
GEAR LECTURES ON QUANTUM HYPERBOLIC
GEOMETRY

CHARLES FROHMAN

1. Introduction

The introduction is the hardest to read part of these notes.
Maybe skip it for now, and read it at the end to figure out what
happened. You should think of these lectures as a multilayered
experience. In the actual lectures I will cover much less ground
than in the notes, focusing on the main points. Lectures Ia and
Ib are a simplified version of arXiv:1707.09234 , Unicity for Rep-
resentations of the Kauffman Bracket Skein Algebra by Frohman,
Kania-bartoszynska and Lê. Lectures IIa, and IIb are a simplified
introduction to the work of Bonahon, Wong and Liu.

Quantum hyperbolic geometry is a term coined by Baseilhac
and Benedetti,[6] to refer to a method for assigning invariants to a
3-manifold equipped with a representation of its fundamental group
into SL2C. There is a system of 6j-symbols, parametrized by a com-
plex variable, associated to representations of the cyclic Weil algebra.
They realized that the variable acted as a root of the crossratio of an
ideal tetrahedron. Basing their work on Kashaev’s original approach
to defining his invariant they were able to assign invariants to a three
manifold equipped with an ideal triangulation that was decorated with
numbers that satisfied equations similar to Thurston’s consistency con-
ditions for a hyperbolic structure carried by an ideal triangulation.

Thurston’s proof of the hyperbolization theorem for sufficiently large
acylindrical three-manifolds relied on finding fixed points for the action
of the mapping class group on character varieties of surface groups.
Bonahon’s approach to quantum hyperbolic geometry [8, 9, 10, 11] is
via an analogy with Thurston’s work. Recent work of Baseilhac and
Benedetti, [7], shows that their invariants and Bonahon’s are the same.
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The goal of these lectures is to introduce the concepts that un-
derly Bonahon’s approach to quantum hyperbolic invariants of sur-
face bundles over a circle and the means to compute them.

The Kauffman bracket skein algebra Kζ(F ) of an oriented finite type
surface at a 2nth root of unity ζ ∈ C, where n is odd, is a finite rank
noncommutative ring extension of the coordinate ring of the SL2C -
character variety of the fundamental group of F . The failure of the
algebra to be commutative is a reflection of the symplectic geometry of
the character variety. The action of the mapping class group of F on
the coordinate ring of the SL2C-character variety extends to Kζ(F ).
This action encodes how the mapping class interacts with the geometry
of the character variety.

An irreducible representation of Kζ(F ) is an onto algebra homomor-
phism

(1) h : Kζ(F )→MN(C)

where MN(C) is the ring of N ×N -matrices with complex coefficients
for some N . Generically, there is a one to one correspondence between
irreducible representations of Kζ(F ) and points of the SL2C-character
variety of F . This means that a fixed point of a mapping class of F on
the character variety gives rise to a unique automorphism of a matrix
algebra. Quantum hyperbolic invariants of three-manifolds are derived
from this automorphism.

Skein algebras have complicated defining relations. There is another
class of algebras, noncommutative tori that have very simple defin-
ing relations. Bonahon and Wong defined an injective homomorphism
from the Kauffman bracket skein algebra of a punctured surface to a
noncommutative torus. Irreducible representations of the skein algebra
can be constructed by pulling back irreducible representations of the
noncommutative torus to the skein algebra via this homomorphism.
This leads to the ability to compute quantum hyperbolic invariants.

The lectures will be in four parts.

• Lecture Ia The Kauffman bracket skein algebra Kζ(F ) of an
oriented surface of finite type F , at a 2nth root of unity ζ where
n is odd, is a prime, affine algebra that has finite rank over its
center. Its center is a finite extension of the coordinate ring
of the SL2C-character variety of the fundamental group of F .
Furthermore there is a natural action of the mapping class group
of F , on Kζ(F ) as automorphisms. In this lecture we define the
Kauffman bracket skein algebra, explain its connection to the
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coordinate ring of the character variety, and outline its algebraic
properties.
• Lecture Ib The second part of the first lecture is about the rep-

resentation theory of associative algebras. If A is an associative
algebra over C, then a representation is just a surjective homo-
morphism from A to the algebra of n×n-matrices with complex
coefficients. We will begin by showing that up to equivalence,
representations are determined by their kernel. If A is affine (
a quotient of an algebra of noncommuting polynomials in finite
many variables), has finite rank over its center, and is prime (
the noncommutative analog of being an integral domain), then
generically irreducible representations are classified by their re-
striction to the center of the algebra, and generically they all
have the same dimension. This is the unicity theorem.

Generically, a fixed point of the action of the mapping
class φ : F → F on the character variety of the fundamen-
tal group of F , and a choice of an odd integer n, gives rise
to a unique automorphism of a matrix algebra. This auto-
morphism carries the “quantum hyperobolic” invariants ”
of the mapping cylinder of φ.

• Lecture IIa In this lecture we introduce another class of alge-
bras that satisfy the hypotheses of the unicity theorem, noncom-
mutative tori. We describe the embedding of the skein algebra
of the torus into a noncommutative torus due to Frohman and
Gelca. We show that the rank of these two algebras over their
centers are the same, and a local basis for the skein algebra of
the torus gets sent to a local basis for noncommutative torus.
We finish by discussing the noncommutative A-polynomial.
• Lecture IIb We begin by giving standard models for the ir-

reducible representations of the noncommutative torus. Next
we describe an action of SL2Z on the noncommutative torus so
that embedding of the skein algebra into the noncommutative
torus is an intertwiner for the two actions. We finish by com-
puting the quantum hyperbolic invariants of the mapping class(

2 1
1 1

)
.

There is much more material in these written notes than I could
possibly explain in four fortyfive minute lectures. You should think
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of these notes as a companion that fills out the points I make at
the board.

2. Lecture Ia: The Kauffman bracket skein algebra

2.1. Kauffman Bracket Skein Module. Let M be an oriented 3-
manifold. A framed link in M is an embedding of a disjoint union of
annuli into M . Diagrammatically we depict framed links by showing
the core of the annuli. You should imagine the annuli lying parallel to
the plane of the paper, this is sometimes called the blackboard fram-
ing. Two framed links in M are equivalent if they are isotopic. Let
L denote the set of equivalence classes of framed links in M , including
the empty link.

Figure 1. Representing a framed link with the black-
board framing

Let A ∈ C be nonzero. Consider the vector space CL, with basis L.
Let S be the subvector space spanned by the Kauffman bracket skein
relations,

− A − A−1

and
©∪ L+ (A2 + A−2)L.

The framed links in each expression are identical outside the balls pic-
tured in the diagrams, and when both arcs in a diagram lie in the same
component of the framed link, the same side of the annulus is up. The
problem is you could put a crossing ball in a manifold in such a way
that one of the smoothings is a pair of Mobius bands. Never apply a
skein relation in a way that does not produce annuli. The Kauffman
bracket skein module KA(M) is the quotient

CL/S(M).

A skein is an element of KA(M).
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Skeins are equivalence classes of linear combinations of isotopy
classes of framed links.

Let F be a compact orientable surface and let I = [0, 1]. There is an
algebra structure on KA(F×I) that comes from laying one framed link
over the other. The resulting algebra is denoted KA(F ) to emphasize
that it comes from the particular structure as a cylinder over F . Denote
the stacking product with a ∗, so α ∗ β means α stacked over β. If it is
known the two skeins commute the ∗ will be omitted.

A + A

−1

Figure 2. The product of two skeins in a cylinder over
a torus. In the first row we lay one over the other. In
the second row we resolve the crossing

If φ : F → F is an orientation preserving homeomorphism, then it
extends to an orientation preserving homeomorphism of φ̃ : F×[0, 1]→
F × [0, 1] by

(2) φ̃(x, t) = (φ(x), t).

