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e Correspondences between an analytic object (ODEs &
measured laminations) and geometric objects (complex
projective structures)

¢ In general, these correspondences are not explicit

e Today: In certain cases we can make these
correspondences are explicit
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CP' geometry

CP'=Cu {w} (Riemann Sphere)
PSLy(C) = SLo(C)/{£/}  (Biholomorphisms of CP")

PSL,(C) acts on CP' via linear fractional transformations

ab ‘z_az+b
c d cz+d

o There is no PSLy(C)-invariant metric on CP"
e Circles are invariant and play the role of geodesics
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Hyperbolic surfaces

Let X := X4 be a surface of genus g with x(X) :=2-2g <0
e D={zeC||z| <1} (unit disk)
¢ D is a model of the hyperbolic plane
e Gp := Stabpsi,(c)(D) = Isom(D) = PSU(1,1) # PSLz(R)
Theorem (Uniformization)
There is a discrete group I — Gy so thatx ~ D/T.

Let 7(X) be the space of hyperbolic structures on

Theorem
The space, T (X) ~ R9-6
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Complex projective structures

Definition

Let X be a surface. A complex projective structure on *
consists of charts from ¥ into CP' whose transition functions
are elements of PSL,(C)

$1(U1)

/‘5’12 0 ¢2(Uz)

$2(U2)

Forze Uy n Us, $1(2) = g12¢2(2)
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Development and holonomy

A more global approach
Using analytic continuation we can attempt to enlarge our
charts

$1(Ur)

g12 © $2(Uz)
/ 912 © g23 © ¢3(U3)
dev(l
912 912 G-k © Ok (Uy)

; UZ%Q

23 © ¢3(Us)
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Not well defined on ¥, We are really defining

dev:¥ =D — CP', hol : m ¥ =~ I — PSL,(C)
] = 912 .. Gm—1mPm(£(1))



Development and holonomy

A more global approach
Using analytic continuation we can attempt to enlarge our
charts

¢1(Un)

gk1

U, Q_

¢k( k)‘\\ ng(ﬁz(Uz)
o y{iev(f -912 o g3 0 ¢3(Us)
912 g5 g1k 0 91 (Us)

Rl

23 © ¢3(Us)
¢3(U‘°’)’ $2(Uz)

Not well defined on ¥, We are really defining

Uy

dev:¥ =D — CP', hol : m ¥ =~ I — PSL,(C)
[4] = g12-- - Gm-1mPm(£(1))  [v] = (912 Gk1)
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Development and holonomy

Properties

dev is called a developing map

hol is called a holonomy representation

dev is a hol-equivariant local diffeomorphism

i.e. dev(vy-z) = hol(y) -dev(z) VzeD,yemM
Constructing a complex projective structure is equivalent to
constructing such an equivariant pair

Let P(X) be space of all complex projective structures on x
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Second order linear ODEs

Simply connected case

Let ¢ : D — C be holomorphic and consider the differential
equation

’
u”+§¢u=0 (1)

Theorem (Cauchy)

For any ¢y, ¢; € C there is unique u : D — C solution to (1)
satisfying the initial condition u(0) = ¢; and U’ (0) = ¢
The solutions to (1) form a 2-dimensional vector space
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Second order linear ODEs
A local approach
Let U < C be connected, and let ¢ : U — C be holomorphic

For p € U there is a basis {uy, u>} of local solutions to (1)

Using analytic continuation we can attempt to extend uy and u»
to all of U.

Problem: when we analytically continue around a loop v we
may arrive at new solutions (vy, Vo) # (U1, Uz).
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Second order linear ODEs
A global approach
Solution:
e Thereis M(v) € GLo(C) so that M(y)u; = v;
M(~) only depends on homotopy class of ~.

Let  : U — U be the universal covering
Think of u; : U — C (defined on universal cover)
For each [v] € m1(X) =~ Deck(n) and each z € U,

(Ui o [v(2) = M()ui(2)

Get an equivariant pair:

(up, ) : U—C M : 71(X) — GLo(C)
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u(z) = z'? is a “solution” (it’s multivalued)
¢o:H—-U,t KA exp(2rit) is a universal cover
Deck group generated by t — t + 1
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An Example
Let U = D\{0} and consider the equation
u
/" -
u’ + 172 0
u(z) = z'? is a “solution” (it’s multivalued)
¢o:H—-U,t KA exp(2rit) is a universal cover
Deck group generated by t — t + 1
z'2 — exp (log(2)/2) = exp(rit)

exp(mi(t + 1)) = exp(wi) exp(wit) = — exp(wit) = —z~ /2

4 exP(E)

= /—\1 )
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Let ¥ = D/T be hyperbolic surface, ¢ : ¥ — C holomorphic
e Uy, U : D — C abasis of solutions to
u"+1/2u¢p =0
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de a b
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Relation between constructions
Equations give structure

Let ¥ = D/T be hyperbolic surface, ¢ : ¥ — C holomorphic
e Uy, U : D — C abasis of solutions to
u"+1/2u¢p =0
e [M]: m(X) — PGL2(C) (projectivized) monodromy.

dey a b
dev:D — CP', z % 412 Let [M(7)] = [C d]

_ Wiom)(2) _ aun(2) +bup(2)
(devoy)(z) = (Up 0 7)(z) cui(z) + dup(2)

a-dev(z) +
= W = [M(v)] - dev(2)

(dev, [M]) give a complex projective structure on M.
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Relations between the construction

