
Using the limit definition of
∫

Problem A: Use the formula
n∑
1
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and the limit-of-the-left-sum definition∫ b
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f(x)dx = lim
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to show that the integral ∫ 1

0

x2dx =
1
3

In class, we did this for
∫ 1

0
xdx using

∑n
1 i = n(n + 1)/2 as follows: f(x) = x, a = 0, b = 1 and

∆x = (b− a)/n = (1− 0)/n = 1/n. It follows that xi = a+ i ·∆x = i/n So
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