The mapping φ̃ takes framed links to framed links, and because it
doesn’t change the last coordinate, gives rise to an automorphism of
KA(F ). Hence the mapping class group of a surface acts as automor-
phisms of the Kauffman bracket skein algebra of the surface.

A simple diagram D on the surface F is a system of disjoint simple
closed curves so that none of the curves bounds a disk. A simple
diagram D is primitive if no two curves in the diagram cobound an
annulus. A simple diagram can be made into a framed link by choosing
a system of disjoint annuli in F so that each annulus has a single curve
in the diagram as its core. That is we assume the blackboard framing.
The set of isotopy classes of blackboard framed simple diagrams form a
basis for KA(F ). Hence every skein in a cylinder over F can be written
uniquely as a linear combination of isotopy classes of simple diagrams.
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We are most interested in the case when A is a primitive 2nth root
of unity, where n ∈ N is odd. To emphasize that we are working at a
root of unity we will denote the variable in the Kauffman bracket skein
relation by ζ when it is a root of unity.

2.2. Skeins and characters. Assume

(3) A =

(
a b
c d

)
.

where ad − bc = 1. Notice that Tr(A) = a + d. The characteristic
polynomial of A is

(4) det(A− λId2) = λ2 − (a+ d)λ+ 1 = λ2 − Tr(A)λ+ 1

By the Cayley-Hamilton identity,

(5) A2 − Tr(A)A+ Id2 =

(
0 0
0 0

)
.

Let’s multiply through by A−1 to get rid of the square.

(6) A− Tr(A)Id2 + A−1 =

(
0 0
0 0

)
.

Multiplying by an arbitrary matrix B, and taking the trace, which is
a linear function we get,

(7) Tr(AB)− Tr(A)Tr(B)− Tr(A−1B) = 0.

This is the fundamental trace identity for SL2C. The derivation I gave
here is an example of polarization, which is a process for turning a
polynomial in a single variable of degree n, into a multilinear function
in n variables. For that reason, it is also called the fully polarized
Cayley-Hamilton Identity.

Recall

• If A,B ∈ SL2C, Tr(AB) = Tr(BA). This implies

(8) Tr(ABA−1) = Tr(B).

• If A ∈ SL2C then Tr(A) = Tr(A−1), and
• Tr(Id2) = 2.

Let Σ be a surface of genus 1 with one boundary component.
We show Σ in Figure 2.2. Choose two oriented crosscuts, (shown
in blue and red), that cut Σ open to be a disk, and choose a base-
point disjoint from the crosscuts. Given a based loop, (shown in
green) perturb it to be transverse to the crosscuts. Every time
you travserse the blue crosscut write down the letter a if you are
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Figure 3. The surface Σ.

traversing it in the positive direction and a−1 if you travserse it in
the negative direction. Here positive means that the local intersec-
tion number of the loop with the arc is positive. Similarly, every
time you traverse the red crosscut write down b or b−1. Each ho-
motopy class of based loops on the surface corresponds to a freely
reduced word in a±1 and b±1. This correspondence exhibits the fun-
damental group Σ as the free group F < a, b > on two generators
a and b.

For every choice of matrices (A,B) ∈ SL2C, there is a homomor-
phism ρ : π1(Σ) → SL2C obtained by substituting A±1 and B±1

for a±1 and b±1 in elements of the free group on a and b .

Let G be a finitely generated group. Let R(G) be the set of repre-
sentations of the fundamental group of Σ into SL2C. The set R(G)
can be given the structure of an algebraic set. If x1, . . . , xn are the
generators of G, then each element ρ : G→ SL2C is determined by the
tuple (ρ(x1), . . . , ρ(xn)) ∈ SL2Cn. There is a finite system of equations
that characterize the image of R(G) in SL2C that are derived from the
relations in the group.

If

(
a b
c d

)
∈ SL2C, you can think of it as (a, b, c, d) ∈ C4, with

ad − bc = 1. Hence the coordinate ring of SL2C is the quotient of
polynomials in a, b, c, d modulo the ideal generated by ad− bc−1. The
coordinate ring C[SL2Cn] of SL2Cn can be thought of as the tensor
product of n copies of this ring. Finally, the coordinate ring of the rep-
resentation variety C[R(G)] is the quotient of C[SL2Cn], coming from
saying two functions are equal if they evaluate as the same functions
on the set R(G).



8 CHARLES FROHMAN

There is an action of SL2C on R(G) given by conjugation. If ρ ∈
R(G) and A ∈ SL2C, define A.ρ as follows. If g ∈ G then

(9) A.ρ(g) = Aρ(g)A−1.

We say that two ρ1, ρ2 : G → SL2C are conjugate if there exists A ∈
SL2C so that A.ρ1 = ρ2. The quotient space under this action is
not Hausdorff, which means you can’t detect points from continuous
coordinate functions that take on values in C. There is a coarser notion
of equivalence of representations that leads to a Hausdorff space. We
say that ρ1, ρ2 : G→ SL2C are trace equivalent if for every g ∈ G,

(10) Tr(ρ1(g)) = Tr(ρ2(g)).

Since conjugate matrices have the same trace, if ρ1 and ρ2 are conjugate
representations, then they are trace equivalent. However, by default,
you can detect when two representations are trace equivalent, by look-
ing at traces. The set of trace equivalent classes of representations is
called the SL2C-character variety of G.

The left action of SL2C on R(G) gives rise to a right action of SL2C
on C[R(G)]. If f : R(G) → C, A ∈ SL2C, and ρ : G → SL2C is a
representation then

(11) f(ρ).A = f(A.ρ).

The SL2C-character ring X (G) is the subring of C[R(G)] that is fixed
under this action. There is a one-to-one correspondence between trace
equivalence classes of representations of G into SL2C and maximal
ideals of the ring X (G).

A fancy way to say this is that the character variety is the cat-
egorical quotient of the representation variety. The category, is
the category of algebraic sets and algebraic mappings. The charac-
ter variety is an algebraic set, which means that it corresponds in
a one-to-one fashion with the zeroes of a collection of polynomials.

The description of the ring of characters is unambiguous, but hard to
use. Classical invariant theory was aimed at finding descriptions of
character rings that are easy to compute with. The first fundamental
theorem of classical invariant theory supplies a spanning set of the
ring of characters, and the second fundamental theorem of classical
invariant theory gives all relations between them.

Start by assuming F is the free group on x1, . . . xn. The conjugacy
classes of F are in one to one correspondence with freely reduced cyclic
words in x±1i . We consider two words to be equal if one is the cyclic
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permutation of the other, and we only consider such words so that no
generator and its inverse appear next to one another in any cyclic rotant
of the word. Hence x1x2x

−1
1 is not freely cyclically reduced because we

can cyclically rotate it to get x−11 x1x2 which is not freely reduced.
The words x1x2 and x2x1 are cyclically equivalent. Let S(F ) be the
polynomial algebra where the variables are cyclic equivalence classes of
freely cyclically reduced words. There is an algebra homomorphism

(12) Θ : S(F )→ X (F )

sending the equivalence class of the freely cyclically reduced word X
to the function that sends the representation ρ : F → SL2C to

(13) −Tr(ρ(X)).

The first fundamental theorem of classical invariant theory says that
this map is onto. The second fundamental theorem of classical invariant
theory says that the kernel of Θ is generated as an ideal by

• The polynomial that says the trace of the identity is 2, that is

(14) (e) + 2.

• Polynomials that say that the trace of a matrix is equal to its
inverse, that is for all equivalence classes of freely cyclically
reduced words,

(15) (X)− (X−1)

• Finally, functional evaluation of the fully polarized Cayley-Hamilton
Identity. If X and Y are freely cyclically reduced words,

(16) (X)(Y ) + (XY ) + (XY −1).

This is an adaptation of the work of Procesi, [22] to SL2C by Bullock,
[14].

If G is a quotient of the free group F , then X (G) is the quotient
of X (F ) by the smallest radical ideal containing all relations between
characters that are induced by relations in the group G.

