Frame theory on vector bundles

Sam Ballas

(joint with T. Needham & C. Shonkwiler)

Florida State University

CodEx Seminar Feb 27, 2024

Frames (through a geometric lens)

Vector Bundles

Frames Fields on Vector Bundles

Frames in vector spaces

Let *V* be a (real) Hilbert space.

Frames in vector spaces

Let V be a (real) Hilbert space.

A collection $C = \{v_i\}_{i \in \mathbb{N}}$ is a *Frame* if there exist constants $0 < a \le b$ so that for each $v \in V$

$$a||v||^2 \leqslant \sum_i \langle v, v_i \rangle^2 \leqslant b||v||^2$$

Frames in vector spaces

Let V be a (real) Hilbert space.

A collection $C = \{v_i\}_{i \in \mathbb{N}}$ is a *Frame* if there exist constants $0 < a \le b$ so that for each $v \in V$

$$a||v||^2 \leqslant \sum_i \langle v, v_i \rangle^2 \leqslant b||v||^2$$

(Frame inequality)

A frame C in V is *finite* if there is $N \in \mathbb{N}$ so that $v_i = 0$ for $i \ge N$.

A frame C in V is *finite* if there is $N \in \mathbb{N}$ so that $v_i = 0$ for $i \ge N$.

Let $v \in \text{Span}(\mathcal{C})^{\perp}$ then

$$a||v||^2 \leqslant \sum_i \langle v, v_i \rangle^2 = 0$$

so the span of a frame is dense in V.

A frame C in V is *finite* if there is $N \in \mathbb{N}$ so that $v_i = 0$ for $i \ge N$.

Let $v \in \text{Span}(\mathcal{C})^{\perp}$ then

$$a||v||^2 \leqslant \sum_i \langle v, v_i \rangle^2 = 0$$

so the span of a frame is dense in V.

Observations:

- If V contains a finite frame then V is finite dimensional
- All subspaces of finite dimensional vectors spaces are closed, so finite frames are spanning sets

A frame C in V is *finite* if there is $N \in \mathbb{N}$ so that $v_i = 0$ for $i \ge N$.

Let $v \in \operatorname{Span}(\mathcal{C})^{\perp}$ then

$$a||v||^2 \leqslant \sum_i \langle v, v_i \rangle^2 = 0$$

so the span of a frame is dense in V.

Observations:

000000000000

- If V contains a finite frame then V is finite dimensional.
- All subspaces of finite dimensional vectors spaces are closed, so finite frames are spanning sets

Henceforth *V* is finite dimensional and $C = \{v_1, \dots v_k\}$

A subset $C = \{v_1, \dots v_k\}$ of V gives rise to an *Analysis operator* $A_C : V \to \mathbb{R}^k$

$$v \mapsto \sum_{i=1}^k \langle v, v_i \rangle e_i$$

A subset $C = \{v_1, \dots v_k\}$ of V gives rise to an *Analysis operator* $A_C : V \to \mathbb{R}^k$

$$V \mapsto \sum_{i=1}^k \langle v, v_i \rangle e_i$$

$$\sum_{i} \langle v, v_i \rangle^2 = ||A_{\mathcal{C}}(v)||^2 \leqslant ||A_{\mathcal{C}}||_{op}^2 ||v||^2 < \infty$$

so upper frame inequality is automatic for finite subsets

There is also a *Synthesis operator* $S_{\mathcal{C}} : \mathbb{R}^k \to V$ given by

$$(c_1,\ldots,c_k)=\sum_{i=1}^k c_i v_i$$

There is also a *Synthesis operator* $S_{\mathcal{C}} : \mathbb{R}^k \to V$ given by

$$(c_1,\ldots,c_k)=\sum_{i=1}^k c_i v_i$$

Easy to check that $S_C = A_C^t$

There is also a *Synthesis operator* $S_{\mathcal{C}} : \mathbb{R}^k \to V$ given by

$$(c_1,\ldots,c_k)=\sum_{i=1}^k c_i v_i$$

Easy to check that $S_C = A_C^t$

Observations: If C is a spanning set then

There is also a *Synthesis operator* $S_{\mathcal{C}} : \mathbb{R}^k \to V$ given by

