Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Find curl \mathbf{F} and find $\operatorname{div} \mathbf{G}$, if the vector field $\mathbf{F}=\left\langle x y^{2} z^{3}, 0, x^{3} y^{2} z\right\rangle$ and if the vector field $\mathbf{G}=$ $\langle z \sin (x / y), z \sin (x / y), z \sin (x / y)\rangle$.
2. Find a scalar field f so that $\nabla f=\mathbf{F}=\left\langle 2 x+y+z, x+3 y^{2}+z, x+y\right\rangle$ and use it to compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if $\mathbf{r}(t)$ is an extremely complex helical spiral that goes from $(1,1,1)$ to $(5,-1,2)$
3. Vector, scalar or nonsense. $f=f(x, y, z)$ and $g=g(x, y, z)$ are scalar fields and $\mathbf{F}=\mathbf{F}(x, y, z)$ and $\mathbf{G}=\mathbf{G}(x, y, z)$ are vector fields. Determine if the given object is a scalar field, a vector field or nonsense.
A. $\mathbf{F} \times \mathbf{G}$
B. curl f
C. $\mathbf{F} \cdot \mathbf{G}$
D. $f \mathbf{F}$
E. $\operatorname{div}(\operatorname{grad} f)$
F. $\operatorname{grad}(\operatorname{div} \mathbf{F})$
G. $\operatorname{div}(\operatorname{curl} \mathbf{G})$
H. $\operatorname{grad} \mathbf{F}$
I. $(\mathbf{F} \cdot \mathbf{G}) \mathbf{F}$
J. $(\operatorname{grad} f) \cdot(\operatorname{grad} g)$
4. Write down a triple integral which will give mass of the the region in 3 -space that is in the first octant and under the surface $x+2 y+3 z=6$ with density function $\delta(x, y, z)=x y^{3} z^{2}$. Do NOT evaluate.

5. The vector field $\mathbf{F}=\langle 2,5,3\rangle$ compute the flux of \mathbf{F} over each of the surfaces above. Each can be done without evaluating an integral. [Hint B is a circle, D is an equilateral triangle, A and C are rectangles.]
6. Find formula's for the two vector fields below. (There are many possible answers). Decide if the line integrals over the given curve (three sides of a rectangle) will be positive, negative or zero for each vector field.

7. Let W be a region in 3 -space with smooth boundary and let S be its boundary ∂W with outward normal. Show for the constant vector field $\mathbf{F}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, the flux integral $\iint_{S} \mathbf{F} \cdot d \mathbf{A}=0$. [Hint: Use a Theorem.]

There is more test on the other side.
8. Sketch the region and rewrite the cylinderical triple integeral below in both spherical and rectangular coordinates, do NOT evaluate. (Here $\delta=\delta(x, y, z)=\delta(z, r, \theta)=\delta(\rho, \phi, \theta)$ is some density function.)

$$
\int_{0}^{\pi} \int_{0}^{4} \int_{r}^{4} \delta r d z d r d \theta
$$

9. Let C be the unit circle in the plane oriented counter-clockwise and let $\mathbf{F}=\left\langle-y^{3}, x^{3}\right\rangle$ (below left). Carefully write and simplify the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ til it is a simple (non-vector) integral in the parameter t. Use your TI-89 to evaluate the integral. Use Green's Theorem to rewrite the line integral as a double integral over the region D of points where $x^{2}+y^{2} \leq 1$. Convert the double integral to polar coordinates and evaluate.

10. Compute the flux integral for $\mathbf{F}=\mathbf{k}$ over the parametic surface $\mathbf{r}(s, t)=\langle s \cos t, s \sin t, t\rangle$ for $0 \leq s \leq 1$ and $0 \leq t \leq 4 \pi$ oriented upward (The spiral staircase, above right).
