Classification of Generalized Cusps

Sam Ballas
Florida State University

(joint with D. Cooper and A. Leitner)

Joint Mathematics Meeting
Atlanta, GA
January 7, 2017



Outline

1. Cusps of hyperbolic manifolds

o Description/geometry of cusps
e Focus on properties to generalize



Outline

1. Cusps of hyperbolic manifolds

e Description/geometry of cusps

e Focus on properties to generalize
2. Properly Convex Manifolds

e What are they?
¢ How do they similar/different to hyperbolic manifolds



Outline

1. Cusps of hyperbolic manifolds

e Description/geometry of cusps

e Focus on properties to generalize
2. Properly Convex Manifolds

e What are they?

e How do they similar/different to hyperbolic manifolds
3. Generalized Cusps

o Description/geometry
e How to classify
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Cusps of hyperbolic orbifolds

Let I < Isom(H") be a lattice and M = H"/T be a complete
hyperbolic n-orbifold.

Using the “thik-thin” decomposition M can be decomposed into

M=Mk|_|Ci,
7

where C; is finitely covered by 7"~ x [0, «0).
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Cusps of hyperbolic manifolds

Geometry of cusps

o LetH" = {(z,v) e Rx R"™ " | z> J|v|?} c RP"
e H" is foliated by horospheres

St={(z,v)eH" | x=}|vf+1},t>0
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Cusps of hyperbolic manifolds

Geometry of cusps
Consider the following subgroups of SL,,+1( )

T={(3 W) ruermtho= {4 Y 1acom-1)

e T acts simply transitively on each S;
e Ois a point stabilizer
e G =T x O preserves the foliation leafwise

H’n

e
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Geometry of cusps
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Cusps of hyperbolic manifolds

Geometry of cusps

Let
e Br = U7 St (horoball)
e A alattice in G.
The cusp C can be realized as Br/A
The S;/A give a foliation of C by Euclidean (n — 1)-orbifolds.
H’n
Br/A

Br
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Properly convex manifolds

A subset Q < RP" with non-empty interior is properly convex if

1. Qis convex in RP" (intersections with projective lines are
connected)

2. Qs disjoint from some projective hyperplane.
Q can be realized as a compact, convex subset of R” « RP".
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Properly convex manifolds

Let Q be properly convex and let
PGL(Q) = {Ae PGL,1(R) | A(Q2) = Q}.

A manifold M = Q/I" where Q is properly convex and
I < PGL(Q) is a discrete subgroup is called properly convex

H" is a properly convex domain (via the Klein model).
Therefore complete hyperbolic manifolds are properly convex

In general, properly convex domains can have “flats” in their
boundary.
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Deforming properly convex manifolds
Let M = Qy /Ty be a complete hyperbolic manifold

In many cases one can find non-trivial continuous families
Q/T'+ = M of properly convex manifolds

If M has cusps, what does the geometry of the cusps of Q/T'
look like if t = 0? They are generalized cusps.



Generalized cusps

A generalized cusp is a properly convex manifold C = Q/T
where

e Cis diffeomorphic to dC x [0, o0), with 0C compact
e [~ 110C is virtually abelian
e 0C is strictly convex



Generalized cusps

A generalized cusp is a properly convex manifold C = Q/T
where

e Cis diffeomorphic to dC x [0, o0), with 0C compact
e [~ 110C is virtually abelian
e 0C is strictly convex

Cusps of finite volume hyperbolic manifolds are generalized
cusps
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Geometry of generalized cusps

Overview
Let Wn:{()\1,,)\n)’0<)\1 gg)\n}

Given an n-dimensional generalized cusp C = Q/I' we get

e )\ e W,, unique up to scaling.
e ALiegroupPGL, 1{(R) o2 Gy~ T, x O, that
—— ——

translations  point stabilizer
contains a conjugate of ' as a lattice.

e A G,-invariant properly convex domain Q) < Q (e.g.
BT (e Hn)

¢ A foliation of 2, by strictly convex hypersurfaces
(horospheres)
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A quasi-hyperbolic cusp

o LetQpq) ={(z,y) eRxRy [ Zz> —log(y)}
e Q1) is foliated by St = {(z,y) e Q| z = —log(y) + t}
(horospheres)

Let I' be a lattice in the Lie group

1 0 —u
G(O,1) = 0 eY 0 ‘ ueR
0O 0 1

o
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Mixed cusps
Let

e e W,suchthat \y =0
e letp=max{i|\j=0}ands=n—p
o Letfy :RET':=RP~T x RS — R given by

15 |
(Koo Koot Yr V) > 5 D X Z%w og(y)
i=1
~—— _/—’
hyperbolic part  quasi-hyperbolic part

o LetQy = {(z,(x,¥)) e Rx RE™"| z = fi(x, y)} foliated by f, level sets

Figure: On the left Qo 1) and on the right Qg 11
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Mixed cusps
Symmetry group

f(x,y)
X
0
1
Ox

~——
Orthogonal

S

X

PGL,.1(R) | (x,y) e RS

Py

Permutations
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Diagonalizable cusps

Let A € W, with A1 > 0 and let
Ox = {(x1,...,X%) e RT | 37, A "log(x;) > 0}

O, is foliated by S; = {(x1,...,xa) e RT | 27, A “log(x) = t}
Let I' be a lattice in the Lie group
Uy

n
Ty = | YA og(uy) = 0

Un =1
1

O, = Coordinate permutation where \; = J;

\\ Q,/T
. 5,/T



Main Theorem

Theorem 1
(B—Cooper-Leitner) Let C = Q/T be an n-dimensional
generalized cusp. Then there is ais a A € Wy, unique up to
scaling, such that

e [ is conjugate to a lattice I’ = G),

e C deformation retracts onto a submanifold C' = Q'/T that
is projectively equivalent to Q,/T".
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Remaining questions

How do different types of cusps transition to one another?

What is the moduli space of generalized cusps? Is it an
orbifold?

Realization Problem: given a generalized cusp C, can you
find an interesting properly convex manifold M with a cusp
projectively equivalent to C?

Can we use the geometry of generalized cusps to give
coordinates on the space of convex projective structures
on a fixed manifold? (Fenchel-Nielsen coordinates)
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