Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Find the equation of the tangent plane to $F(x, y, z)=0$ at the point $(5,-3,4)$ when F is given by $x^{2}+y z-13$.
2. A contour plot of the function $f(x, y)$ is given below. Find the sign (positive, negative or zero) of the partial derivatives below by completing a table like the one below the graph. The location of the point is at the center of the plus sign to the left of the label.

	P	Q	R	S	T
f_{x}					
f_{y}					
$f_{y y}$					

3. Use the chain rule (as shown in class) to find $\partial z / \partial s$ and $\partial z / \partial t$ if $z=x / y+\cos (x-y), x=\sqrt{s^{2}+t^{2}}$ and $y=e^{s t}$
4. Find the directional derivative of $f(x, y)=\sin (x) \sin (y)$ as leave the point $P=(\pi / 4, \pi / 6)$ heading in the direction of the point $Q=(\pi / 2, \pi / 3)$. Exact simplified answer please.
5. (a) Find all points (x, y) so that both $(x-5)(x+y)=0$ and $(x-3)(y+1)(x-3 y-8)=0$.
(b) Copy and complete the table below

Points	$f_{x x}$	$f_{y y}$	$f_{x y}$	D	classification
$(1,3)$	2	4	3		
$(2,5)$	2	4	-2		
$(5,0)$	-2	3	0		
$(-1,4)$	0	3	1		
$(-2,-2)$	-3	-20	5		