$$(c_1,\ldots,c_k)=\sum_{i=1}^k c_i v_i$$

Easy to check that $S_C = A_C^t$

Observations: If C is a spanning set then

• S_C is surjective

There is also a *Synthesis operator* $S_{\mathcal{C}} : \mathbb{R}^k \to V$ given by

$$(c_1,\ldots,c_k)=\sum_{i=1}^k c_i v_i$$

Easy to check that $S_C = A_C^t$

Observations: If $\mathcal C$ is a spanning set then

- S_C is surjective
- $\ker(A_{\mathcal{C}}) = \operatorname{Im}(S_{\mathcal{C}})^{\perp} = 0$, so $A_{\mathcal{C}}$ is injective

There is also a *Synthesis operator* $S_{\mathcal{C}} : \mathbb{R}^k \to V$ given by

$$(c_1,\ldots,c_k)=\sum_{i=1}^k c_i v_i$$

Easy to check that $S_C = A_C^t$

Observations: If $\mathcal C$ is a spanning set then

- S_C is surjective
- $\ker(A_{\mathcal{C}}) = \operatorname{Im}(S_{\mathcal{C}})^{\perp} = 0$, so $A_{\mathcal{C}}$ is injective
- $a||v||^2 \le ||A_{\mathcal{C}}(v)||^2$ for $a = \inf_{||v||=1} ||A_{\mathcal{C}}(v)||^2 > 0$

There is also a *Synthesis operator* $S_{\mathcal{C}} : \mathbb{R}^k \to V$ given by

$$(c_1,\ldots,c_k)=\sum_{i=1}^k c_i v_i$$

Easy to check that $S_C = A_C^t$

Observations: If C is a spanning set then

S_C is surjective

Frames (through a geometric lens)

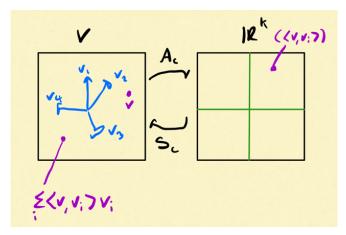
- $\ker(A_{\mathcal{C}}) = \operatorname{Im}(S_{\mathcal{C}})^{\perp} = 0$, so $A_{\mathcal{C}}$ is injective
- $a||v||^2 \le ||A_{\mathcal{C}}(v)||^2$ for $a = \inf_{||v||=1} ||A_{\mathcal{C}}(v)||^2 > 0$

Moral: Finite frames in $V \Leftrightarrow$ Spanning sets of $V \Leftrightarrow$ surjective $M : \mathbb{R}^k \to V$

Frame operator

Given a frame C, we can define the frame operator

$$F_{\mathcal{C}} = S_{\mathcal{C}} \circ A_{\mathcal{F}} : V \to V$$



Let $C = \{v_1, \dots, v_k\}$ be a frame in V and let $v \in V$.

Let $C = \{v_1, \dots, v_k\}$ be a frame in V and let $v \in V$.

We can encode v as $w = A_{\mathcal{C}}(v) \in \mathbb{R}^k$

Let $C = \{v_1, \dots, v_k\}$ be a frame in V and let $v \in V$.

We can encode v as $w = A_{\mathcal{C}}(v) \in \mathbb{R}^k$

To recover v from w we...

Let $C = \{v_1, \dots, v_k\}$ be a frame in V and let $v \in V$.

We can encode v as $w = A_{\mathcal{C}}(v) \in \mathbb{R}^k$

To recover v from w we...

• Take
$$S_{\mathcal{C}}(w) = F_{\mathcal{C}}(v)$$

Let $C = \{v_1, \dots, v_k\}$ be a frame in V and let $v \in V$.

We can encode v as $w = A_{\mathcal{C}}(v) \in \mathbb{R}^k$

To recover v from w we...

