Tutorial: Shape Analysis of Curves and Surfaces

Martin Bauer

Florida State University

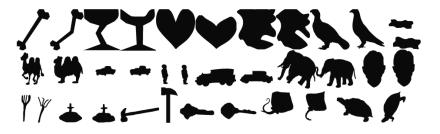
October 8, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Functional Data and Shape Analysis

Approaches:

- Function space as a Riemannian manifold (Klassen, Charon, Le Brigant, Preston, Michor, Jermyn, Joshi, Moeller-Andersen, Needham, Harms,...)
- Functional data analysis via Riemannian metrics on the diffeomorphism group (Miller, Trouve, Zhang, Younes, Misiolek, Joshi,...)



Goals

(日)、

э

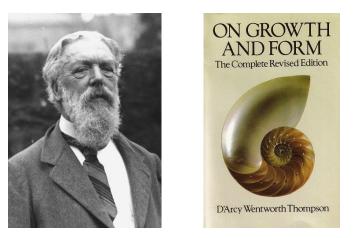
Goals

- Compare, describe and classify shapes
- Obtain a statistical framework for shape analysis

Difficulties:

- Spaces are inherently non-linear
- Spaces are high (infinite) dimensional

D'Arcy Thompson



[www.darcythompson.org/catalogue_images/unframed/127.jpg] [en.wikipedia.org/wiki/File:On_Growth_and_Form.JPG] Shape analysis is analysis of deformations

In a very large part of morphology, our essential task lies in the comparison of related forms rather than in the precise definition of each; and the *deformation* of a complicated figure may be a phenomenon easy of comprehension, though the figure itself have to be left unanalysed and undefined. (...)

[D'Arcy Thompson. On Growth and Form. 1917]

A Riemannian setting for shape analysis

- Intuitive notion of similarity: Shapes that differ only by a small deformation are similar to each other.
- Gradients flows, geodesics, curvature.
- The exponential map may permit to linearize shape space.

イロト 不得 トイヨト イヨト

This eventually allows one to do statistics.

Infinte dimensional Riemannian geometry

Problems:

- Geodesic distance may vanish
- The metric might not be a bijection as a mapping from the tangent space to the cotangent space
- Existence of geodesic equation is not guaranteed
- ► Geodesic equations are PDEs: well-posedness, solutions, ...
- No theorem of Hopf Rinov
- The exponential map might not be a local diffeomorphism

Example: Shape Averaging

The manifolds of Curves and Surfaces

The space of curves is

 $\mathsf{Imm}(S^1,\mathbb{R}^2)=\{c\in C^\infty(S^1,\mathbb{R}^2):c'(\theta)
eq 0\}\subset C^\infty(S^1,\mathbb{R}^2).$

More general: The space of surfaces of type M is

 $\operatorname{Imm}(M, \mathbb{R}^d) = \{ f \in C^{\infty}(M, \mathbb{R}^d) : Tf \text{ is inj.} \} \subset C^{\infty}(M, \mathbb{R}^d).$



ヘロマ ふぼう くほう しょうしょう

The Manifolds of Curves and Surfaces

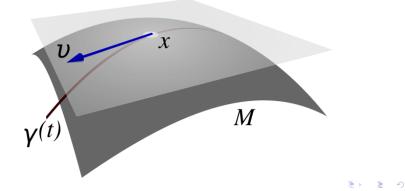
The space of curves is

 $\mathsf{Imm}(S^1,\mathbb{R}^2)=\{c\in C^\infty(S^1,\mathbb{R}^2):c'(\theta)
eq 0\}\subset C^\infty(S^1,\mathbb{R}^2).$

More general: The space of surfaces of type M is

 $\operatorname{Imm}(M, \mathbb{R}^d) = \{ f \in C^{\infty}(M, \mathbb{R}^d) : Tf \text{ is inj.} \} \subset C^{\infty}(M, \mathbb{R}^d).$

 $T_{\mathcal{X}}M$



The Manifolds of Curves and Surfaces

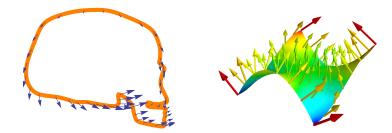
The space of surfaces of type M is

 $\operatorname{Imm}(M, \mathbb{R}^d) = \{ f \in C^{\infty}(M, \mathbb{R}^d) : Tf \text{ is inj.} \} \subset C^{\infty}(M, \mathbb{R}^d).$

