Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Use the Chain Rule to find $\partial z / \partial s$ and $\partial z / \partial t$ when $z=\tan \left(x^{2}-y^{2}\right), x=s / t$ and $y=\sqrt{t}$.
2. Fixing Maple errors. Each of the following produced an error or an empty graph, explain how to fix each. (Assume "with(plots);" has already been done.)
a contourplot ($\sin (x * \sin (y), x=0 . . P i, y=0 . . P i)$;
b gradplot $(3 y+2 x, x=0 . .2, y=0 . .2)$;
c plot3d (exp $(x+y), x=1 . .-1, y=-1 . .1)$;
d plot3d ($\mathrm{x} * \mathrm{y}, \mathrm{x}=0.1, \mathrm{y}=0.10$, scaling=contrained) ;
e contourplot ($\mathrm{y}^{\wedge} 2+\mathrm{z}^{\wedge} 2, \mathrm{x}=-10 . .10, \mathrm{y}=-10 . .10$);
3. Match each of the gradient plots A-E to the matching contour plot among I-V.

4. Find the directional derivative of $f(x, y, z)=x^{3}+y^{2}+z$ as you leave the point $P(3,2,1)$ heading in the direction of the point $Q(0,6,1)$.
5. The graph below is a contour graph of a function $f(x, y)$ and the arrow at $\left(-\frac{1}{2}, 1\right)$ points in the direction of the gradient $\nabla f\left(-\frac{1}{2}, 1\right)$. Find and identify all local extrema (i.e. local mins, local maxs and saddles) and find the sign (positive, negative or zero) of the partials of $f: f_{x}(Q), f_{y}(Q), f_{x}(P), f_{x x}(P), f_{x}(0,0)$ and the directional derivatives $f_{\mathbf{u}}(Q), f_{\mathbf{u}}(0,0)$ for $\mathbf{u}=\left\langle\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right\rangle$

6. Find the equation of the tangent plane to the level surface $F(x, y, z)=x^{2}+2 y^{2}+6 x y-8 x^{3} z+27=0$ at $(1,-2,3)$.
7. Use your TI-89 to find all the critical points of the function $f(x, y)=x^{3}-3 x y+y^{3}$, then show how you would obtain these critical points by hand. Classify these local extrema by filling out a table like the one below, with a separate line for each critical point.

(x, y)	$f_{x x}$	$f_{y y}$	$f_{x y}$	big D	Classification
$?$	$?$	$?$	$?$	$?$	$?$

8. Sketch the region and rewrite the cylinderical triple integeral below in both spherical and rectangular coordinates, do NOT evaluate. (Here $\delta=\delta(x, y, z)=\delta(z, r, \theta)=\delta(\rho, \phi, \theta)$ is some density function.)

$$
\int_{0}^{\pi / 2} \int_{0}^{2} \int_{-\sqrt{4-r^{2}}}^{0} \delta r d z d r d \theta
$$

[Hint: Draw both the 2D area in the $x y$-plane that the 3 D region "lives" over and a $2 \mathrm{D} z$ vs r plot.]
9. Sketch the region of integration of the polar coordinate integral

$$
\int_{0}^{\pi / 4} \int_{0}^{2} r^{2} \cos \theta d r d \theta
$$

and rewrite it as rectangular integral (or a sum of integrals) in BOTH orders $d x d y$ and $d y d x$. Evaluate all three integrals (or sum of integrals) on your TI-89.
10. Use Lagrange multipliers to find the minimum and maximum VALUES of $2 x^{2}-y^{2}+z$ subject to the constraint $x^{2}+y^{2}+z^{2}=1$. [Hint: there are six "critical points".]