- Take $S_{\mathcal{C}}(w) = F_{\mathcal{C}}(v)$
- $\mathbf{v} = F_{\mathcal{C}}^{-1} F_{\mathcal{C}}(\mathbf{v}) = F_{\mathcal{C}}^{-1} S_{\mathcal{C}}(\mathbf{w})$

Let $C = \{v_1, \dots, v_k\}$ be a frame in V and let $v \in V$.

We can encode v as $w = A_{\mathcal{C}}(v) \in \mathbb{R}^k$

To recover v from w we...

- Take $S_{\mathcal{C}}(w) = F_{\mathcal{C}}(v)$
- $\mathbf{v} = F_{\mathcal{C}}^{-1} F_{\mathcal{C}}(\mathbf{v}) = F_{\mathcal{C}}^{-1} S_{\mathcal{C}}(\mathbf{w})$

The map $F_{\mathcal{C}}^{-1}S_{\mathcal{C}}:\mathbb{R}^k\to V$ is the Moore-Penrose Pseudoinverse, $A_{\mathcal{C}}^{\dagger}$, of $A_{\mathcal{C}}$

Moore Penrose Pseudoinverse

The Moore Penrose Pseudoinverse is easy to describe geometrically.

Moore Penrose Pseudoinverse

The Moore Penrose Pseudoinverse is easy to describe geometrically.

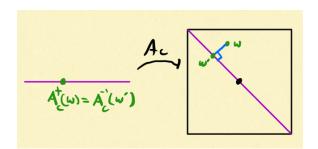
Given $w \in \mathbb{R}^k$ we...

Moore Penrose Pseudoinverse

The Moore Penrose Pseudoinverse is easy to describe geometrically.

Given $w \in \mathbb{R}^k$ we...

- Orthogonally project w to $Im(A_C)$
- Take inverse of A_C



We reconstruct $v \in V$ from $w = A_{\mathcal{C}}(v)$ via $F_{\mathcal{C}}^{-1}S_{\mathcal{C}}(w)$.

We reconstruct $v \in V$ from $w = A_{\mathcal{C}}(v)$ via $F_{\mathcal{C}}^{-1}S_{\mathcal{C}}(w)$.

If $F_C = I$ then reconstruction is very simple:

$$V = \sum_{i} \langle V, V_i \rangle V_i$$

We reconstruct $v \in V$ from $w = A_{\mathcal{C}}(v)$ via $F_{\mathcal{C}}^{-1}S_{\mathcal{C}}(w)$.

If $F_C = I$ then reconstruction is very simple:

$$V = \sum_{i} \langle V, V_i \rangle V_i$$

Frames of this type are called Parseval frames

We reconstruct $v \in V$ from $w = A_{\mathcal{C}}(v)$ via $F_{\mathcal{C}}^{-1}S_{\mathcal{C}}(w)$.

If $F_C = I$ then reconstruction is very simple:

$$V = \sum_{i} \langle V, V_i \rangle V_i$$

Frames of this type are called *Parseval frames*

These generalize notion of orthonormal bases

Alternate characterizations

Parseval frames can be described in a variety of equivalent ways

- $F_C = S_C A_C = A_C^t A_C = I$
- a = b = 1 in frame inequality
- A_C: V → ℝ^k is an isometric embedding (preserves inner products)

Reconstruction with noise

Let $v \in V$ and encode $w = A_{\mathcal{C}}(v) \in \mathbb{R}^k$.

Reconstruction with noise

Let $v \in V$ and encode $w = A_{\mathcal{C}}(v) \in \mathbb{R}^k$.

Upon transmission ${\it w}$ is corrupted by some "noise" η to ${\it w}'={\it w}+\eta$

000000000000000

Reconstruction with noise

Let $v \in V$ and encode $w = A_{\mathcal{C}}(v) \in \mathbb{R}^k$.

Upon transmission w is corrupted by some "noise" η to $\mathbf{W}' = \mathbf{W} + \eta$

Our recovered vector will then be $v' = A_{\mathcal{C}}^{\dagger}(w')$

000000000000000

Let $v \in V$ and encode $w = A_{\mathcal{C}}(v) \in \mathbb{R}^k$.