The tangent space of $\text{Imm}(M, \mathbb{R}^d)$ at a curve/surface f is the set of all vector fields along f,

$$T_f \operatorname{Imm}(M, \mathbb{R}^d) = \left\{ \begin{array}{cc} T \mathbb{R}^d \\ h : & h \swarrow & \int_{\pi} \\ M \xrightarrow{f} \mathbb{R}^d \end{array} \right\} \cong \left\{ h \in C^{\infty}(M, \mathbb{R}^d) \right\} .$$

Tangent vectors and paths on the manifold of curves



(日) (同) (日) (日)

э

Diffeomorphism groups

The diffeomorphism group of the parameter space:

$$\operatorname{Diff}(M) = \{ \varphi \in C^{\infty}(M, M) : \varphi \text{ bij.} \}$$

The diffeomorphism group of the ambient space (needs decay conditions):

$$\mathsf{Diff}(\mathbb{R}^d) = \left\{ arphi \in \mathcal{C}^\infty(\mathbb{R}^d, \mathbb{R}^d) : arphi \; \mathsf{gbij.}
ight\}$$

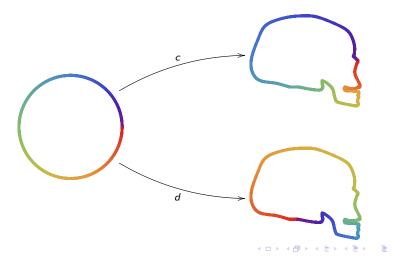
Both of these groups are acting on Imm:

$$\operatorname{Diff}(\mathbb{R}^d) \to \operatorname{Imm}(M, \mathbb{R}^d) \leftarrow \operatorname{Diff}(M)$$
.

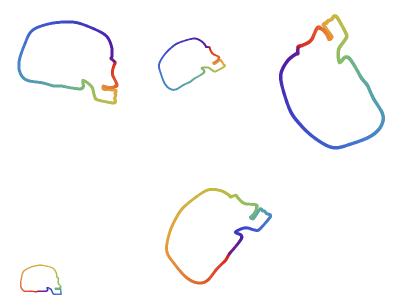
Right action of Diff (Shape preserving)

$$(\operatorname{Imm}(M, \mathbb{R}^d), \operatorname{Diff}(M)) \to \operatorname{Imm}(M, \mathbb{R}^d)$$

 $(f, \varphi) \mapsto f \circ \varphi$



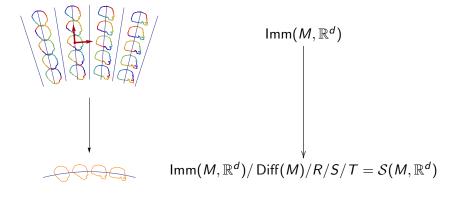
Other Shape preserving Transformations



◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Definition of shape space

Consider the group actions of reparametrizations Diff(M), Scalings (S), Translations (T), Rotations (R).

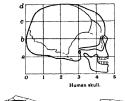


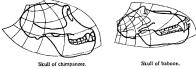
イロト 不得 トイヨト イヨト 三日

Extrinsic metrics

Left action of Diff (Shape changing)

$$(\mathsf{Diff}(\mathbb{R}^d),\mathcal{S}(M,\mathbb{R}^d)) o \mathcal{S}(M,\mathbb{R}^d)\ (arphi,f)\mapsto arphi(f)$$

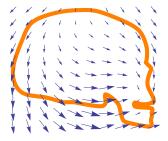


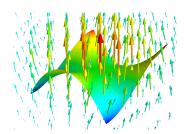


LDDMM: Measure cost of minimal transformation in $\text{Diff}(\mathbb{R}^d)$ to define distance between curves/surfaces/images.