The Kauffman bracket skein relation at A = −1 is:

(17) + + = 0.

Letting η(A) = −Tr(A), the trace identity becomes,

(18) η(A)η(B) + η(AB) + η(A−1B) = 0.

The other Kauffman bracket skein relation at A = −1 is,

©∪ L+ 2L.
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and since η(Id2) = −2, we have

(19) η(Id2)η(A) + 2η(A) = 0.

This would lead you to believe there is a connection between K−1(F )
and the ring of SL2C characters of F . Rotating the skein relation π/4
radians yields,

(20) + + = 0.

Taking the difference of the two versions yields,

(21) − = 0.

Therefore crossings don’t count, and K−1(F ) is a commutative algebra.
The first fundamental theorem of classical invariant theory implies that
the SL2C-character ring of π1(F ) is spanned by functions that are the
trace of conjugacy classes in π1(F ). The second fundamental theorem
says that all relations between those functions come from the relations
above plus relations from the fundamental group of F . The most im-
portant is functional evaluation of the fully polarized Cayley-Hamilton
identity that we show in Figure 4

+ + =0

Figure 4. A portrait of the Cayley Hamilton identity
as a skein relation, η(A)η(B) + η(AB) + η(A−1B) = 0.

Theorem 1. The map Θ : K−1(F )→ X(F ) is an isomorphism.

The radical,
√

0 of a commutative ring is the ideal made up of all
nilpotent elements. Bullock proved that for any three-manifold Θ :
K−1(M)/

√
0→ X (M) is an isomorphism. A year later Przytycki and

Sikora gave a different proof. Charles and Marché proved that the
radical of K−1(F ), where F is a closed surface is trivial and hence Θ :
K−1(F ) → X (F ) is an isomorphism for any closed surface. Recently,
Przytycki and Sikora proved that KA(F ) never has zero divisors.

2.3. The threading map. The Chebyshev polynomials of the first
kind Tk(x) are defined recursively by T0(x) = 2, T1(x) = x and for
k > 1,

(22) Tk(x) = xTk−1(x)− Tk−2(x).
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They are derived by requiring

(23) Tk(2 cos θ) = 2 cos kθ.

This means they satisfy the product to sum formula

(24) Tm(x)Tn(x) = Tm+n(x) + T|m−n|(x),

and Tm(Tn(x)) = Tmn(x).
Given a framed link, you can thread it by Tn(x) by using the annulus

as a guide, and treating the operation of coloring as multlinear in the
components of the link. For instance T3(x) = x3 − 3x. Threading the
Trefoil with T3(x) yields:

− 3

If the link has multiple components you thread it multilinearly. If
there were two components of the framed link and you were threading
them both with T3, then there would be four terms to the threaded
framed link. One term where both components are cabled by three
copies of themselves, minus three times two terms where one component
is cabled by three copies of itself and the other component is unchanged,
plus 9 times a copy of the original framed link.

Suppose that M is an oriented three-manifold and L is the set of
framed links in M up to isotopy. For each odd n there is a map

(25) τn : CL → CL

given by threading every framed link with the Nth Chebyshev polyno-
mial of the first kind.

Theorem 2 (Bonahon, Wong). Let n be an odd counting number, and
ζ a primitive 2nth root of unity. The threading map descends,

(26) τn : K−1(M)→ Kζ(M).

Furthermore if a component of a link has been threaded by Tn then
you can arbitrarily change crossings involving that component and not
change the the skein it represents in Kζ(M).
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n

=

n

Figure 5. A crossing involving component threaded
with Tn can be changed without changing the skein

Recall that if A is an algebra, the center of A, denoted Z(A) is the
the set of all elements that commute with everything.

(27) Z(A) = {z|∀a ∈ A za = az}.
Suppose that F is an oriented finite type surface. That means there

is a closed oriented surface F̂ and finitely many points pi so that F̂ −
{p1, . . . , pn} = F . If F is closed, F̂ = F . Let ∂i be the skein induced
by the simple diagram that bounds a punctured disk about pi.

Theorem 3 (Frohman-Kania-Bartoszynska-Lê). If ζ is a primitive
2nth root of unity, and F is a finite type surface then

(28) Z(Kζ(F )) = τn(K−1(F ))[∂1, . . . , ∂n].

If F is closed then the center is exactly the image of the threading
map.

2.4. Parametrizing simple diagrams and the trace. An ideal tri-
angle is a triangle with its vertices removed. An ideal triangulation of
a finite type surface F is a collection of ideal triangles {∆i}i∈I with an
identification of their sides in pairs to get a topological space X, along
with a homeomorphism h : X → F . Alternatively you can think of an
ideal triangulation as a collection of lines E properly embedded in F
that cut F into a collection of ideal triangles.

Suppose that the finite type surface admits an ideal triangulation
with T triangles and E edges.If you think about Euler characteristic,
vertices− edges+ faces, since there are no vertices,

(29) χ(F ) = T − E.
Since each triangle has three edges, but each edge is shared by two
triangles,

(30) T =
2

3
E.

Thus χ(F ) = −1
3
E, or the number of edges is −3χ(F ). Among other

things F can have an ideal triangulation if and only if it has negative
Euler characteristic.
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Figure 6. An ideal triangulation of the once punctured
torus. Identify edges of the same color according to the
arrows.

A folded triangle is a triangle that has had two of its edges identi-
fied in an ideal triangulation. It is always possible to avoid fold trian-
gles, so we always assume the the triangles in our ideal triangulations
are embedded.

If α and β are two properly embedded one manifolds in a surface and
at least one is compact, then the geometric intersection number of
α and β, denoted i(α, β) is the minimimum cardinality of α′∩β′ where
α′ and β′ are isotopic to α and β by a compactly supported isotopy
and α′ and β′ are transvserse.

We say that α and β realize their geometric intersection number and
the cardinality of α ∩ β is i(α, β). We say α and β form a bigon if
there is a disk D embedded in F so that ∂D = a ∪ b where a ⊂ α and
b ⊂ β and D ∩ α = a, and D ∩ β = b.

Suppose that F has an ideal triangulation with edges E. A simple
diagram S is said to be in normal position with respect to the trian-
gulation if it forms no bigons with any of the edges. Let fS : E → N
be defined by

(31) fS(e) = i(S, e).

If S is in normal position then the cardinality of S ∩ e is equal to
fS(e). An analysis of isotopy classes of proper system of arcs in an
ideal triangle shows that two diagrams S and S ′ are isotopic if and
only if fS = fS′ .

Not every function comes from a simple diagram. If a,b,c are the
sides of a triangle, and S is a simple diagram then fS(a)+fS(b)+fS(c)
is even as a compact one manifold has an even number of endpoints. A
corner of a triangle is determined by the choice of two sides. Diagram
in normal position intersects an ideal triangle in arcs that have their
endpoints in two sides. The number of arcs having their endpoints in a
pair of sides is called a corner number. You can compute the corner



14 CHARLES FROHMAN

numbers as,

(32) c({a, b}) =
f(a) + f(b)− f(c)

2
, c({a, c}) =

f(a) + f(c)− f(b)

2
,

and

(33) c({b, c}) =
f(b) + f(c)− f(a)

2
.

In order to correspond to a diagram these numbers should all be greater
or equal to zero. A function f : E → N is said to be an admissible
coloring if whenever a, b, c are the sides of an ideal triangle then f(a)+
f(b) + f(c) is even and f(a), f(b), f(c) satisfy all triangle inequalities.

Theorem 4. There is a one to one correspondence between isotopy
classes of simple diagrams on the surface F and admissible colorings
of an ideal triangulation of F .

The admissible colorings of an ideal triangulation form a pointed
integral cone under addition. An admissible coloring f is said to be
indivisible if whenever f = f1 + f2 where f1 and f2 are admissible
colorings then f1 = 0 or f2 = 0. It is classical theorem that every
pointed integral cone has finitely many indivisible elements, and they
are the unique additive generating set of minimal cardinality.