Upon transmission w is corrupted by some "noise" η to $\mathbf{W}' = \mathbf{W} + \eta$

Our recovered vector will then be $v' = A_{\mathcal{C}}^{\dagger}(w')$

Question: How does size of v' - v compare to $w' - w = \eta$?

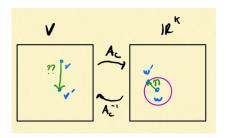
Using a basis

Consider "white noise" η uniformly drawn from a ball centered at w.

Using a basis

Consider "white noise" η uniformly drawn from a ball centered at w.

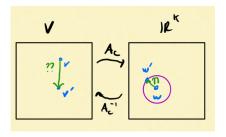
$$v'=A_{\mathcal{C}}^{-1}(w')$$



Using a basis

Consider "white noise" η uniformly drawn from a ball centered at w.

$$v'=A_{\mathcal{C}}^{-1}(w')$$

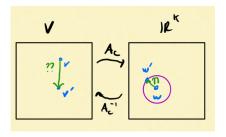


If A_C is poorly conditioned then relative size of v'-v can be large compared to the relative size of $\eta!$

Using a basis

Consider "white noise" η uniformly drawn from a ball centered at w.

$$v'=A_{\mathcal{C}}^{-1}(w')$$

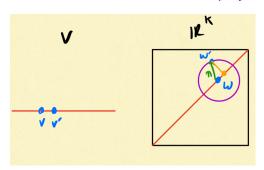


If $A_{\mathcal{C}}$ is poorly conditioned then relative size of v'-v can be large compared to the relative size of $\eta!$

If the basis is orthonormal $A_{\mathcal{C}}$ is maximally well conditioned

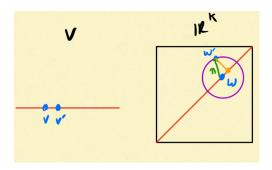
Using a frame

When reconstructing with a frame the reconstruction error depends on the distance between *w* and the *projection of w'!*



Using a frame

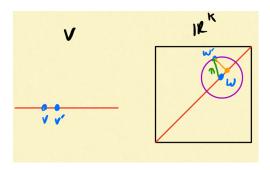
When reconstructing with a frame the reconstruction error depends on the distance between *w* and the *projection of w'!*



The distance from w to the projection of w' at most the size of $\eta!$

Using a frame

When reconstructing with a frame the reconstruction error depends on the distance between *w* and the *projection of w'!*



The distance from w to the projection of w' at most the size of $\eta!$

If the frame is Parseval the A_C is again maximally well conditioned

Suppose that k is large compared to dim(V).

Suppose that k is large compared to dim(V).

Let
$$U = \operatorname{Im}(A_{\mathcal{C}})^{\perp}$$
 then

$$\mathbb{R}^k = \operatorname{Im}(A_{\mathcal{C}}) \oplus U$$

Suppose that k is large compared to $\dim(V)$.

Let
$$U = \text{Im}(A_{\mathcal{C}})^{\perp}$$
 then

$$\mathbb{R}^k = \mathsf{Im}(A_{\mathcal{C}}) \oplus U$$

Since U is very large compared to $Im(A_C)$, a "random" vector of size $\leq \epsilon$ centered at w is likely to be very close to being contained in U.

Suppose that k is large compared to $\dim(V)$.

Let
$$U = \text{Im}(A_{\mathcal{C}})^{\perp}$$
 then

$$\mathbb{R}^k = \mathsf{Im}(A_{\mathcal{C}}) \oplus U$$

Since U is very large compared to $Im(A_C)$, a "random" vector of size $\leq \epsilon$ centered at w is likely to be very close to being contained in U.

Thus its projection to $Im(A_C)$ is likely to be very close to w.

Suppose that k is large compared to $\dim(V)$.

Let
$$U = \text{Im}(A_{\mathcal{C}})^{\perp}$$
 then

00000000000000

$$\mathbb{R}^k = \operatorname{Im}(A_{\mathcal{C}}) \oplus U$$

Since *U* is very large compared to $Im(A_C)$, a "random" vector of size $\leq \epsilon$ centered at w is likely to be very close to being contained in U.

