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Motivation

Let M be a closed hyperbolic manifold.
Let H(M) be the space of hyperbolic structures on M

Theorem
H(M) is connected

proof sketch:

e dim(M) = 2: Fenchel-Neilsen coordinates on Teichmuller
space
e dim(M) > 2: Mostow rigidity.

Motivating Question: What happens if we look at other
geometries?
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Projective Geometry

Let RP" be the space of lines through the origin in R™1.
Let P : R™1\{0} — RP" be projectivization.

G = PGLp41(R) := GLp 1 (R)/RI

RP” is a geometry with automorphism group G.



Convex Projective Geometry

Let H be a hyperplane in R+

~

Let H = P(H) be the corresponding projective hyperplane



Convex Projective Geometry

Let H be a hyperplane in R+

~

Let H = P(H) be the corresponding projective hyperplane
Ay := RP™\H is an affine patch



Convex Projective Geometry

Let H be a hyperplane in R+

~

Let H = P(H) be the corresponding projective hyperplane
Ay = RP™\H is an affine patch (i.e. RP" = R” Ly RP")



Convex Projective Geometry

Let H be a hyperplane in R+

LetH = P(Itl) be the corresponding projective hyperplane
Ay = RP™\H is an affine patch (i.e. RP" = R” Ly RP")

Q — RP" is properly convex if Q is a convex subset of some
affine patch



Convex Projective Geometry

Let H be a hyperplane in R+

~

Let H = P(H) be the corresponding projective hyperplane
Ay = RP™\H is an affine patch (i.e. RP" = R” Ly RP")

Q — RP" is properly convex if Q is a convex subset of some
affine patch

Let Q be properly convex.
Define
PGL(Q) = {Ae G| A(Q) =Q}
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Convex Projective Geometry

Some examples

~

e T =R3 (positive orthant)

~

- 7= P(T)

s PGL(T) = Diagg » S; = PGLg(R)

[eI]
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Convex Projective Geometry
Some Examples
L a Lorentzian form on R"+1
C={veR™|L(v,v) <0}
H" = P(C) (Klein Model)
PGL(H™) =~ PO(L)

DA
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Convex Projective Manifolds

Let Q be properly convex
Let ' « PGL(Q2) be discrete
QI is a convex projective manifold



Some Examples
Complete Hyperbolic Manifolds

e Q~H"
* [ < PGL(H") discrete
The H"/T is a complete hyperbolic manifold



Some Examples

Hex Torus

e O~T
* A= {(y1,72) < Diagg
T/A'is a hex torus




Convex Projective Structures
Let M be a compact manifold

A convex projective structure on M is (f,Q/T)
e Q/I properly convex
* f: M — Q/I adiffeomorphism
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Convex Projective Structures
Let M be a compact manifold
A convex projective structure on M is (f,Q/T)
e Q/I properly convex
e f: M — Q/I adiffeomorphism
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There is an equivalence relation generated by
* |sotopy of f
* Replace Q/T with Q'/I" where Q' = A(Q2), I
Ae G

= ArA-1 for
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Exotic Convex Projective Structures

Let M be a closed hyperbolic manifold

Let CP(M) be the set of equivalence classes

Topologize CP(M) using C* topology on C* (M, RP")
Definition

p € CP(M) is exotic if it is not the same connected component
as H(M) c CP(M).

p is exotic if it cannot be continuously deformed to a hyperbolic
structure
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Exotic Convex Projective Structures

Existence

When do exotic structures exist?
e Dimension 2: No exotic structures (Goldman '90)
e Dimension 3: Infinitely many examples
(B-Danciger-Lee-Marquis)
e Dimension = 4: ?77??
Question: Does every closed hyperbolic 3-manifold admit an
exotic convex projective structure? (maybe yes!)
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Some Tools

Let [(f,Q2/T)] € CP(M).

Define f, : 1M — I < G (holonomy)

This is only well defined up to conjugacy in G
Hol : CP(M) — Rep(m1M, G) := Hom(mM, G)/G
[(f,Q2/T)] — [f<] (holonomy map)

Theorem (Koszul)

Hol is an open map

Moral: If you can deform the representation you can deform the
structure.
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Some Tools

M a closed hyperbolic 3-manifold
[(fayp, H"/T')] € CP(M) the hyperbolic structure
Phyp = (fayp)+ hyperbolic holonomy

g the Lie algebra of G
e H! (myM,g) (twisted cohomology)

Phyp
Fact: H;hyp(m M, g) is the “Zariski tangent space” to
Rep(m1 M, G) at [payp]
If thyp(w1 M, g) = 0 then M is infinitesimally rigid
Fact: Infinitesimally rigid = locally rigid = all non-hyperbolic
structures are exotic.
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Dehn Filling

Let N be a manifold with ON ~ T2.
Let [v] € m1(0N) be simple
Let D be a solid torus with meridian m

Let N, be obtained by gluing N and D along boundaries by
diffeomorphism mapping v to m (Dehn filling of N along )

2 m

D
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Dehn Filling

Let N be the complement of the figure-8 knot

Theorem (Thurston’s Dehn Filling Theorem )
All but finitely many Dehn fillings of N admit a hyperbolic

structure.
Theorem (Heusener—Porti)
All but finitely many Dehn fillings of N are infinitesimally rigid.

