − 11862708281527731b3110

+30352296559023618b319 − 59414766026089839b318

+88023829428938259b317 − 95205648706611272b316

+68172037326861820b315 − 21191049139962633b314

−13801598627577411b313 + 20250630941780876b312
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−10224174988365973b31 + 2044968066804257)

"Again the solutions form a discrete set and so the hyperbolic structure"Again the solutions form a discrete set and so the hyperbolic structure"Again the solutions form a discrete set and so the hyperbolic structure

is locally rigid";is locally rigid";is locally rigid";

“Finally, we try the Whitehead link”;“Finally, we try the Whitehead link”;“Finally, we try the Whitehead link”;

W = B.A.Inverse[B].Inverse[A].Inverse[B].A.B;W = B.A.Inverse[B].Inverse[A].Inverse[B].A.B;W = B.A.Inverse[B].Inverse[A].Inverse[B].A.B;

Reduce[A.W −W.A == 0&&a34 6= 0&&b21 6= 0]Reduce[A.W −W.A == 0&&a34 6= 0&&b21 6= 0]Reduce[A.W −W.A == 0&&a34 6= 0&&b21 6= 0]

b31 = −1 ∧ b21 = 4 ∧ a34 = 2 ∧ a24 = −2 ∧ a14 = 0

“So again we see that the hyperbolic structure is rigid”;“So again we see that the hyperbolic structure is rigid”;“So again we see that the hyperbolic structure is rigid”;
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