In the case of the once punctured torus, representing the admissi-
ble colorings as three-tuples of nonnegative integers, the indivisible
colorings are (1, 1, 0), (1, 0, 1) and (0, 1, 1). These correspond to the
longitude, meridian, and a (1, 1)-curve on the punctured torus.

Choose an ordering of E. Use this to order NE lexicographically.
Notice that NE in the lexicographic ordering is a well ordered monoid.
By that we mean NE is well ordered and if a, b ∈ N have a < b then
for any c ∈ N, a + c < b + c. Since A is a submonoid of NE we have
that A is a well ordered monoid.

If α ∈ Kζ(F ) then we can write α as a finite linear combination of
simple diagrams with complex coefficients,

(34) α =
∑
S

zSS

where the S are simple diagrams, and the zS are nonzero elements of D.
The lead term of α is zSS where S is the largest diagram appearing
in the sum. We denote the lead term of the skein α as ld(α).

Theorem 5 (Abdiel-Frohman). Let F be a finite type surface with
negative Euler characteristic and at least one puncture. Let E be the
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edges of an ideal triangulation and assume an ordering on E. Let
α, β ∈ Kζ(F ) be nonzero. Suppose ld(α) = zS, and ld(β) = z′S ′, and
fS, fS′ : E → N are the colorings corresponding to S and S ′. Let S ′′ be
the simple diagram with coloring fS + fS′. There exists k ∈ Z so that
The lead term of α ∗ β is ζkzz′S ′′.

Which quickly leads to:

Theorem 6 (Abdiel-Frohman). Let F be a finite type surface with
ideal triangulation having edge set E. Suppose that S1, . . . , Sk are the
simple diagrams corresponding to the indivisible admissible colorings of
E. The skeins

(35) Sj11 ∗ . . . ∗ S
jk
k

where the ji range over all counting numbers spans Kζ(F ).

An algebra is affine if it finitely generated. This proves that Kζ(F )
is affine.

Theorem 7 (Abdiel-Frohman). Let F be a finite type surface with
ideal triangulation having edge set E. Suppose that S1, . . . , Sk are the
simple diagrams corresponding to the indivisible admissible colorings of
E. The skeins

(36) Sj11 ∗ . . . ∗ . . . S
jk
k

where the ji range over {0, . . . , n − 1} spans Kζ(F ) as a module over
Z(Kζ(F ).

This means that Kζ(F ) has finite rank as a module over Z(Kζ(F )).

Theorem 8 (Muller, Charles-Marcheé, Przytycki-Sikora, Frohman-Ka-
nia-Bartoszynska). The algebra Kζ(F ) has no zero divisors.

Since Kζ(F ) has no zero divisors S = Z(Kζ(F )) − {0} is a mul-
tiplicatively closed subset of the center that does not contain 0. We
can localize to make every element of S invertible. This means that
S−1Kζ(F ) is an finite dimensional algebra over the field S−1Z(Kζ(F ).

Suppose that F is a finite type surface with ideal triangulation having
edges E. Given a simple diagram S we can reduce the admissible
coloring fS : E → N modulo n to get (f(e1), . . . , f(ek)) ∈ ZEn . Given
a skein α, it has lead term ld(α) = zS, the reduction of the admissible
coloring of S modulo n is the residue of the skein, denoted res(α).

Theorem 9 (Frohman-Kania-Bartoszynska). A set of skeins B in Kζ(F )
forms a basis for S−1Kζ(F ) over S−1τn(K−1(F )) if and only the set of
residues of the skeins in B consists of exactly all the elements of ZEn
without repitition.
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Theorem 10 (Frohman-Kania-Bartoszynska). Suppose that F is a fi-
nite type surface with p punctures, and Euler characteristic χ(F ). The
dimension of S−1Kζ(F ) over S−1Z(Kζ(F )) is n−3χ(F )−p.

There is a trace, tr : Kζ(F ) → τn(K−1(F )) that is Z(Kζ(F )-linear.
Since S−1Kζ(F ) is a finite dimensional vector space over S−1τn(K−1(F ))
if α ∈ Kζ(F ) then there is a S−1τn(K−1(F ))-linear map

(37) Lα : S−1Kζ(F )→ S−1Kζ(F )

given by Lα(β) = α ∗ β. The dimension of S−1Kζ(F ) as a vector space
over S−1τn(K−1(F )) is n−3χ(F ). Let

(38) tr(α) =
1

n−3χ(F )
Tr(Lα).

The amazing thing is that to define the trace we needed to localize,
and yet the trace is well defined as a map on the unlocalized algebras.

Given a special basis of Kζ(F ) there is an easy computation of the
trace. Recall, a simple diagram is primitive is no two curves in the
diagram are parallel. Suppose that P is a primitive diagram with
components Ji. Choose positive integers ki for each i. The skein

(39)
∏
i

Tki(Ji)

is a threaded primitive diagram. Since the lead terms of threaded prim-
itive diagrams can be place in one to one correspondence with simple
diagrams, they form a basis for Kζ(F ) over the complex numbers. To
compute tr(α), write α as a linear combination of threaded primitive
diagrams, and then strike out any term, where any of the threading
indices ki of the diagram is not divisible by n.

The trace tr is nondegenerate in the sense that if α ∈ Kζ(F ) is not
zero there exists β ∈ Kζ(F ) so that tr(α ∗ β) 6= 0. It is cyclic in
the sense that tr(α ∗ β) = tr(β ∗ α), and tr(tr(α)) = tr(α) so it is a
projection. This means Kζ(F ) is a Cayley-Hamilton algebra. A
consequence is that the equivalence classes of representations of Kζ(F )
is naturally an algebraic set that can be described more or less formally
[16] .

Theorem 11 (Frohman-Kania-Bartoszynska). S−1Kζ(F ) is a division
algebra.

That means every nonzero element has a multiplicative inverse. Schur’s
lemma says that the commutant of an irreducible representation that
takes on values in Mn(k) where k is a field, is a division algebra over
k.
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Conjecture 1. There is an irreducible, projective representation
of the mapping class group defined over the function field of the
character variety of a finite type surface F , so that the commutant
of the representation is S−1Kζ(F ).

3. Lecture Ib: Representation Theory of Algebras

3.0.1. Algebras. An algebra A over the field C is a vector space A
over C along with a C-bilinear associative multiplication, that has a
unit element 1. We denote multiplication by juxtaposition. The unit
element 1 is characterized by the property that for all a ∈ A, 1a =
a1 = a.

For example Mn(C) the n× n matrices with complex entries are
an algebra over the complex numbers, where the product comes
from matrix multiplication. The identity element is the n×n iden-
tity matrix Idn. Let Ei,j denote the n×n matrix all of whose entries
are zero except for the entry in the ith row and jth column which
is 1. These form a basis for Mn(C) over the complex numbers, and

(40) Ei,jEk,l = δkjEi,l

where δkj is the Kronecker delta.

We say that u ∈ A is a unit if there exists v ∈ A with uv = vu = 1.
A matrix A is a unit in Mn(C) if and only if its determinant is nonzero.

The center of an algebra A, denoted Z(A) is the subalgebra of all
z ∈ A so that for all a ∈ A, za = az. If A is commutative then
Z(A) = A. If A = Mn(C) then Z(A) is all scalar multiples of the
identity matrix .

A homomorphism φ : A → B of algebras has the properties that
φ(1) = 1 and for all a1, a2 ∈ A, φ((a1a2) = φ(a1)φ(a2).

An algebra is affine if there are elements x1, . . . , xn in A so that every
element of A can be written as a linear combination of monomials in
the xi This is equivalent to saying the algebra is a quotient of the
free algebra C < x1, . . . , xn > of noncommutative polynomials in the
variables xi.
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The Artin-Tate Lemma says that if A is an affine algebra ,
and has finite rank as a module over its center Z(A) then Z(A) is
an affine algebra.

