1. Fun with series
(a) Show $1 /(1-x)^{2}=\sum_{n=0}^{\infty}(n+1) x^{n}$ by differentiating the series for $1 /(1-x)$.
(b) Show $1 /(1-x)^{2}=\sum_{n=0}^{\infty}(n+1) x^{n}$ by squaring the series for $1 /(1-x)$.
(c) Show $(1-x)^{-2}=\sum_{n=0}^{\infty}(n+1) x^{n}$ using the binomial series with $p=-2$
2. True or False and a brief reason why or why not.
(a) $2 \cdot 4 \cdot 6 \cdots(2 n)=2^{n} n$!
(b) $1 \cdot 3 \cdot 5 \cdots(2 n-1)=\frac{(2 n)!}{2^{n} n!}$
(c) $\sum_{0}^{\infty} 2^{n} x^{n}=1 /(1-2 x)$
(d) $\sum_{n=3}^{\infty}(n+2)^{2} a_{n} x^{n-2}=\sum_{n=1}^{\infty}(n+4)^{2} a_{n+2} x^{n}$
(e) At $x=1$, the error in using $x-x^{3} / 3$! to approximate $\sin x$ is less than 0.01 .
(f) At $x=-1$, the eror in using $1+x+x^{2} / 2$ to approximate e^{x} is less than $1 / 5$
(g) As a rule of thumb the error in using $\sum_{0}^{N} a_{n} x^{n}$ to approximate $\sum_{0}^{\infty} a_{n} x^{n}$ at $x=x_{1}$ is about $a_{N+1} x_{1}^{N+1}$
(h) $\arctan x=\int d x /\left(1+x^{2}\right)=\int \sum(-1)^{n} x^{2 n} d x=\sum(-1)^{n} x^{2 n+1} /(2 n+1)$.
(i) $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n+1} /(2 n+1)$ has one as its radius of convergence
(j) $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n+1} /(2 n+1)$ converges at both endpoints $(x=1$ and $x=-1)$ in its interval of convergence.
3. Short answers (Characteristics)
(a) Find all r so that $\phi(t)=e^{r t}$ is a solution to $y^{\prime \prime}+8 y^{\prime}+12 y=0$
(b) Find all r so that $\phi(t)=x^{r}$ is a solution to $x^{2} y^{\prime \prime}+8 x y^{\prime}+12 y=0$
(c) Find all r so that $\phi(n)=r^{n}$ is a solution to $a_{n+2}+8 a_{n+1}+12 a_{n}=0$
(d) Show $y^{\prime \prime}+8 y+12 y=0$ can be re-written as the first order system

$$
\binom{y 1^{\prime}}{y 2^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
-12 & -8
\end{array}\right)\binom{y 1}{y 2}
$$

(e) Find all λ so that

$$
\operatorname{det}\left(\begin{array}{cc}
0-\lambda & 1 \\
-12 & -8-\lambda
\end{array}\right)=0
$$

