Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Write (but do NOT evaluate) a double integral in polar coordinates which will give the volume inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=4$. (Sketching is good.)
2. Find the point (or points) on the surface $z^{2}=x y$ closest to the point $(1,2,0)$.
3. Write (but do NOT evaluate) a double integral in polar co-ordinates that will give the area of the region A (below left). Write (but do NOT evaluate) a sum of two double integrals in rectangular co-ordinates that will give the area of the region B (below right).

4. Use Lagrange multipliers to find the minimum and maximum VALUES of $f(x, y)=4 x+9 y$ subject to the constraint $x^{2}+9 y^{2}=25$.
5. Sketch the region of integration and then change the order of integration to evaluate

$$
\int_{0}^{3} \int_{y^{2}}^{9} y \cos \left(x^{2}\right) d x d y
$$

