MAC 2313 Calculus 3

Test 1

Directions: Show **ALL** work for credit; Give **EXACT** answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

- 1. Let P(1,0,2), Q(1,4,0) and R(0,2,2). Find the equation of the plane throught the points P, Q and R and the area of the parallelogram with sides PQ and PR.
- 2. Determine whether the lines L_1 and L_2 are parallel, skew or intersecting. If they intersect find the point of intersection.

$$L_1: \quad x = 2 - 2t, \quad y = 4t, \quad z = 2$$

 $L_2: \quad x = -1 + 3s, \quad y = 3s, \quad z = -2 + 6s$

- 3. A woman walks due southeast on the deck of a huge airship at 2 km/h. The ship's horizontal motion is northeast at a speed of 4 km/h and its vertical motion is climbing at a rate of 2 km/h Find the velocity vector of the women relative to the ground. Find her speed and a unit vector in the direction of the velocity. (The x-axis points East, the y-axis points North, and the z-axis points up.)
- 4. Using vector operations write $\vec{a} = \langle -1, 3, 1 \rangle$ as the sum of two vectors $\vec{w} + \vec{v}$, where \vec{w} is parallel to \vec{b} and \vec{v} is perpendicular to \vec{b} , when $\vec{b} = \langle 2, -1, 0 \rangle$.
- 5. True or False and a brief reason why or why not.
 - (a) The equation $x^2 + 2x + y^2 + z^2 = 3$ is an equation of a sphere with radius 2.
 - (b) The vectors $\langle 1, -2, 3 \rangle$ and $\langle -2, 4, -6 \rangle$ are parallel.
 - (c) The equation $x^2 y^2 z^2 = -1$ is a hyperboloid of two sheets.
 - (d) The equation $x^2 + y^2 z^2 = 0$ is a hyperboloid of one sheet.
 - (e) $\langle 1, 0, 3 \rangle$ is normal to the plane z = 3 x/3.
 - (f) $\vec{i} \times \vec{k} = \vec{j}$
 - (g) $\langle \sqrt{3}, 1 \rangle$ makes an angle of $\pi/6$ with respect to the x-axis.
 - (h) The ellipsoid $x^2 + 4y^2 + 9z^2 = 1$ intersects the z-axis at the points $(0, 0, \pm 3)$.
 - (i) $\vec{i} + \vec{k} = \langle 1, 1 \rangle$
 - (j) Two distinct lines are either parallel or they intersect.