Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Let $P(1,0,2), Q(1,4,0)$ and $R(0,2,2)$. Find the equation of the plane throught the points P, Q and R and the area of the parallelogram with sides $P Q$ and $P R$.
2. Determine whether the lines L_{1} and L_{2} are parallel, skew or intersecting. If they intersect find the point of intersection.

$$
\begin{gathered}
L_{1}: \quad x=2-2 t, \quad y=4 t, \quad z=2 \\
L_{2}: \quad x=-1+3 s, \quad y=3 s, \quad z=-2+6 s
\end{gathered}
$$

3. A woman walks due southeast on the deck of a huge airship at $2 \mathrm{~km} / \mathrm{h}$. The ship's horizontal motion is northeast at a speed of $4 \mathrm{~km} / \mathrm{h}$ and its vertical motion is climbing at a rate of $2 \mathrm{~km} / \mathrm{h}$ Find the velocity vector of the women relative to the ground. Find her speed and a unit vector in the direction of the velocity. (The x-axis points East, the y-axis points North, and the z-axis points up.)
4. Using vector operations write $\vec{a}=\langle-1,3,1\rangle$ as the sum of two vectors $\vec{w}+\vec{v}$, where \vec{w} is parallel to \vec{b} and \vec{v} is perpendicular to \vec{b}, when $\vec{b}=\langle 2,-1,0\rangle$.
5. True or False and a brief reason why or why not.
(a) The equation $x^{2}+2 x+y^{2}+z^{2}=3$ is an equation of a sphere with radius 2 .
(b) The vectors $\langle 1,-2,3\rangle$ and $\langle-2,4,-6\rangle$ are parallel.
(c) The equation $x^{2}-y^{2}-z^{2}=-1$ is a hyperboloid of two sheets.
(d) The equation $x^{2}+y^{2}-z^{2}=0$ is a hyperboloid of one sheet.
(e) $\langle 1,0,3\rangle$ is normal to the plane $z=3-x / 3$.
(f) $\vec{i} \times \vec{k}=\vec{j}$
(g) $\langle\sqrt{3}, 1\rangle$ makes an angle of $\pi / 6$ with respect to the x-axis.
(h) The ellipsoid $x^{2}+4 y^{2}+9 z^{2}=1$ intersects the z-axis at the points $(0,0, \pm 3)$.
(i) $\vec{i}+\vec{k}=\langle 1,1\rangle$
(j) Two distinct lines are either parallel or they intersect.