3.0.2. Ideals. A two-sided ideal I ≤ A is a vector subspace of A so
that if a ∈ A and h ∈ I, then ah ∈ I and ha ∈ I. If ρ : A → B is a
homomorphism of algebras then ker(ρ) is a two sided ideal.

3.1. Central Simple Algebras. The only two sided ideals of Mn(C)
are the trivial ideal {0} and Mn(C). We say that A is central simple
if it has no nontrivial two sided ideals and its center is exactly complex
multiples of the identity. Hence Mn(C) is central simple. In fact it is
a consequence of the Artin-Wedderburn theorem that a central simple
algebra over the complex numbers that has finite dimension is a matrix
algebra.

In a more mature exposition, algebras can be defined over any field,
not just the complex numbers. A division algebra D is an algebra so
that every nonzero element has a multiplicative inverse. The Artin-
Wedderburn theorem says that if A is a finite dimensional central
simple algebra over the field k, then there is a division algebra D over
k and an integer n so that A is isomorphic to Mn(D) the algebra of
n × n matrices with coefficients in D. The complex numbers are the
only division algebra over the complex numbers. Hence matrix algebras
are the only central simple algebras over C.

Suppose k ≤ E is a finite field extension, that is E is a field, and E
is a finite dimensional vector space over k. Suppose further that A is
a finite dimensional algebra over k. We can form,

(41) A⊗k E

which is now a finite dimensional algebra over E. We say A⊗kE is the
result of extending the coefficients of A. The reason is that if {vi} is a
basis of A over k then {vi ⊗ 1} is a basis for A⊗k E over E. You can
just treat A⊗kE as having the same basis as A, but with the coefficients
of that basis coming from E. The center of A⊗k E is Z(A)⊗k E.

If D is a finite dimensional division algebra over a field k then the
dimension of D as a vector space is n2 for some n. It is possible extend
the coefficients of D to some finite extension E of k so that the extended
algebra is isomorphic to Mn(E). Obviously, D⊗k E = Mn(E) is not a
division algebra.
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For instance the quaternions, H, are a 4 dimensional vector space
over R. Recall that H is a four dimensional vector space over R
with basis {1, i, j, k} where 1 is the identity, and relations

(42) ij = k, jk = i, ki = j, i2 = j2 = k2 = −1.

From the relations it is easy to see that the center of H is exactly
real scalar multiples of the identity.

The complex numbers are a degree two extension of the reals.
Extending coefficients to C, every element of

(43) H⊗R C
can be written as a complex linear combination

(44) α1 + βi+ γj + δk.

Define a homomorphism

(45) θ : H⊗R C→M2(C)

by sending 1 to

(
1 0
0 1

)
, i to

(
0 1
−1 0

)
, j to

(
0 i
i 0

)
and k to(

i 0
0 −i

)
. It is easy to see that the four matrices are linear indepen-

dent over C and satisfy the defining equations of the quaternions.
Hence H⊗R C is isomorphic to M2(C).

3.2. Prime algebras. An algebra A is prime if for any a, b ∈ A if it
is the case that for all r ∈ A, arb = 0 then either a = 0 or b = 0.

If A is commutative this is equivalent to saying that if ab = 0 then
a = 0 or b = 0. A prime commutative algebra is an integral domain.

The algebra Mn(C) is prime. If a, b ∈MN(C) we can write them
uniquely as complex linear combinations of the Ei,j. That is,

(46) a =
∑
i,j

ai,jEi,j and b =
∑
k,l

bk,lEk,l.

The assumption that a, b 6= 0 means that there is am,n 6= 0 and
br,s 6= 0. Notice that

(47) aEn,rb =
∑
i,l

ai,nbr,lEi,l.
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we know for a fact that am,nbr,s 6= 0, and the Ei,l are linearly in-
dependent. Hence, the product is nonzero. Therefore Mn(C) is a
prime algebra.

If A is an algebra and I ≤ A is a two sided ideal we say that I is
prime if whenever arb ∈ I for all r ∈ A then either a ∈ I or b ∈ I.
This is equivalent to A/I being a prime algebra.

3.2.1. Localization. Suppose that A is an algebra and S ≤ Z(A) is
multiplicatively closed. That is if s1, s2 ∈ S then s1s2 ∈ S. If 0 6∈ S
then we can form the localization of A at S. Start with ordered pairs
(a, s) ∈ A × S. We say (a, s) ∼ (b, t) if there is a unit u ∈ S so that
uta = ubs. In the case that the center of A is an integral domain, this
can be simplified to (a, s) ∼ (b, t) if ta = bs. In the cases we work
with the center is always an integral domain, so we don’t need u. Let
[a, s] denote the equivalence class of (a, s) under this relation. Define
addition and multiplication by

(48) [a, s] + [b, t] = [at+ bs, st] [a, s][b, t] = [ab, st].

Denote the quotient space by S−1A it is an algebra over C. There is a
homomorphism ι : A → S−1A given by ι(a) = [a, 1]. Notice that the
image of every element of S is a unit in S−1A because [s, 1][1, s] = [1, 0].
The map ι is not necessarily injective, but if A is prime then it is.

Proposition 1. If A is a prime algebra, S ⊂ Z(A) a multiplicatively
closed subset that does not contain 0, then the map ι : A→ S−1A given
by ι(a) = [a, 1] is injective.

Proof. Suppose that ι(a) = [a, 1] = [0, s]. That means as = 0. Since
s is central, for any r ∈ A, asr = ars is zero. Since A is prime that
implies that a = 0 or s = 0. Since 0 6∈ S, it must be that a = 0. �

3.3. Representations. If A is an algebra, then a left A-module, or
a representation of A, is a vector space V along with homomorphism
ρ : A→ Lin(V ) into the C-linear maps from V to itself.

We restrict our attention to modules that are finite dimensional vec-
tor spaces. It is traditional to suppress ρ so that if a ∈ A the result of
applying ρ(a) to the vector v is denoted

(49) a.v.

The statement that ρ is a homomorphism in this notation is equivalent
to the following two statements;

• 1.v = v, and,
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• a.(b.v) = (ab).v.

If V is finite dimensional we can choose a basis v1, . . . , vn. If L ∈
Lin(V ) then for all j,

(50) L(vj) =
∑
i

ai,jvi.

This defines a isomorphism B : Lin(V )→ Mn(C) given by L→ (aij).
This allows us to think of finite dimensional left modules as linear
actions of A column vectors Cn, and the associated homomorphism to
have range contained in n× n matrices. That is ρ : A→Mn(C).

The representation ρ : A → Lin(V ) is irreducible if one of the
following equivalent properties holds;

• If W ≤ V is a vector subspace of V and A.W ≤ W then
W = {0} or W = V .
• If v 6= 0 ∈ V then A.v = V . ( This is often described by saying

that V is strongly cyclic, in the sense that it is the cyclic
module on any nonzero element.)
• The associated homomorphism ρ : A→ Lin(V ) is onto. This is

a consequence of the more general theorem called the Jacobson
Density Theorem.

Two left modules V and W are equivalent if there is a linear
isomorphism L : V → W so that for any a ∈ A, a.L(v) = L(a.v). In
terms of homomorphisms, if ρ1 : A → Lin(V ) and ρ2 : A → Lin(W )
are the homomorphisms corresponding to the two modules, then for all
a ∈ A, L−1ρ1(a)L = ρ2(a).

In the algebraic view of geometry, equivalence classes of irre-
ducible representations of an algebra are the points of the geometric
object associated to that algebra.

If C is a commutative algebra, then the only irreducible representa-
tions of C are one dimensional. Two one dimensional representations
are equivalent if and only if they are equal. Hence an irreducible rep-
resentation of C is a homomorphism φ : C → C. The kernel of φ is a
maximal ideal, and by the weak nullstellensatz that maximal ideal
determines φ. Let Max Spec(C) denote the set of maximal ideals of
C. Define a topology on Max Spec(C) using the subbasis of all

(51) Sc = {m ∈Max Spec(C)|c 6∈ m}.

