## Classification of Generalized Cusps

Sam Ballas Florida State University

(joint with D. Cooper and A. Leitner)

Joint Mathematics Meeting Atlanta, GA January 7, 2017

### Outline

- 1. Cusps of hyperbolic manifolds
  - Description/geometry of cusps
  - Focus on properties to generalize

### Outline

- 1. Cusps of hyperbolic manifolds
  - Description/geometry of cusps
  - Focus on properties to generalize
- 2. Properly Convex Manifolds
  - What are they?
  - How do they similar/different to hyperbolic manifolds

### Outline

- 1. Cusps of hyperbolic manifolds
  - Description/geometry of cusps
  - Focus on properties to generalize
- 2. Properly Convex Manifolds
  - · What are they?
  - How do they similar/different to hyperbolic manifolds
- 3. Generalized Cusps
  - Description/geometry
  - How to classify

### Cusps of hyperbolic orbifolds

Let  $\Gamma \subset \text{Isom}(\mathbb{H}^n)$  be a lattice and  $M = \mathbb{H}^n/\Gamma$  be a complete hyperbolic n-orbifold.

## Cusps of hyperbolic orbifolds

Let  $\Gamma \subset \mathsf{Isom}(\mathbb{H}^n)$  be a lattice and  $M = \mathbb{H}^n/\Gamma$  be a complete hyperbolic n-orbifold.

Using the "thik-thin" decomposition M can be decomposed into

$$M=M_k\bigsqcup_i C_i,$$

where  $C_i$  is finitely covered by  $T^{n-1} \times [0, \infty)$ .



Geometry of cusps

• Let  $\mathbb{H}^n = \{(z, v) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid z > \frac{1}{2} |v|^2\} \subset \mathbb{RP}^n$ 



Geometry of cusps

- Let  $\mathbb{H}^n = \{(z, v) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid z > \frac{1}{2} |v|^2\} \subset \mathbb{RP}^n$
- $\mathbb{H}^n$  is foliated by horospheres  $S_t = \{(z, v) \in \mathbb{H}^n \mid x = \frac{1}{2} |v|^2 + t\}, t > 0$



Geometry of cusps

Consider the following subgroups of  $SL_{n+1}^{\pm}(\mathbb{R})$ 

$$T = \left\{ \begin{pmatrix} 1 & u & \frac{1}{2} |u|^2 \\ 0 & l & u \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid A \in O(n-1) \right\}$$

• T acts simply transitively on each S<sub>t</sub>



Geometry of cusps

Consider the following subgroups of  $SL_{n+1}^{\pm}(\mathbb{R})$ 

$$T = \left\{ \begin{pmatrix} \frac{1}{0} & u & \frac{1}{2} |u|^2 \\ 0 & l & u \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \left\{ \begin{pmatrix} \frac{1}{0} & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid A \in O(n-1) \right\}$$

- T acts simply transitively on each S<sub>t</sub>
- O is a point stabilizer



Geometry of cusps

Consider the following subgroups of  $SL_{n+1}^{\pm}(\mathbb{R})$ 

$$T = \left\{ \begin{pmatrix} \frac{1}{0} & u & \frac{1}{2} |u|^2 \\ 0 & l & u \\ 0 & 0 & 1 \end{pmatrix} \mid u \in \mathbb{R}^{n-1} \right\}, O = \left\{ \begin{pmatrix} \frac{1}{0} & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid A \in O(n-1) \right\}$$

- T acts simply transitively on each S<sub>t</sub>
- O is a point stabilizer
- $G = T \times O$  preserves the foliation leafwise



Geometry of cusps

#### Let

- $B_T = \bigcup_{t \ge T} S_t$  (horoball)
- $\Delta$  a lattice in G.

Geometry of cusps

### Let

- $B_T = \bigcup_{t \ge T} S_t$  (horoball)
- Δ a lattice in G.

The cusp C can be realized as  $B_T/\Delta$ 



Geometry of cusps

### Let

- $B_T = \bigcup_{t \ge T} S_t$  (horoball)
- Δ a lattice in G.

The cusp C can be realized as  $B_T/\Delta$ 

The  $S_t/\Delta$  give a foliation of C by Euclidean (n-1)-orbifolds.



A subset  $\Omega \subset \mathbb{RP}^n$  with non-empty interior is *properly convex* if

- 1.  $\Omega$  is convex in  $\mathbb{RP}^n$  (intersections with projective lines are connected)
- 2.  $\overline{\Omega}$  is disjoint from some projective hyperplane.