Thus its projection to $Im(A_C)$ is likely to be very close to w.

Moral: The larger the frame, the more robust it is to noise!

Frames (through a geometric lens

Vector Bundles

Frames Fields on Vector Bundles

Vector bundles

A *vector bundle of rank k* is a collection of $\{V_p\}_{p\in M}$ of vector spaces of dimension k "nicely parameterized" by a topological space M (think manifold)

Vector bundles

A *vector bundle of rank k* is a collection of $\{V_p\}_{p\in M}$ of vector spaces of dimension k "nicely parameterized" by a topological space M (think manifold)

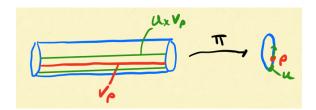
More precisely, let $E = \bigsqcup_{p \in M} V_p$. We have a *projection map* $\pi : E \to M$ given by $V_p \ni v \mapsto p \in M$.

Vector bundles

A *vector bundle of rank k* is a collection of $\{V_p\}_{p\in M}$ of vector spaces of dimension k "nicely parameterized" by a topological space M (think manifold)

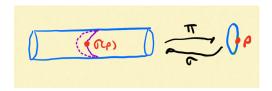
More precisely, let $E = \sqcup_{p \in M} V_p$. We have a *projection map* $\pi : E \to M$ given by $V_p \ni v \mapsto p \in M$.

- $\pi^{-1}(p) = V_p$ (fiber)
- There is a nbhd $p \in U$ of each p so that $\pi^{-1}(U) \cong U \times V_p$ (locally a product)



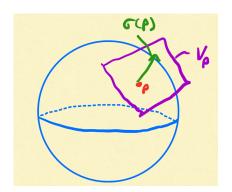
Vector fields

A *vector field* is a (continuous) choice of a vector in each fiber More precisely, a vector field is a continuous $\sigma: M \to E$ so that $\pi \circ \sigma = Id$ $(\sigma(p) \text{ lives in } V_p)$



A toy example

- $M = S^2$ (surface of earth)
- V_p =tangent vectors at p
- *E* =tangent bundle to *S*²
- $\sigma = \text{wind velocity}$



We can interpret a vector bundle as a laboratory where we can measure vector fields.

We can interpret a vector bundle as a laboratory where we can measure vector fields.

Assume that each fiber comes equipped with a (continuously varying) inner product

We can interpret a vector bundle as a laboratory where we can measure vector fields.

Assume that each fiber comes equipped with a (continuously varying) inner product

We can think of a vector field $\mu: M \to E$ as a measuring device

We can interpret a vector bundle as a laboratory where we can measure vector fields.

Assume that each fiber comes equipped with a (continuously varying) inner product

We can think of a vector field $\mu: M \to E$ as a measuring device

Given another vector field $\sigma: M \to E$ we can form a function $\mu(\sigma): M \to \mathbb{R}$ given by

$$p \mapsto \langle \mu(p), \sigma(p) \rangle$$
 measurement value at p

We can interpret a vector bundle as a laboratory where we can measure vector fields.

Assume that each fiber comes equipped with a (continuously varying) inner product

We can think of a vector field $\mu: M \to E$ as a measuring device

Given another vector field $\sigma: M \to E$ we can form a function $\mu(\sigma): M \to \mathbb{R}$ given by

$$p \mapsto \langle \mu(p), \sigma(p) \rangle$$
 measurement value at p

Question: given measuring devices μ_1, \ldots, μ_k can we recover a vector field $\sigma : M \to E$ from $\mu_1(\sigma), \ldots, \mu_k(\sigma)$?

We can interpret a vector bundle as a laboratory where we can measure vector fields.

