Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Find the curl \vec{F} and $\operatorname{div} \vec{G}$ for $\vec{F}=\left\langle x y^{2} z, x y z^{3}, x^{4} y z\right\rangle$ and $\vec{G}=\left\langle x y \ln (x y), \ln (x / y), e^{x^{2}+y^{2}+z^{2}}\right\rangle$
2. Compute the line integral below by the using the Fundamental Theorem of Calculus for Line Integrals. The curve C is a complex zig-zag line from $(1,2,-1)$ to $(3,2,1)$

$$
\int_{C}\left\langle 6 x y z, 3 x^{2} z+2 z, 3 x^{2} y+2 y+2 z\right\rangle \cdot d \vec{r}
$$

3. Find the parameteric equations $\vec{r}(u, v)$ with limits like $a \leq u \leq b, c \leq v \leq d$ for the the pieces of cylinders and spheres pictured below.

4. Compute the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, if $\vec{F}=\left\langle x y^{3}, 3 y^{2}\right\rangle$ and C is the straight line segment from $(2,0)$ to $(0,5)$
5. By evaluating both integrals, check Green's theorem

$$
\oint_{\partial D} \vec{F} \cdot d \vec{r}=\iint_{D} Q_{x}-P_{y} d A
$$

when $D=\left\{(x, y): y \geq 0, x^{2}+y^{2} \leq 25\right\}$ is the semi-circular disk in the first two quadrants and $\vec{F}=\left\langle 25-y^{2}, x\right\rangle$. Note that ∂D has two pieces, an arc and part of the x-axes.