A subset  $\Omega \subset \mathbb{RP}^n$  with non-empty interior is *properly convex* if

- 1.  $\Omega$  is convex in  $\mathbb{RP}^n$  (intersections with projective lines are connected)
- 2.  $\overline{\Omega}$  is disjoint from some projective hyperplane.

 $\Omega$  can be realized as a compact, convex subset of  $\mathbb{R}^n \subset \mathbb{RP}^n$ .



Let  $\Omega$  be properly convex and let  $\operatorname{PGL}(\Omega) = \{ \textit{A} \in \operatorname{PGL}_{n+1}(\mathbb{R}) \mid \textit{A}(\Omega) = \Omega \}.$ 

Let  $\Omega$  be properly convex and let  $PGL(\Omega) = \{A \in PGL_{n+1}(\mathbb{R}) \mid A(\Omega) = \Omega\}.$ 

A manifold  $M = \Omega/\Gamma$  where  $\Omega$  is properly convex and  $\Gamma \subset \mathsf{PGL}(\Omega)$  is a discrete subgroup is called *properly convex* 

Let  $\Omega$  be properly convex and let  $PGL(\Omega) = \{A \in PGL_{n+1}(\mathbb{R}) \mid A(\Omega) = \Omega\}.$ 

A manifold  $M = \Omega/\Gamma$  where  $\Omega$  is properly convex and  $\Gamma \subset \mathsf{PGL}(\Omega)$  is a discrete subgroup is called *properly convex* 

 $\mathbb{H}^n$  is a properly convex domain (via the Klein model). Therefore complete hyperbolic manifolds are properly convex

Let  $\Omega$  be properly convex and let  $PGL(\Omega) = \{A \in PGL_{n+1}(\mathbb{R}) \mid A(\Omega) = \Omega\}.$ 

A manifold  $M = \Omega/\Gamma$  where  $\Omega$  is properly convex and  $\Gamma \subset \mathsf{PGL}(\Omega)$  is a discrete subgroup is called *properly convex* 

 $\mathbb{H}^n$  is a properly convex domain (via the Klein model). Therefore complete hyperbolic manifolds are properly convex

In general, properly convex domains can have "flats" in their boundary.

Let  $M\cong\Omega_0/\Gamma_0$  be a complete hyperbolic manifold

Let  $M \cong \Omega_0/\Gamma_0$  be a complete hyperbolic manifold

In many cases one can find *non-trivial* continuous families  $\Omega_t/\Gamma_t \cong M$  of properly convex manifolds

Let  $M \cong \Omega_0/\Gamma_0$  be a complete hyperbolic manifold

In many cases one can find *non-trivial* continuous families  $\Omega_t/\Gamma_t \cong M$  of properly convex manifolds



Let  $M \cong \Omega_0/\Gamma_0$  be a complete hyperbolic manifold

In many cases one can find *non-trivial* continuous families  $\Omega_t/\Gamma_t \cong M$  of properly convex manifolds



If *M* has cusps, what does the geometry of the cusps of  $\Omega_t/\Gamma_t$  look like if  $t \neq 0$ ?



Let  $M \cong \Omega_0/\Gamma_0$  be a complete hyperbolic manifold

In many cases one can find *non-trivial* continuous families  $\Omega_t/\Gamma_t \cong M$  of properly convex manifolds



If *M* has cusps, what does the geometry of the cusps of  $\Omega_t/\Gamma_t$  look like if  $t \neq 0$ ? They are generalized cusps.



### Generalized cusps

A generalized cusp is a properly convex manifold  $\emph{C} = \Omega/\Gamma$  where

- *C* is diffeomorphic to  $\partial C \times [0, \infty)$ , with  $\partial C$  compact
- $\Gamma \cong \pi_1 \partial C$  is virtually abelian
- ∂C is strictly convex

### Generalized cusps

A generalized cusp is a properly convex manifold  $\emph{C} = \Omega/\Gamma$  where

- *C* is diffeomorphic to  $\partial C \times [0, \infty)$ , with  $\partial C$  compact
- $\Gamma \cong \pi_1 \partial C$  is virtually abelian
- ∂C is strictly convex

Cusps of finite volume hyperbolic manifolds are generalized cusps



Let 
$$W_n = \{(\lambda_1, \dots, \lambda_n) \mid 0 \leqslant \lambda_1 \leqslant \dots \leqslant \lambda_n\}$$

Let 
$$W_n = \{(\lambda_1, \dots, \lambda_n) \mid 0 \leqslant \lambda_1 \leqslant \dots \leqslant \lambda_n\}$$

- $\lambda \in W_n$ , unique up to scaling.
- A Lie group  $\operatorname{PGL}_{n+1}(\mathbb{R})\supset G_\lambda\cong\underbrace{T_\lambda}_{\text{translations}}\rtimes\underbrace{O_\lambda}_{\text{point stabilizer}}$  that contains a conjugate of  $\Gamma$  as a lattice.

