Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Simplify all answers to this problem. A space curve has velocity vector given by $\vec{v}(t)=\left\langle t^{2}, t \sqrt{2}, 1\right\rangle$
(a) find the position vector $\vec{r}(t)$ if $\vec{r}(1)=\langle 1, \sqrt{2}, 3\rangle$
(b) find the acceleration $\vec{a}(t)$.
(c) find the speed
(d) find the (exact) arclength from $t=1$ to $t=5$
(e) find a_{N} using $a_{N}=\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right| /\left|\vec{r}^{\prime}(t)\right|$
(f) find κ using $\kappa=\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right| /\left|\vec{r}^{\prime}(t)\right|^{3}$
2. Write the equation $x^{2}+y^{2}=z^{2} / 25$ in cylindrical coordinates and write the equation $x^{2}+y^{2}+z^{2}+2 z=0$ in spherical coordinates. Simplify your answers.
3. A particle moves at a constant speed along a line frome the point $P=(1,-1,2)$ to point $Q=(4,1,-4)$. Find the parametric equations of the line and the limits $a \leq t \leq b$ if
(a) It takes five seconds to go from P to Q.
(b) The speed of the particle is 5 units per second.
4. Find the vectors \vec{T}, \vec{N}, and \vec{B} for the curve $\vec{r}(t)=\langle t, \cos (3 t), \sin (3 t)\rangle$ at the point $(\pi / 6,0,1)$. [Since we are at a point, the final vectors \vec{T}, \vec{N}, and \vec{B} should be independent of t.]
5. Match the parametric equations in 1-6 to the graphs labeled A-F. Give reasons for your choices.
(1) $\vec{r}(t)=\langle\cos t, \sin t, \sin 4 t\rangle$
(2) $\vec{r}(t)=\langle t, \cos t, \sin t\rangle$
(3) $\vec{r}(t)=\langle\cos t, \sin t, t\rangle$
(4) $\vec{r}(t)=\langle t \cos t, t \sin t, t\rangle$
(5) $\vec{r}(t)=\langle\sin t, t, \cos t\rangle$
(6) $\vec{r}(t)=\langle\cos t,-\sin t, t\rangle$

A
B