Assume that each fiber comes equipped with a (continuously varying) inner product

We can think of a vector field $\mu: M \to E$ as a measuring device

Given another vector field $\sigma: M \to E$ we can form a function $\mu(\sigma): M \to \mathbb{R}$ given by

$$p \mapsto \langle \mu(p), \sigma(p) \rangle$$
 measurement value at p

Question: given measuring devices μ_1, \ldots, μ_k can we recover a vector field $\sigma: M \to E$ from $\mu_1(\sigma), \ldots, \mu_k(\sigma)$? Yes iff $\{\mu_1(p), \ldots, \mu_k(p)\}$ is a frame in V_p for each p. Frames (through a geometric lens

Vector Bundles

Frames Fields on Vector Bundles

Let $E \to M$ be a vector bundle. A collection $\{\mu_1, \dots, \mu_k\}$ of vector fields is a *frame field of size* k if $\{\mu_1(p), \dots, \mu_k(p)\}$ is a frame for each $p \in M$.

Let $E \to M$ be a vector bundle. A collection $\{\mu_1, \dots, \mu_k\}$ of vector fields is a *frame field of size* k if $\{\mu_1(p), \dots, \mu_k(p)\}$ is a frame for each $p \in M$.

Questions:

Let $E \to M$ be a vector bundle. A collection $\{\mu_1, \dots, \mu_k\}$ of vector fields is a *frame field of size* k if $\{\mu_1(p), \dots, \mu_k(p)\}$ is a frame for each $p \in M$.

Questions:

Do k-frame fields always exist for some k?

Let $E \to M$ be a vector bundle. A collection $\{\mu_1, \dots, \mu_k\}$ of vector fields is a *frame field of size* k if $\{\mu_1(p), \dots, \mu_k(p)\}$ is a frame for each $p \in M$.

Questions:

- Do k-frame fields always exist for some k?
- How big does k have to be?

Let $E \to M$ be a vector bundle. A collection $\{\mu_1, \ldots, \mu_k\}$ of vector fields is a *frame field of size k* if $\{\mu_1(p), \ldots, \mu_k(p)\}$ is a frame for each $p \in M$.

Questions:

- Do k-frame fields always exist for some k?
- How big does k have to be?
- Can we always find a Parseval frame field?

revisited

 $E \rightarrow S^2$ the tangent bundle.

Can we find a frame field of size 2?

revisited

 $E \rightarrow S^2$ the tangent bundle.

Can we find a frame field of size 2? No!

Theorem ("Hairy Ball Theorem", Poincaré, 1885) For each vector field $\sigma: S^2 \to E$ there is $p \in S^2$ so that $\sigma(p) = 0$.

revisited

 $E \rightarrow S^2$ the tangent bundle.

Can we find a frame field of size 2? No!

Theorem ("Hairy Ball Theorem", Poincaré, 1885) For each vector field $\sigma: S^2 \to E$ there is $p \in S^2$ so that $\sigma(p) = 0$.

Fact: If $E \to M$ is rank k and admits a frame field of size k then $E \cong M \times \mathbb{R}^k$

revisited

 $E \rightarrow S^2$ the tangent bundle.

Can we find a frame field of size 2? No!

Theorem ("Hairy Ball Theorem", Poincaré, 1885) For each vector field $\sigma: S^2 \to E$ there is $p \in S^2$ so that $\sigma(p) = 0$.

Fact: If $E \to M$ is rank k and admits a frame field of size k then $E \cong M \times \mathbb{R}^k$

Global bases don't usually exist!

revisited

What about a frame field of size 3?

Toy Example

revisited

What about a frame field of size 3? Yes!

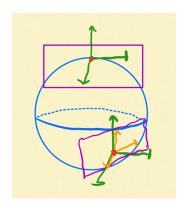
- Embed S^2 in \mathbb{R}^3
- Project standard basis fields to S²

Toy Example

revisited

What about a frame field of size 3? Yes!

- Embed S^2 in \mathbb{R}^3
- Project standard basis fields to S²

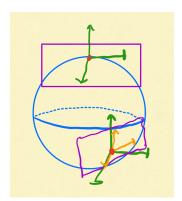


Toy Example

revisited

What about a frame field of size 3? Yes! It's even Parseval!