Let 
$$W_n = \{(\lambda_1, \dots, \lambda_n) \mid 0 \leqslant \lambda_1 \leqslant \dots \leqslant \lambda_n\}$$

- $\lambda \in W_n$ , unique up to scaling.
- A Lie group  $\operatorname{PGL}_{n+1}(\mathbb{R})\supset G_\lambda\cong\underbrace{T_\lambda}_{\text{translations}}\rtimes\underbrace{O_\lambda}_{\text{point stabilizer}}$  that contains a conjugate of  $\Gamma$  as a lattice.
- A  $G_{\lambda}$ -invariant properly convex domain  $\Omega_{\lambda} \subset \Omega$  (e.g.  $B_{\mathcal{T}} \subset \mathbb{H}^n$ )

Let 
$$W_n = \{(\lambda_1, \dots, \lambda_n) \mid 0 \leqslant \lambda_1 \leqslant \dots \leqslant \lambda_n\}$$

- $\lambda \in W_n$ , unique up to scaling.
- A Lie group  $\operatorname{PGL}_{n+1}(\mathbb{R})\supset G_\lambda\cong\underbrace{\mathcal{T}_\lambda}_{\text{translations}}\rtimes\underbrace{\mathcal{O}_\lambda}_{\text{point stabilizer}}$  that contains a conjugate of  $\Gamma$  as a lattice.
- A  $G_{\lambda}$ -invariant properly convex domain  $\Omega_{\lambda} \subset \Omega$  (e.g.  $B_{\tau} \subset \mathbb{H}^n$ )
- A foliation of  $\Omega_{\lambda}$  by strictly convex hypersurfaces (horospheres)

### A quasi-hyperbolic cusp

- Let  $\Omega_{(0,1)} = \{(z,y) \in \mathbb{R} \times \mathbb{R}_+ \mid z > -\log(y)\}$
- $\Omega_{(0,1)}$  is foliated by  $S_t = \{(z,y) \in \Omega \mid z = -\log(y) + t\}$  (horospheres)



### A quasi-hyperbolic cusp

- Let  $\Omega_{(0,1)} = \{(z,y) \in \mathbb{R} \times \mathbb{R}_+ \mid z > -\log(y)\}$
- $\Omega_{(0,1)}$  is foliated by  $S_t = \{(z,y) \in \Omega \mid z = -\log(y) + t\}$  (horospheres)

Let  $\Gamma$  be a lattice in the Lie group

$$G_{(0,1)} = \left\{ \begin{pmatrix} 1 & 0 & -u \\ 0 & e^{u} & 0 \\ 0 & 0 & 1 \end{pmatrix} | u \in \mathbb{R} \right\}$$



### Let

•  $\lambda \in W_n$  such that  $\lambda_1 = 0$ 

### Let

- $\lambda \in W_n$  such that  $\lambda_1 = 0$
- Let  $p = \max\{i \mid \lambda_i = 0\}$  and s = n p

#### Let

- $\lambda \in W_n$  such that  $\lambda_1 = 0$
- Let  $p = \max\{i \mid \lambda_i = 0\}$  and s = n p
- Let  $f_{\lambda}: \mathbb{R}^{p-1}_s := \mathbb{R}^{p-1} \times \mathbb{R}^s_+ \to \mathbb{R}$  given by

$$(x_1, \dots, x_{p-1}, y_1, \dots y_s) \mapsto \underbrace{\frac{1}{2} \sum_{i=1}^{p-1} x_i^2}_{\text{hyperbolic part}} - \underbrace{\sum_{i=1}^{s} \lambda_{p+i}^{-1} \log(y_i)}_{\text{quasi-hyperbolic part}}$$

#### Let

- $\lambda \in W_n$  such that  $\lambda_1 = 0$
- Let  $p = \max\{i \mid \lambda_i = 0\}$  and s = n p
- Let  $f_{\lambda}: \mathbb{R}^{p-1}_s := \mathbb{R}^{p-1} \times \mathbb{R}^s_+ \to \mathbb{R}$  given by

$$(x_1, \dots, x_{p-1}, y_1, \dots y_s) \mapsto \underbrace{\frac{1}{2} \sum_{i=1}^{p-1} x_i^2}_{\text{hyperbolic part}} - \underbrace{\sum_{i=1}^{s} \lambda_{p+i}^{-1} \log(y_i)}_{\text{quasi-hyperbolic part}}$$