This is called the Zariski topology.
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3.3.1. Skolem-Noether Theorem. An automorphism θ : A → A. of
the algebra A is a one to one and onto homomorphism of A to itself.
One way to construct automorphisms of an algebra is to conjugate by
a unit. Let C ∈ A be a unit. We define

(52) ΘC : A→ A

by ΘC(a) = C−1aC. The map Θ is one to one and onto as its inverse
is ΘC−1 . It is a homomorphism because

(53) ΘC(a1a2) = C−1a1a2 = C−1a1CC
−1a2C = ΘC(a1)ΘC(a2),

and ΘC(1) = 1. We call such automorphisms inner automorphisms.
The Skolem-Noether theorem says that every automorphism of

Mn(C) is inner.

Theorem 12. If ρ1, ρ2 are irreducible representations of A having
kernels I1 and I2, then ρ1 is equivalent to ρ2 if and only if I1 = I2.

Proof. First suppose that ρ1 and ρ2 are equivalent. This means there
is n so that

(54) ρ1, ρ2 : A→Mn(C)

and there is an invertible L ∈Mn(C) so that for all a ∈ A,

(55) L−1ρ1(a)L = ρ2(a).

This means that ρ1(a) = 0 if and only if ρ2(a) = 0, so I1 = I2.
Now assume that I1 = I2. By the first isomorphism theorem the ρi

induces isomorphisms

(56) ρ1 : A/I1 →Mn(C), and ρ2 : A/I2 →Mn(C).

Since I1 = I2, ρ2◦ρ−11 : Mn(C)→Mn(C) is an automorphism of Mn(C).
By the Skolem-Noether theorem there exists L ∈Mn(C) so that for all
matrices M , L−1ML = ρ2 ◦ ρ−11 (M). If M = ρ1(a) for a ∈ A then

(57) L−1ρ1(a)L = ρ2(a).

Therefore ρ1 and ρ2 are equivalent. �
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3.4. The Skolem-Noether Theorem for mortals. Given θ : Mn(C)→
Mn(C) how do you find the matrix L so that for all matrices A,

(58) θ(A) = L−1AL?

To do this you just need to understand what conjugation looks like.
We will keep things small. Suppose that L is a 2 × 2 matrix with
determinant 1, say

(59) L =

(
a b
c d

)
.

From the cofactor formula for the inverse we know,

(60) L−1 =

(
d −b
−c a

)
.

Notice that

(61) L−1
(

1 0
0 0

)
L =

(
ad bd
−ac −bc

)
.

Also,

(62) L−1
(

0 0
1 0

)
L =

(
−ab −b2
a2 ab

)
.

Notice that if a 6= 0 then the first columns of these matrices are a
times the columns of L−1. Since L is invertible some entry in its first
row is nonzero, say the jth. The matrix whose ith column is the jth
column of L−1Ei1L is a nonzero scalar multiple of L−1.

Proposition 2. If θ : Mn(C) → Mn(C) is an automorphism.
Choose j so that the jth column of θ(E11) is not the zero vector.
The matrix L−1 that has the jth column of θ(Ei1) as its ith column
has the property that for all A ∈Mn(C),

(63) θ(A) = L−1AL.

�

3.4.1. The central character of a representation. If ρ : A → B is an
onto algebra homomorphism then the image of the center of Z(A) under
ρ is contained in Z(B). Therefore if ρ : A → Mn(C) is an irreducible
representation and z ∈ Z(A) then

(64) φ(z) = χρ(z)Idn,
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where χρ(z) ∈ C and Idn is the n× n identity matrix. The map

(65) χρ : Z(A)→ C
is called the central character of the representation ρ.

This is a good time to reflect on equivalence of representations.
We have seen that two irreducible representations are equivalent if
they have the same kernels. If I is the kernel of the representation
ρ, then the kernel of χρ is I ∩ Z(A). On the other hand, the weak
nullstellensatz tells us that if Z(A) is affine, then central characters
are classified by their kernels. Hence representations are classified
by their central character if and only if the kernels of the represen-
tations are determined by their intersection with the center. There
is a class of algebras for which this is true.

3.5. Azumaya Algebras. If A is an algebra, then you can view A
as a module over Z(A). Let EndZ(A)(A) be the algebra of all maps
from A to A that are Z(A) linear. Let Aop denote A with the opposite
multiplication. That is when we write ab we mean ba. There is a map
from Ψ : A⊗Z(A) Aop → EndZ(A)(A) given by

(66) Ψ(a⊗ b)(c) = acb.

An algebra A is Azumaya if it is a finite rank projective module over
it’s center, and the map Ψ is an isomorphism of algebras.

If A is Azumaya and I is any two sided ideal then

(67) I = (I ∩ Z)A,

that is if two two sided ideals I1 and I2 have the same intersection with
the center then they are the same ideal.

Theorem 13. Irreducible representations of Azumaya algebras are clas-
sified by their central characters.

�

The Azumaya condition is so strong that you cannot reasonably
expect a naturally defined algebra to have it. However, there are
very general situations where you can localize an algebra so that it
becomes Azumaya.

Theorem 14 (Posner). Let A be a prime affine k-algebra that has
finite rank over its center Z(A). Let S = Z(A) − {0}. The algebra
S−1A is central simple over S−1Z(A).
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�
By extending coefficients to a finite extension E of the center of

S−1A,

(68) S−1A⊗S−1Z(A) E = Mn(E)

We call n the dimension of A. Posner’s theorem says that there is
an embedding η : A → Mn(E) so that AZ(Mn(E)) = Mn(E). That
means that every element of A can be written as a matrix with coeffi-
cients from E. It also means that as a vector space over S−1Z(A), the
dimension of S−1A is n2. Using deep theorems about matrix algebras,
both Artin, and Procesi proved:

Theorem 15. If A is a prime affine k-algebra, that has finite rank
over its center, then there exists c ∈ Z(A) so that if S = {ck|k ∈ N}
then S−1A is Azumaya. Furthermore, all irreducible representations of
S−1A have dimension n.

The slogan is that you invert a nonzero element of the Formanek
center of A.

Finally,

Theorem 16. Suppose that A is a prime algebra, and let m ∈ Z(A)
be a maximal ideal. Let S ⊂ Z(A) be a multiplicatively closed subset
so that S ∩ m = ∅. Finally suppose that there is a unique two sided
ideal I ≤ S−1A so that I ∩Z(S−1(A)) = S−1m. If I1, I2 ≤ A are prime
two sided ideals with Ij ∩ S = ∅, and I1 ∩ Z(A) = I2 ∩ Z(A) = m then
I1 = I2.

Proof. Recall the injective homomorphism ι : A → S−1A given by
ι(a) = [a, 1]. If

(69) ι(Ij) = ι(A) ∩ S−1Ij
then the theorem follows as by hypothesis S−1I1 = S−1I2.

Clearly ι(Ij) ≤ ι(A)∩S−Ij. To finish we need to prove ι(A)∩S−1Ij ≤
ι(Ij). Suppose that [a, s] ∈ ι(A) ∩ S−1I1. This means that a ∈ I1 and
there exists b ∈ A with [a, s] = [b, 1]. By the definition of equivalence,
bs = a. However, I1 is prime. Since bs ∈ I1, and s is central, for every
r ∈ A, brs ∈ A. This implies that b ∈ I1 or s ∈ I1. Since S ∩ I1 = ∅
this means b ∈ I1, implies S−1I1 ∩ ι(A) ⊂ ι(I1). �

If V is the maximal spectrum of the algebra A, and S is the powers of
c ∈ Z(A), so that c is not nilpotent, then S−1A exists and its maximal
spectrum is the Zariski open subset of V ,

(70) Vc = {m ∈ V |c 6∈ m}.