- Embed S^2 in \mathbb{R}^3
- Project standard basis fields to S²



The following theorem answers all three questions for vector bundles over manifolds

The following theorem answers all three questions for vector bundles over manifolds

Theorem 1 (B-Needham-Shonkwiler)

Let $E \to M$ be a rank n vector bundle over a d-dimensional manifold. Then there is Parseval frame of size k on E for $k \ge n + d$.

The following theorem answers all three questions for vector bundles over manifolds

Theorem 1 (B-Needham-Shonkwiler)

Let $E \to M$ be a rank n vector bundle over a d-dimensional manifold. Then there is Parseval frame of size k on E for $k \ge n + d$.

The previous example shows that this is not sharp in general

The following theorem answers all three questions for vector bundles over manifolds

Theorem 1 (B-Needham-Shonkwiler)

Let $E \to M$ be a rank n vector bundle over a d-dimensional manifold. Then there is Parseval frame of size k on E for $k \ge n + d$.

The previous example shows that this is not sharp in general

This generalizes previous work by Freeman-Poore-Wei-Wyse

 Build a (non-vector) bundle P_k(V) → M whose fiber at p is the "space of all Parseval frames" of size k in V_p

- Build a (non-vector) bundle P_k(V) → M whose fiber at p is the "space of all Parseval frames" of size k in V_p
- Finding a Parserval frame field is same as finding a section of this bundle

- Build a (non-vector) bundle P_k(V) → M whose fiber at p is the "space of all Parseval frames" of size k in V_p
- Finding a Parserval frame field is same as finding a section of this bundle
- By fixing an orthonormal basis on V_p, the space of all Parseval frames of size k can be identified with orthonormal subsets of R^k of size n (Stiefel manifold S_n(R^k)) using analysis operator

- Build a (non-vector) bundle P_k(V) → M whose fiber at p is the "space of all Parseval frames" of size k in V_p
- Finding a Parserval frame field is same as finding a section of this bundle
- By fixing an orthonormal basis on V_ρ , the space of all Parseval frames of size k can be identified with orthonormal subsets of \mathbb{R}^k of size n (Stiefel manifold $S_n(\mathbb{R}^k)$) using analysis operator
- This space has "trivial topology" in dimension $\leq n k$

- Build a (non-vector) bundle P_k(V) → M whose fiber at p is the "space of all Parseval frames" of size k in V_p
- Finding a Parserval frame field is same as finding a section of this bundle
- By fixing an orthonormal basis on V_p , the space of all Parseval frames of size k can be identified with orthonormal subsets of \mathbb{R}^k of size n (Stiefel manifold $S_n(\mathbb{R}^k)$) using analysis operator
- This space has "trivial topology" in dimension $\leq n k$
- Finding a section is obstructed by certain cohomology classes on *M* in dimensions ≤ *d*

- Build a (non-vector) bundle P_k(V) → M whose fiber at p is the "space of all Parseval frames" of size k in V_p
- Finding a Parserval frame field is same as finding a section of this bundle
- By fixing an orthonormal basis on V_p , the space of all Parseval frames of size k can be identified with orthonormal subsets of \mathbb{R}^k of size n (Stiefel manifold $S_n(\mathbb{R}^k)$) using analysis operator
- This space has "trivial topology" in dimension $\leq n k$
- Finding a section is obstructed by certain cohomology classes on M in dimensions ≤ d
- If k ≥ d + n then all the obstructions vanish and we can find a section.

Future Directions

 Develop "algorithm" for constructing Parseval frame fields (i.e. start with k-vector fields and "deform them" to a Parseval frame field)

Future Directions

- Develop "algorithm" for constructing Parseval frame fields (i.e. start with k-vector fields and "deform them" to a Parseval frame field)
- Analyze robustness properties of Parseval frames for various types of noise

Future Directions

- Develop "algorithm" for constructing Parseval frame fields (i.e. start with k-vector fields and "deform them" to a Parseval frame field)
- Analyze robustness properties of Parseval frames for various types of noise
- Study minimal frame dimension

 (i.e. Given E → M find smallest n ≤ k ≤ n + d so that a k-frame field exists

Have Hammer, Seeking Nail

Please let me know if you have potential applications

Thank you!