

The Waisman Laboratory for Brain Imaging and Behavior

University of Wisconsin SCHOOL OF MEDICINE AND PUBLIC HEALTH

Hyperspherical Harmonic (HyperSPHARM) Representation

Moo K. Chung

University of Wisconsin-Madison www.stat.wisc.edu/~mchung

October 10, 2017, Florida State University

Abstracts

Existing functional shape models such as the widely used spherical harmonic (SPHARM) representation assume topological invariance, so are unable to simultaneously parameterize multiple disconnected structures. In such a situation, SPHARM has to be applied separately to each individual structure. We present a novel surface parameterization technique using 4D hyperspherical harmonics (HyperSPHARM) in representing multiple disjoint objects as a single analytic form. The underlying idea behind HyperSPHARM is to project an entire collection of disconnected 3D objects onto the 4D hypersphere and simultaneously parameterize them with the 4D hyperspherical harmonics. Hence, HyperSPHARM allows for a holistic treatment of multiple disconnected structures. Although HyperSPHARM may yields similar reconstruction performance as SPHARM, HyperSPHARM can parameterize using much fewer basis functions and projection to 4D dimension obviates SPHARM's burdensome surface flattening. In addition, HyperSPHARM can handle any type of topology. The method is applied in modeling hippocampi and amygdalae of the human brain. The talk is based on paper

Hosseinbor et al., 2015 Medical Image Analysis 22:89-101

Acknowledgements

Pasha Hosseinbor, Nagesh Adluru, Ross Luo, Houri Voperian, Seth Pollack, Andrew Alexander, Hill Goldsmith, Richard Davidson University of Wisconsin-Madison

NIH funding: EB022856, MH098098, MH061285

Preliminary

Parametric shape models

Fourier descriptors

Spherical harmonic representation

Laplace-Beltrami eigenfunction expansion

White matter fibers

Up to half million tracts

Each tract consists of about 300 control points.

Cosine series representation at various degrees

Tract matching

Tract averaging

Average of 5 tracts

autism vs. controls

U

MATLAB: <u>http://brainimaging.waisman.</u>

wisc.edu/~chung/tracts

Question:

Parameterize the whole white matter fibers using a single parameterization.

Surface parameterization

Spherical angle based coordinate system

Spherical harmonic of degree *l* and order *m*

$$Y_{lm} = \begin{cases} c_{lm} P_l^{|m|}(\cos\theta) \sin(|m|\varphi), & -l \le m \le -1, \\ \frac{c_{lm}}{\sqrt{2}} P_l^0(\cos\theta), & m = 0, \\ c_{lm} P_l^{|m|}(\cos\theta) \cos(|m|\varphi), & 1 \le m \le l, \end{cases}$$

Weighted-Spherical harmonics (SPHARM)

 $v_i(heta,arphi) = \sum^k \sum^l e^{-l(l+1)\sigma} f^i_{lm} Y_{lm}(heta,arphi)$ l=0 m=-l

SPHARM with different degrees

Chung et al., 2007 IEEE Transactions on Medical Imaging 26:566-581

Weighted-SPHARM

heat kernel bandwidth, diffusion time

Matlab: <u>http://www.stat.wisc.edu/~mchung/softwares/</u> weighted-SPHARM/weighted-SPHARM.html

Laplace Beltrami eigenfunction expansion

$\Delta f = \lambda f \quad -- \quad C\psi = \lambda A\psi$

MATLAB: <u>http://brainimaging.waisman.wisc.edu/~chung/lb</u>

Laplace-Beltrami eigenfunctions on mandible

Heat kernel = probability distribution on manifold

Heat kernel smoothing

$$K_{\sigma} * X(p) = \sum_{j=0}^{\infty} e^{-\lambda_j \sigma} X_j \psi_j(p)$$
$$\beta_j = \int X(p) \psi_j(p) \, d\mu(p)$$

Limitations

Existing parametric shape representations do not work for different topology

Cancer growth

Stroke lesions in brain

Bone fusion

Hyoid bone fusion

DS; 10 yrs, 6 mo. TD; 10 yrs, 11 mo. TD; 44 yrs, 1 mo.