Theorem (B-Danciger-Lee-Marquis)

Infinitely many Dehn fillings of N admit exotic convex projective
structures.

N can be replaced by other 1-cusped hyperbolic manifolds.
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Hyperbolic Dehn Filling
Deform ppy, to non-conjugate p' € Hom(mwy N, PSL(2,C))
p(A) c Gy =C* (stabilizer of geodesic ¢)

©' is the holonomy of an incomplete hyperbolic structure on N.

Let g1 = p'(m1), 92 = P/ (72)
There are unique (a, b) € R? so that Dehn filling coordinates

alog(gi) + blog(gz) = 2mi
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Hyperbolic Dehn filling
Dehn filling coordinates control geometry of the completion
If (a, b) € Z2 relatively prime
§ = v2y2 is simple curve in ker o/, p/'(A) = Z
The completion of incomplete structure is N
N5 has a hyperbolic structure!!
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Hyperbolic Dehn Filling

Which ¢ arise from this construction?
Thurston: there is k so that if

* (a,b)e7?

* a, brelatively prime

o &+ b > K2
then (a, b) are the Dehn filling coordinates of incomplete
structure on N
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Properly Convex Dehn Filling

Step 1

Deform ppyp to p' € Hom(wy N, G) where /' is holonomy of
convex projective structure with “generalized cusp”
(Cooper-Long-Tillmann extension of Koszul Thm)




Properly Convex Dehn Filling

first deformation
p(A) c G? >~ Ry @ iRypj = C (stabilizer of ¢ in PGL(£2))
There is (non-unique) (&, b) € R? so that

p/(’yf’yg) € IRyp;

a/be S' =R u {0} is well defined (unipotent slope)




Properly Convex Dehn Filling

Step 2

Deform p’ to p” € Hom(m1M, G) so that p”(A) < Gg’" ~ C*
(stabilizer of convex “nbhd” of ¢)

& \\?



Properly Convex Dehn Filling
Step 2

Let g1 = p" (1), g2 = p"(72)
Get Dehn filling coordinates (a, b)
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Properly Convex Dehn Filling
Step 2
Let g1 = p" (1), g2 = p"(72)

Get Dehn filling coordinates (a, b)
alog(gy) + blog(ge) = 2mi

Unipotent elements in iR, G? deform to rotations in Gf” SO
a/b is close to unipotent slope of p’
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p'(D) = Z
D=aGj /(D) (properly convex solid torus)
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Suppose (a, b) € Z?, relatively prime, § = 7345
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D=aGj /(D) (properly convex solid torus)
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Properly Convex Dehn Filling

Suppose (a, b) € 72, relatively prime, § = 292
p'(A) =7
D=aGj /(D) (properly convex solid torus)
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Properly Convex Dehn Filling

Suppose (a, b) € Z?, relatively prime, § = 7345

p'(A) =Z
D=aGj /(D) (properly convex solid torus)
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Properly Convex Dehn Filling

Suppose (a, b) € Z?, relatively prime, § = 7345
p'(D) = Z

D =~ Gf" /" () (properly convex solid torus)

by
(Convex
Cooper-Long TN
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Convex
by
CongrrackionN

Convex b 3 Koszul

N5 admits a non-hyperbolic properly convex structure



Properly Convex Dehn Filling

Which ¢ arise
Rg,P L‘ll‘,”l (J)
, encralized
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Properly Convex Dehn Filling

Which ¢ arise

R;P (1\"”, (’) Mi Pa‘\'ﬁ.«ﬂ"’ lk v {00,
slofe

A positive
proportion of
fillings are exotic!
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Properly Convex Dehn Fillings

Constructing the deformations

Rep(Z?, G)“ =" R%, Rep(m N, G)* = " R3

There is a 3-dim locus of “pure” reps P — Rep(Z?, G) with
repeated eigenvalue

Contains holonomy of with generalized cusps and Dehn
fillings

Examine how P intersects res : Rep(m1N, G) — Rep(Z2, G)



The Real Result

Theorem (B-Danciger-Lee-Marquis)
Let M be a 1-cusped infinitesimally rigid 3-manifold with

non-constant unipotent slope then a positive proportion of the
Dehn fillings of M admit exotic convex projective structures



The Real Result

Theorem (B-Danciger-Lee-Marquis)

Let M be a 1-cusped infinitesimally rigid 3-manifold with
non-constant unipotent slope then a positive proportion of the
Dehn fillings of M admit exotic convex projective structures

So far Myo4 (fig-8), Myos (fig-8 sister), Myg7, and My19 have
been shown to satisfy these hypotheses.



Effective Questions

e Which cusped 3-manifolds are infinitesimally rigid?

e Which cusped 3-manifolds have non-constant unipotent
slope?

e For a given M what is the range of the unipotent slope
map?



Thank you
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