26 CHARLES FROHMAN

Putting it all together, we get the following theorem of Frohman,Kania-
Bartoszynska and Lê:

Theorem 17 (Unicity Theorem). Suppose that A is a prime affine
algebra that has finite rank as a module over its center. There is a
Zariski open subset Vc so that there is a unique equivalence class of
irreducible representations of A for each m ∈ Vc, so that m is the kernel
of the central character of the representations.

Theorem 18 (Frohman-Kania-Bartoszynska-Lê). The skein alge-
bras Kζ(F ) where F is an oriented finite type surface having Euler
characteristic χ(F ) and p punctures, and ζ is a primitive nth root
of unity, satisfy the hypotheses of the unicity theorem. Therefore,
there is a one to one correspondence between a dense open subset
of the SL2C-character variety of F and irreducible representations
of Kζ(F ) that take on values in MN(C) where N is the square root
of dimension of S−1Kζ(F ) as a vector space over S−1Z(Kζ(F )).

4. Lecture IIa: Noncommutative Tori and Skein Algebras

4.1. The SL2C-character variety of Z×Z. Representations of Z×Z
into SL2C are in one to one correspondence with choices of matrices
(L,M) ∈ SL2C2 that commute. If two matrices commute and are
diagonable, they are simultaneously diagonal. There are extactly two
conjugacy classes of nondiagonable matrices in SL2C,

(71)

(
1 λ
0 1

)
and

(
−1 λ
0 −1

)
,

where λ is nonzero. The traces of these matrices are indistinguishable
from the trace of ±Id2. In fact the closure of these two conjugacy
classes includes ±Id2. Hence every representation of Z× Z into SL2C
is trace equivalent to a representation of the form,

(72)

((
l 0
0 l−1

)
,

(
m 0
0 m−1

))
,

where l,m ∈ C−{0}. Let C∗ denote C−{0}. We identify C∗×C∗ with
pairs of diagonal matrices by letting (l,m) correspond to the matrices
having l and m in their upper lefthand corner. If X(T 2) is the character
variety of the fundamental group of the torus, there is an onto mapping

(73) C : C∗ × C∗ → X(T 2)
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that takes the representation to its trace equivalence class. This map-
ping is a two-fold branched cover, with deck transformation,

(74) θ : C∗ × C∗ →: C∗ × C∗,
is given by θ(l,m) = (l−1,m−1). To see this notice that if you conjugate
a diagonal matrix by

(75)

(
0 −1
1 0

)
it has the effect of permuting the two diagonal elements. There are
four branch points of C corresponding to the fixed points of θ. The
projection C is an algebraic mapping and it gives rise to an embedding
of coordinate rings

(76) C∗ : C[X(T 2)]→ C[C∗ × C∗]
Since the first coordinate ring is isomorphic to K−1(T

2) and the second
is C[l±1,m±1] we have embedded a version of the Kauffman bracket
skein algebra into Laurent polynomials in two variables. The image of
the embedding is exactly those functions that are fixed by the action
of θ on the coordinate ring of C∗ × C∗.

This led us to believe that we could embed the skein algebra of
the torus into the noncommutative torus [17].

4.2. The noncommutative torus. Let A ∈ C − {0}. The noncom-
mutative torus WA = C[l, l−1,m,m−1]A is the quotient of the ring of
noncommutative Laurent polynomials in l and m by the ideal generated
by lm− A2ml. It is sometimes called the exponentiated Weyl algebra.

There is a particularly nice basis for WA. Let

(77) ep,q = A−pqlpmq.

With respect to this basis the product has a very tractible formula,

(78) ep,q ∗ er,s = A

∣∣∣∣∣∣p q
r s

∣∣∣∣∣∣
ep+r,q+s.

The vertical bars indicate the determinant of

(
p q
r s

)
.

From this basis it is easy to see that there is an action of SL2Z on
WA as automorphisms.

If M =

(
a b
c d

)
∈ SL2Z, define

(79) M.ep,q = eap+bq,cp+dq.
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The formula consists of treating the index p, q as a column vector with
integer entries.

There is an automorphism θ : WA → WA of order two given by
θ(ep,q) = e−p,−q. The symmetric part ofWA denotedWθ

A is the fixed
subalgebra of F .

Next assume that the variable in the definition of the noncommuta-
tive torus is a primitive 2nth root of unity ζ where n is odd. In this
case C[l, l−1,m,m−1]ζ has a large center.

(80) Z(C[l, l−1,m,m−1]ζ) =< enp,nq|(p, q) ∈ Z× Z >,

where the <,> denote the linear span.
There is a central valued, central linear trace. If f(l,m) ∈ C[l, l−1,m,m−1]ζ

let

(81) tr(f(l,m) =
1

n2

n−1,n−1∑
i=0,j=0

f((ζ2il, ζ2jm).

As a module over Z(C[l, l−1,m,m−1]ζ), C[l, l−1,m,m−1]ζ is free with
basis ep,q where (p, q) ranges over Zn × Zn. This is enough to imply
that C[l, l−1,m,m−1]ζ is Azumaya. Hence its equivalence classes of
irreducible representations are in one to one correspondence with ele-
ments of the maximal spectrum of its center. Its center is just the ring
of commutative Laurent polynomials in l±n and m±n. The maximal
spectrum of this ring is in one to one correspondence with

(82) C− {0} × C− {0}.

The irreducible representations correspond to onto homomorphisms
from C[l, l−1,m,m−1]ζ to Mn(C).

Given (a, b) ∈ C−{0}×C−{0} we define an action of C[l, l−1,m,m−1]ζ
on Cn. We index the standard basis for Cn by ~ei where i ranges from
0 to n− 1. Let xC with xn = b. Let

(83) ρ(m).~ei = ζ−2i~ei.

Let

(84) ρ(l)~ei = ~ei+1

for i < n− 1 and ρ(l)~en−1 = a~e0. In the case where n = 3 the matrices
look like

(85) ρ(l) =

0 0 a
1 0 0
0 1 0

 ρ(m) =

x 0 0
0 ζ−2x 0
0 0 ζ−4x
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To see that this representation is irreducible note that

(86)
1

nx

n−1∑
i=0

ρ(mi)

is the matrix E11. You can get all the other Eij by premultiplying and
post multiplying by powers of ρ(l) and sometimes dividing by a.

The symmetric part of C[l, l−1,m,m−1]ζ is an order in the sense that

(87) C[l, l−1,m,m−1]θζZ(C[l, l−1,m,m−1]ζ) = C[l, l−1,m,m−1]ζ .

For a proof see [1]. Hence the restriction of any irreducible representa-
tion of C[l, l−1,m,m−1]ζ to C[l, l−1,m,m−1]θζ is still irreducible.

4.3. The skein algebra of the torus. A simple diagram on the torus
consists of a collection of parallel curves. Oriented simple closed curves
on the torus correspond to to (p, q) ∈ Z×Z so that p and q are relatively
prime. If (p, q) have greatest common divisor d then you can think of
(p, q) as d copies of the the oriented curve (p/d, q/d). The skein algebra
has as basis unoriented simple diagrams, for this reason we identify the
pairs (p, q) and (−p,−q). The primitive diagrams correspond to pairs
that are relatively prime.

The skein algebra of the torus was presented as an algebra by Bullock
and Przytycki [12]. Let x1 and x2 be two simple closed curves on the
torus that intersect in a single point of transverse intersection. As in
the example in lecture Ia, the product of the skeins corresponding to
x1 and x2 can be resolved,

(88) x1x2 = Ax3 + A−1z,

where x3 and z are skeins coming from simple closed curves. KA(T 2)
is generated by x1, x2, x3 with relations

(89) Ax1x2 − A−1x2x1 = (A2 − A−2)x3
Ax2x3 − A−1x3x2 = (A2 − A−2)x1

Ax3x1 − A−1x1x3 = (A2 − A−2)x2.