• Let  $\Omega_{\lambda} = \{(z,(x,y)) \in \mathbb{R} \times \mathbb{R}^{p-1}_s \mid z \geqslant f_{\lambda}(x,y)\}$  foliated by  $f_{\lambda}$  level sets

#### Let

- $\lambda \in W_n$  such that  $\lambda_1 = 0$
- Let  $p = \max\{i \mid \lambda_i = 0\}$  and s = n p
- Let  $f_{\lambda}: \mathbb{R}^{p-1}_s := \mathbb{R}^{p-1} \times \mathbb{R}^s_+ \to \mathbb{R}$  given by

$$(x_1, \dots, x_{p-1}, y_1, \dots y_s) \mapsto \underbrace{\frac{1}{2} \sum_{i=1}^{p-1} x_i^2}_{\text{hyperbolic part}} - \underbrace{\sum_{i=1}^{s} \lambda_{p+i}^{-1} \log(y_i)}_{\text{quasi-hyperbolic part}}$$

• Let  $\Omega_{\lambda} = \{(z, (x, y)) \in \mathbb{R} \times \mathbb{R}^{p-1}_s \mid z \geqslant f_{\lambda}(x, y)\}$  foliated by  $f_{\lambda}$  level sets



Figure: On the left  $\Omega_{(0,0,1)}$  and on the right  $\Omega_{(0,1,1)}$ 

### Mixed cusps Symmetry group

$$T_{\lambda} = \left\{ \begin{pmatrix} 1 & x & 0 & f(x, y) \\ 0 & I_{p-1} & 0 & x \\ 0 & 0 & D_{y} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in PGL_{n+1}(\mathbb{R}) \mid (x, y) \in \mathbb{R}_{s}^{p-1} \right\}$$

$$O_{\lambda} = \left\{ O_{x} \right\} \times \left\{ P_{y, \lambda} \right\}$$

$$O_{\lambda} = \underbrace{O_{\chi}}_{\text{Orthogonal}} \times \underbrace{P_{y,\lambda}}_{\text{Permutations}}$$

## Diagonalizable cusps

Let 
$$\lambda \in \mathcal{W}_n$$
 with  $\lambda_1 > 0$  and let  $O_{\lambda} = \{(x_1, \dots, x_n) \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) > 0\}$ 
 $O_{\lambda}$  is foliated by  $S_t = \{(x_1, \dots, x_n) \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) = t\}$ 



## Diagonalizable cusps

Let  $\lambda \in \mathcal{W}_n$  with  $\lambda_1 > 0$  and let  $O_{\lambda} = \{(x_1, \dots, x_n) \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) > 0\}$   $O_{\lambda}$  is foliated by  $S_t = \{(x_1, \dots, x_n) \in \mathbb{R}^n_+ \mid \sum_{i=1}^n \lambda_i^{-1} \log(x_i) = t\}$  Let  $\Gamma$  be a lattice in the Lie group

$$T_{\lambda} = \left\{ \begin{pmatrix} u_1 & & & \\ & \ddots & & \\ & & u_n & \\ & & & 1 \end{pmatrix} \middle| \sum_{i=1}^n \lambda_i^{-1} \log(u_i) = 0 \right\}$$

 $O_{\lambda} = \text{Coordinate permutation where } \lambda_i = \lambda_j$ 



### Main Theorem

### Theorem 1

(B–Cooper–Leitner) Let  $C=\Omega/\Gamma$  be an n-dimensional generalized cusp. Then there is a is a  $\lambda \in W_n$ , unique up to scaling, such that

- $\Gamma$  is conjugate to a lattice  $\Gamma' \subset G_{\lambda}$
- C deformation retracts onto a submanifold  $C' = \Omega'/\Gamma$  that is projectively equivalent to  $\Omega_{\lambda}/\Gamma'$ .

How do different types of cusps transition to one another?

- How do different types of cusps transition to one another?
- What is the moduli space of generalized cusps? Is it an orbifold?

- How do different types of cusps transition to one another?
- What is the moduli space of generalized cusps? Is it an orbifold?
- Realization Problem: given a generalized cusp C, can you find an *interesting* properly convex manifold M with a cusp projectively equivalent to C?

- How do different types of cusps transition to one another?
- What is the moduli space of generalized cusps? Is it an orbifold?
- Realization Problem: given a generalized cusp C, can you find an *interesting* properly convex manifold M with a cusp projectively equivalent to C?
- Can we use the geometry of generalized cusps to give coordinates on the space of convex projective structures on a fixed manifold? (Fenchel-Nielsen coordinates)

## Thank you