DS: down syndrome

TD: typically developing

Bessel Fourier Reconstruction (BFOR)

2D cortical thickness

Yellow: outer cortical surface Blue: inner cortical surface

Chung et al. 2003 NeuroImage 18:198-213

Bessel Fourier reconstruction (BFOR) on cortical thickness

-0.2

5

10

25

15

20

 $Z_{lmn}(r,\theta,\varphi)$ $= S_l(\sqrt{\lambda_{ln}}r)Y_{lm}(\theta,\varphi)$ $S_l(x) = \sqrt{\frac{\pi}{2x}} J_{l+1/2}(x)$ $Z_{0,0,1}$ $Z_{3,0,2}$ $Z_{1,0,2}$ Spherical Bessel Function of 1st Kind $Z_{3,1,2}$ $Z_{4,0,2}$ 0.8 $Z_{4,4,2}$ 0.6 0.4 0.2

 $Z_{5,0,2}$

 $Z_{5,2,3}$

 $Z_{6,2,3}$

Multi-shell reconstruction in diffusion weighted imaging

(a) BFOR

5 shells, 126 data points

(d) SPFI with Signal Extrapolation

 P_0 image

(b) BFOR with Signal Extrapolation

(e) DPI

Hosseinbor et al. 2013 Neuolmage 64:650-670

Hyper Spherical Harmonic (SPHARM) Representation

Flatland by Edwin A. Abbott, 1884

Connected in 3D

Question: Connect disconnected structures

Connected in 4D

Question: Connect disconnected structures

3D stereographic projection

4D stereographic projection

4D stereographic projection

Hyper Spherical harmonic representation

3D coordinates
$$S = (S_1, S_2, S_3)$$

 $S_i = \sum_{n=0}^{N} \sum_{l=0}^{n} \sum_{m=-l}^{l} C_{nlm}^i Z_{nl}^m (\beta, \theta, \phi)$
 $Z_{nl}^m (\beta, \theta, \phi) = 2^{l+1/2} \sqrt{\frac{(n+1)\Gamma(n-l+1)}{\pi\Gamma(n+l+2)}} \Gamma(l+1) \sin^l \beta C_{nl}^{l+1} (\cos \beta) Y_l^m (\theta, \phi)$
Gegenbauer polyonomials

Hosseinbor et al., 2015 Medical Image Analysis 22:89-101

SPHARM mean squared error.	1764 parameters
	MSE _{SPHARM}
Left Amygdala	0.0843 ± 0.0183
Right Amygdala	0.0941 ± 0.0165
Left Hippocampus	0.364 ± 0.732
Right Hippocampus	0.192 ± 0.314
HyperSPHARM mean squared error.	r. 140 parameters
	MSE _{HSH}
Left Amygdala	0.147 ± 0.609
Left Amygdala Right Amygdala	0.147 ± 0.609 0.148 ± 0.632
Left Amygdala Right Amygdala Left Hippocampus	0.147 ± 0.609 0.148 ± 0.632 0.129 ± 0.511

Multi-shell reconstruction in diffusion weighted imaging

5 shells, 126 data points

(d) BFOR

(c) HSH N = 4

 P_0 image

Hosseinbor et al., 2015 Medical Image Analysis 21:15-28

What Next?

Extremely complex multiple disconnected anatomical structures

Challenge:

Parameterize the whole white matter fibers using HyperSPHARM.

Standard brain parcellation with 116 regions

Precentral gyrus

9-layer hierarchical brain parcellation

Hierarchical nested connectivity

Extremely dense brain network

+25000 nodes

+0.6 billion connections

HyperSPHARM representation in $\mathbb{R}^3 \otimes \mathbb{R}^3$

http://nbiasite.wordpress.com

NONSTANDARD BRAIN IMAGE ANALYSIS

ORGANIZERS PROGRAM VENUE REGISTRATION

Satellite Meeting of 2018 OHBM Singapore

June 22-23, 2018