Structure gives equations

If f: D — C is holomorphic the Schwartzian of f is given by
N\ 12
so-(5) 2 (%)

o If uy, Up solve U” + Sou = 0 then S(us/u2) = ¢
(ODE “inverts” Schwartzian)
e (dev, p) a complex projective structure on ¥ let ¢ = S(dev)
o Equivariance of dev = 71 (X)-invariance of ¢,
geto: X - C
o Can form the ODE u” + f¢u =0o0n X
dev comes from a solution to this equation
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Overview

Good News: Have constructions that relate an analytic object
(ODEs) to a geometric object (complex projective structures)

Bad News: The correspondence is opaque:
Analytic properties <L Geometric properties
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Another Correspondence

Grafting
Let X = D/I" hyperbolic, v = X a closed geodesic, t € R™

We can produce a new complex projective structure, Gre, (X)
on X by grafting in a Euclidean cylinder of height t

Figure: Picture from Dumas, Complex Projective Structures

Let S be free homotopy class of s.c.c’s. Get
Gr:S xRt xT(X) - P(%)
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Thurston’s Theorem

Construction produces all complex projective structures

Let ML(X) be measured laminations on ©
(limits of weighted multicurves)

Theorem (Thurston)

Gr: ML(X) xT(X) > P(X)
is a homeomorphism.

Good News: Every complex projective structure arises from
grafting a hyperbolic surface.

Bad News: The inverse procedure is fairly non-constructive.
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A transparent case

Let > = X 3 (thrice punctured sphere)
Let 0 = (dev, p) € P(X)
ois:
e tame if dev can be extended (meromorphically) to the
punctures
e relatively elliptic if holonomy of peripheral curves is elliptic
(conjugate to rotation z — €z, 6 € R)
e non-degenerate if p(m1X) has no finite orbits
(e.g. no global fixed points)
Let PO(X) be the space of tame, relatively elliptic, and
non-degenerate structures on -
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Examples

Triangular structures

Given a configuration of 3 circles in CP' we can build (several)
complex projective structures on X. (triangular structures)

The same circles support several different developing maps.
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Grafting again
Given a triangular structure we can do 2 different types of
grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in
copy of CP'

e Edge grafting (blue)
e Core grafting (red)

This grafting is discrete, not continuous!
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Grafting Example
Edge grafting

How does grafting change the developing map?

How does grafting change the holonomy?

It doesn’t!!



Theorem 1

Theorem 1 (B-Bowers-Casella-Ruffoni)

LetY = Yo3 and let T € PO(X). Then T is obtained from a
triangular structure by a finite sequence of edge and core
graftings.

The sequence of graftings and the triangular structure can be
computed explicitly  (Algorithmic).
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Sketch of proof

If 7 = (dev, p), then near each puncture dev looks like

z — z%27 for a € R (punctures have winding number)
Winding numbers determine 7 € PO (%) (Complex analysis)
Let (2a,2b, 2¢) be winding numbers of ©

Edge grafting increases winding numbers by (27, 27) and
core grafting increases winding number by 4x

If winding numbers are small there is a triangular structure
with winding number (2a, 2b, 2¢) (angles are a, b, c)

If some winding numbers are big can find, &, b/, ¢’ small,
and kg, kp, ke e N, (&, b/, ') = (a, b, c) — mw(ka, kp, k¢) SO
that there is a triangular structure with winding numbers
(24,2b',2c’) that can be grafted to .

(a,b,c') determine triangular structure, (Ka, Kp, kc)
determine grafting.
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A typical example

Winding numbers are 2a =97, 2b=3m,2c =

Then2a =3n,20 =m,2¢ =7, ka=3, kp =1, ke =0

')\- a’: 3.\\/




A typical example

Winding numbers are 2a = 97, 2b=3r,2c =«
Then2a =3m, 20 =7,2¢ =7, ka=3,ky =1, k. =0

R_ a’: 3-\T Ak—_ ‘lTr

2b= 3T 2c=T
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Complex analytic perspective

How do analytic properties of u” + 1/2¢u = 0 correspond to
geometric properties of complex projective structures??

Y03 = CP'\{0,1,0}

Theorem 2 (B-Bowers-Casella-Ruffoni)

T € PO(Xo3) iff T comes from a solution to u” + 1/2¢u = 0
where ¢ : CP' — C is meromorphic with poles of order < 2 at
{0,1, 00}.

We can determine the winding numbers from the poles of ¢!!
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Determining winding number

e Nearz=0,¢(z) = % + O(1/2)
e Letry,rpsolutionstor(r—1)+4=0
e Generically, solutions to u” + 1/2¢u = 0 are of form
ui(z) = z"hi(z), U =2"hy(2)
where h;(z) analytic and non-zero near z = 0.
(not quite ifry — rp € Z)
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Determining winding number

Nearz =0, ¢(2) = 5 + O(1/2)
Let ry, r solutionsto r(r—1)+4 =0
Generically, solutions to u” + 1/2¢u = 0 are of form

ui(z) = z"hi(z), U =2"hy(2)

where h;(z) analytic and non-zero near z = 0.
(not quite ifri — r> € Z)

dev(z) = 4‘222 = zM(z) where 6 = ry — ro, M(z) analytic

and non-zeroatz =0
270 is winding number and 0 = ++/1 — 2a



Remaining questions

Can we give specific relationship between geometric/analytic
properties for general non-compact ¥?
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Remaining questions

Can we give specific relationship between geometric/analytic
properties for general non-compact 7

¢ Not an obvious candidate to replace triangular structures

e Winding numbers don’t determine structure
(complex structure not unique)



Thank you!

«Or < Fr <=
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