The three curves x1, x2, x3 are the vertices at infinity of an ideal tri-
angle in Fairy diagram. The proof that these curves generate, and the
relations suffice are proved by induction on complexities based on the
combinatorics of the Fairy diagram.

Recall the Chebyshev polynomials of the first kind T0(x) = 2, T1(x) =
x and Tk(x) = xTk−1(x) − Tk−2(x). We use the basis of Kζ(T

2) made
up of threaded primitive diagrams. That means (0, 0)c is 2 times the
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empty skein, and if d = gcd(p, q) then (p, q)c = Td((p/d, q/d)). This
basis has the property that

(90) (p, q)c ∗ (r, s)c = A

∣∣∣∣∣∣p q
r s

∣∣∣∣∣∣
(p+ r, q + s)c + A

−

∣∣∣∣∣∣p q
r s

∣∣∣∣∣∣
(p− r, q − s)c.

We now describe an embedding of

(91) C : KA(T 2)→ C[l, l−1,m,m−1]A.

Given a simple closed curve, that is (p, q) where (p, q) are relatively
prime let

(92) C((p, q)c) = −ep,q − e−p,−q.
Thats it. The way the proof goes is, first define it for (1, 0)c, (0, 1)c, (1, 1)c.

By the presentation of the skein algebra of the torus this defines a homo-
morphism. Next by induction, using the properties of the Chebyshev
polynomials of the first kind, derive the formula given above [17].

The image of C is the symmetric part of the skein algebra.
The mapping class group of the torus is SL2Z. Its action on KA(T 2)

is given by treating (p, q)C as a column vector. The map C intertwines
the action of the mapping class group of the torus with the action of
SL2Z on WA.

Let ζ be a primitive 2nth root of unity. The map, C induces

(93) C∗ : Rep(C[l, l−1,m,m−1]ζ)→ Rep(Kζ(T
2)).

let ρ : C[l, l−1,m,m−1]→Mn(C) be a representation, then

(94) C∗(ρ) = ρ ◦ C
It is easy to check that on irreducible representations, this map is
2 − 1 and takes irreducible representations to irreducible representa-
tions. Hence to compute the quantum hyperbolic invariant of a map-
ping class of the torus with respect to a fixed representation, we can
work completely in the representations of the noncommutative torus.

4.4. The noncommutative A-polynomial. Let K ⊂ S3 be a knot
and let Mk be the complement of a regular neighborhood of K. The
manifold MK has a torus T 2 as boundary. Placing the basepoints for
the fundamental groups of MK and ∂MK at the same point on the
peripheral torus T 2 = ∂MK , if K is nontrivial we have an injective
map,

(95) i : π1(T
2)→ π1(Mk).

This in turn defines a map

(96) i∗ : Rep(π1(Mk), SL2C)→ Rep(π1(T
2), SL2C)
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by restriction. If ρ : π1(MK)→ SL2C then

(97) i∗ρ(α) = ρ(i#α).

Passing to character varieties, we have a map,

(98) ι∗ : X(MK)→ X(T 2).

Considerations based on Serre duality imply that the image of ι∗ is an
algebraic curve. Taking the inverse image under C : C∗×C∗ → X(T 2)
we have a planar algebraic curve A(K) = C−1im(ι∗). The ideal of
planar algebraic curve is principle. A monic generator of this ideal is
the A-polynomial. It is a Laurent polynomial in two variabls l and
m. Using Culler and Shalens mechanism for relating points at infinity
of the character variety of a three-manifold group with incompressible
surfaces, a great deal of information about the geometry and topology
of the knot complement is carried by the A-polynomial.

Placing a collar on the boundary of MK there is an inclusion map

(99) ι : K−1(T
2)→ K−1(Mk).

Applying C∗ : K−1(T
2) → C[l±1,m±1] to the kernel of ι and ex-

tending to get an ideal and then taking the radical recovers the
A-ideal.

There is an obvious extension to skein algebras [18].
Define the B-ideal to be the kernel of

(100) ι : KA(T 2)→ KA(MK).

It is no longer a two sided ideal. However, gluing the cylinder over the
torus in so that the 0 end lies in the interior of the knot complement
makes it a left ideal.

Next, map ker(ι) intoWA by C and extend to get a left ideal ofWA.
That is the noncommutative A-ideal is eC(ker(ι) [18].

The algebra WA is not a principle ideal domain. Instead start with
rational functions in m and adjoin l±1 to get C(m)[l, l−1]A where we still
require the noncommutation relation lm = A2ml. This is a principle
ideal domain. Since WA ≤ C(m)[l, l−1]A we can extend the left ideal
to this domain to get a principle ideal. A monic generator of this ideal
is the noncommutative A-polynomial.

If A is a root of unity, it is easy to see that the noncommuta-
tive A-polynomial is nontrivial. However, it is an open question
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whether it is always nontrivial. We found though that the noncom-
mutative A-ideal annihilates the data from the Jones polynomial.
When the noncommutative A-ideal is nontrivial we found that the
colored Jones polynomials satisified a special kind of recursion for-
mula derived from the action of the skein algebra of the torus on
the skein module of a solid torus.

Lê and Garoufalidis [21] found a way around this, by instead for-
mally defining a module over the exponentiated Weyl algebra, and
proving the module is holonomic via an inductive process for proving
that modules over the Weyl algebra are holonomic. In this case being
holonomic reduces to having a nontrivial annhilator. The generator
of the annihilator in the localization C(m)[l, l−1]A is their definition
of the noncommutative A-polynomial. The AJ-conjecture states that
the shape of the recursive formula for the colored Jones polynomials
looks a lot like the A-polynomial. It has been proved true in many
cases, mostly by proving that it coincides with our definition of the
noncommutative A-polynomial.

What is missing is a coordinate free description of the localized
Kauffman bracket skein module.

5. Lecture IIb

Consider the mapping class

(
2 1
1 1

)
The only irreducible represen-

tation of Kζ(T
2) fixed by this mapping is the representation with

(a, b) = (1, 1).
To be clear, here is what the matrices look like in the case n = 3.

(101) ρ(l) =

0 0 1
1 0 0
0 1 0

 ρ(m) =

1 0 0
0 ζ−2 0
0 0 ζ−4


Following the section on Skolem-Noether for mortals, we need to

compute the action of

(
2 1
1 1

)
on E1,1, . . . , E1,n and read off their first

columns
Letting eij = q−i,jlimj. Recall that E1,1 = 1

3
(e0,0 + e0,1 + e0,2). Since

the matrix induced by

(
2 1
1 1

)
is only well defined up to a scalar, we
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leave the 1
3

by the wayside. Next, to write out Ei,1 we just multiply
E1,1 by ei−1,0.

Hence

(102) 3Ei,1 = ei,0(e0,0 + e0,1 + e0,2).

Next we apply the automorphism from

(
2 1
1 1

)
(103) A2 1

1 1

(ei−1,0(e0,0 + e1,1 + e2,2)) = e2i−2,i−1(e0,0 + e1,1 + e2,2)

Next we evaluate this formula for i ∈ {1, 2, 3} and read off the first
columns.

(104) (e0,0 + e1,1 + e2,2) =

 1 1/q8 1/q5

1/q 1 1/q12

1/q4 1/q3 1

 .

Also,

(105) e2,1 =

 0 1/q4 0
0 0 1

1/q2 0 0

 ,

and

(106) e22,1 =

 0 0 1/q4

1/q20 0
0 1 0

 .

Puting it all together, using the Skolem-Noether theorem, the quan-

tum hyperbolic invariant of

(
2 1
1 1

)
is

(107) C−1 =

 1 1/q2 1/q5

1/q 1 1
1/q4 1/q3 1

 .

.

Notice the action of SL2Z as automorphisms of Mn(C) gives rise,
via the Skolem-Noether theorem a projective representation of the
mapping class group of the torus. How does this relate to the
Witten-Reshetikhin-Turaev representation.
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