LDDMM (or extrinsic metrics)

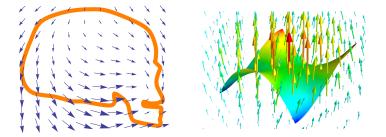
- Defines similarity between shapes via right invariant metric on Diffeomorphism group of ambient space.
- Works for all objects on which the Diffeomorphism group acts: curves, surfaces, images, densities, measures,...
- Minimization problem:





LDDMM (or extrinsic metrics)

$$\langle\langle X,Y\rangle
angle = \int_{\mathbb{R}^d} \langle X,AY
angle\,\mathrm{d}x$$



Matching problem:

$${
m dist}([f_0],[f_1])={
m inf}\int_0^1\langle\langle X(t),X(t)
angle
angle dt$$

such that $\operatorname{Flow}(X)(f_0) = f_1 \circ \varphi$ for some $\varphi \in \operatorname{Diff}(M)$.

Intrinsic metrics

Intrinsic metrics

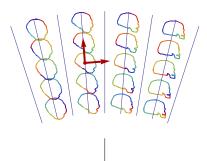
- Do not make use of this action but define a metric on the space Imm
- Minimization problem:

Defining an intrinsic metric

$$G_f(h,k) = \int_M \langle h, A_f k \rangle$$
 vol

・ロト ・個ト ・モト ・モト

Invariance



$$\mathsf{Imm}(M,\mathbb{R}^d)igg|_{\pi}\mathcal{S}(M,\mathbb{R}^d)$$

An invariant metric "above" induces a metric "below" such that π is a Riemannian submersion.

$$G_f(h,k) = G_{f \circ \varphi}(h \circ \varphi, k \circ \varphi)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Riemannian submersions

- Horizontal geodesics on Imm project down to geodesics in shape space.
- Induced geodesic distance on quotient space:

$$\mathsf{dist}^{\mathcal{S}}([f_0], [f_1]) = \mathsf{inf}_{\varphi} \, \mathsf{dist}(f_0, f_1 \circ \varphi)$$

 O'Neill's formula connects sectional curvature on Imm and on S. Defining an invariant metric (curves)

$$G_c(h,k) = \int_M \langle h, A_c k \rangle$$
 vol

with vol = $|c'| d\theta$ and A_c defined in terms of $D_s = \frac{1}{|c'|} \partial_{\theta}$, e.g. $A_c = -D_s^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

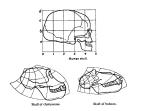
Defining an invariant metric (surfaces)

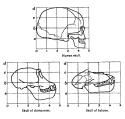
$$G_f(h,k) = \int_M \langle h, A_f k
angle$$
 vol

with vol being the surface volume form and A_f defined in terms of the surface Laplacian, e.g., $A_f = -\Delta_f$.

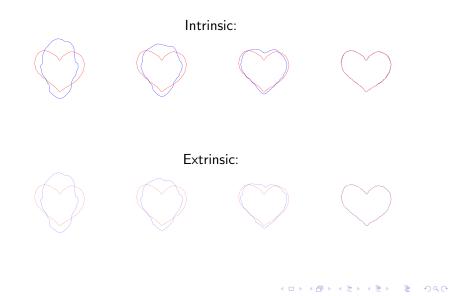
Differences between extrinsic metrics and intrinsic metrics

- Intrinsic metrics: Metric is defined on parameter space (lower dimensional), potentially computational faster
- Intrinsic metrics: Inertia operator depends highly on the foot point f, potentially more difficult (expensive) to implement
- Extrinsic metrics: yields deformation of the ambient space in addition to registration.
- Intrinsic metrics: can create self intersections

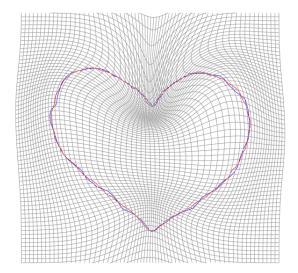




Example 1: Face to heart



Example 1: Face to heart



nurnurnerner e 1990

Example 2: Moving bumps

Intrinsic:

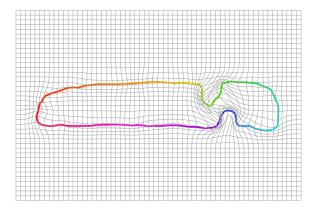
Extrinsic:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

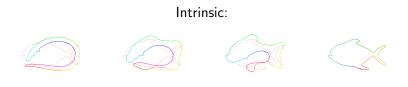
Example 2: Moving bumps

Intrinsic

Example 2: Moving bumps



Example 3: Expanding a thin structure



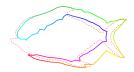
Extrinsic:

(a)

æ

Example 3: Expanding a thin structure

Intrinsic



Thank you