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Functional Data and Shape Analysis

Approaches:

I Function space as a Riemannian manifold (Klassen, Charon,
Le Brigant, Preston, Michor, Jermyn, Joshi,
Moeller-Andersen, Needham, Harms,. . . )

I Functional data analysis via Riemannian metrics on the
diffeomorphism group (Miller, Trouve, Zhang, Younes,
Misiolek, Joshi,. . . )



Goals

Goals

I Compare, describe and classify shapes

I Obtain a statistical framework for shape analysis

Difficulties:

I Spaces are inherently non-linear

I Spaces are high (infinite) dimensional



D’Arcy Thompson

[www.darcythompson.org/catalogue_images/unframed/127.jpg]

[en.wikipedia.org/wiki/File:On_Growth_and_Form.JPG]

www.darcythompson.org/catalogue_images/unframed/127.jpg
en.wikipedia.org/wiki/File:On_Growth_and_Form.JPG


Shape analysis is analysis of deformations

In a very large part of morphology, our essen-
tial task lies in the comparison of related forms
rather than in the precise definition of each; and
the deformation of a complicated figure may be
a phenomenon easy of comprehension, though
the figure itself have to be left unanalysed and
undefined. (. . . )

[D’Arcy Thompson. On Growth and Form. 1917]



A Riemannian setting for shape analysis

I Intuitive notion of similarity: Shapes that differ only by a
small deformation are similar to each other.

I Gradients flows, geodesics, curvature.

I The exponential map may permit to linearize shape space.

I This eventually allows one to do statistics.



Infinte dimensional Riemannian geometry

Problems:

I Geodesic distance may vanish

I The metric might not be a bijection as a mapping from the
tangent space to the cotangent space

I Existence of geodesic equation is not guaranteed

I Geodesic equations are PDEs: well-posedness, solutions, . . .

I No theorem of Hopf Rinov

I The exponential map might not be a local diffeomorphism



Example: Shape Averaging



The manifolds of Curves and Surfaces
The space of curves is

Imm(S1,R2) = {c ∈ C∞(S1,R2) : c ′(θ) 6= 0} ⊂ C∞(S1,R2) .

More general: The space of surfaces of type M is

Imm(M,Rd) = {f ∈ C∞(M,Rd) : Tf is inj.} ⊂ C∞(M,Rd) .
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The Manifolds of Curves and Surfaces

The space of surfaces of type M is

Imm(M,Rd) = {f ∈ C∞(M,Rd) : Tf is inj.} ⊂ C∞(M,Rd) .

The tangent space of Imm(M,Rd) at a curve/surface f is the set
of all vector fields along f ,

Tf Imm(M,Rd) =

h :

TRd

π
��

M
f //

h

==

Rd

 ∼=
{
h ∈ C∞(M,Rd)

}
.



Tangent vectors and paths on the manifold of curves



Diffeomorphism groups

The diffeomorphism group of the parameter space:

Diff(M) = {ϕ ∈ C∞(M,M) : ϕ bij.}

The diffeomorphism group of the ambient space (needs decay
conditions):

Diff(Rd) =
{
ϕ ∈ C∞(Rd ,Rd) : ϕ gbij.

}
Both of these groups are acting on Imm:

Diff(Rd)→ Imm(M,Rd)← Diff(M) .



Right action of Diff (Shape preserving)

(Imm(M,Rd),Diff(M))→ Imm(M,Rd)

(f , ϕ) 7→ f ◦ ϕ

c
//

d //



Other Shape preserving Transformations



Definition of shape space

Consider the group actions of reparametrizations Diff(M), Scalings
(S), Translations (T), Rotations (R).

Imm(M,Rd)

��
Imm(M,Rd)/Diff(M)/R/S/T = S(M,Rd)



Extrinsic metrics



Left action of Diff (Shape changing)

(Diff(Rd),S(M,Rd))→ S(M,Rd)

(ϕ, f ) 7→ ϕ(f )

LDDMM: Measure cost of minimal transformation in Diff(Rd) to
define distance between curves/surfaces/images.



LDDMM (or extrinsic metrics)

I Defines similarity between shapes via right invariant metric on
Diffeomorphism group of ambient space.

I Works for all objects on which the Diffeomorphism group acts:
curves, surfaces, images, densities, measures,. . .

I Minimization problem:



LDDMM (or extrinsic metrics)

〈〈X ,Y 〉〉 =

∫
Rd

〈X ,AY 〉 dx

Matching problem:

dist([f0], [f1]) = inf

∫ 1

0
〈〈X (t),X (t)〉〉dt

such that Flow(X )(f0) = f1 ◦ ϕ for some ϕ ∈ Diff(M).



Intrinsic metrics



Intrinsic metrics

I Do not make use of this action but define a metric on the
space Imm

I Minimization problem:



Defining an intrinsic metric

Gf (h, k) =

∫
M
〈h,Af k〉 vol



Invariance

Imm(M,Rd)

π
��

S(M,Rd)

An invariant metric “above” in-
duces a metric “below” such
that π is a Riemannian submer-
sion.

Gf (h, k) = Gf ◦ϕ(h ◦ ϕ, k ◦ ϕ)



Riemannian submersions

Imm

π
��
S

I Horizontal geodesics on Imm project down to geodesics in
shape space.

I Induced geodesic distance on quotient space:

distS([f0], [f1]) = infϕ dist(f0, f1 ◦ ϕ)

I O’Neill’s formula connects sectional curvature on Imm and on
S.



Defining an invariant metric (curves)

Gc(h, k) =

∫
M
〈h,Ack〉 vol

with vol = |c ′|dθ and Ac defined in terms of Ds = 1
|c ′|∂θ, e.g.

Ac = −D2
s .



Defining an invariant metric (surfaces)

Gf (h, k) =

∫
M
〈h,Af k〉 vol

with vol being the surface volume form and Af defined in terms of
the surface Laplacian, e.g., Af = −∆f .



Differences between extrinsic metrics and intrinsic metrics

I Intrinsic metrics: Metric is defined on parameter space (lower
dimensional), potentially computational faster

I Intrinsic metrics: Inertia operator depends highly on the foot
point f , potentially more difficult (expensive) to implement

I Extrinsic metrics: yields deformtion of the ambient space in
addition to registration.

I Intrinsic metrics: can create self intersections



Example 1: Face to heart
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Extrinsic:



Example 1: Face to heart



Example 2: Moving bumps

Intrinsic:

Extrinsic:
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Intrinsic Extrinsic



Example 2: Moving bumps



Example 3: Expanding a thin structure

Intrinsic:

Extrinsic:



Example 3: Expanding a thin structure

Intrinsic Extrinsic



Thank you


