- 1. Fun with series
 - (a) Show $1/(1-x)^2 = \sum_{n=0}^{\infty} (n+1)x^n$ by differentiating the series for 1/(1-x).
 - (b) Show $1/(1-x)^2 = \sum_{n=0}^{\infty} (n+1)x^n$ by squaring the series for 1/(1-x).
 - (c) Show $(1-x)^{-2} = \sum_{n=0}^{\infty} (n+1)x^n$ using the binomial series with p = -2
- 2. True or False and a brief reason why or why not.
 - (a) $2 \cdot 4 \cdot 6 \cdots (2n) = 2^n n!$
 - (b) $1 \cdot 3 \cdot 5 \cdots (2n-1) = \frac{(2n)!}{2^n n!}$
 - (c) $\sum_{0}^{\infty} 2^{n} x^{n} = 1/(1-2x)$
 - (d) $\sum_{n=3}^{\infty} (n+2)^2 a_n x^{n-2} = \sum_{n=1}^{\infty} (n+4)^2 a_{n+2} x^n$
 - (e) At x = 1, the error in using $x x^3/3!$ to approximate sin x is less than 0.01.
 - (f) At x = -1, the error in using $1 + x + x^2/2$ to approximate e^x is less than 1/5
 - (g) As a rule of thumb the error in using $\sum_{n=0}^{N} a_n x^n$ to approximate $\sum_{n=0}^{\infty} a_n x^n$ at $x = x_1$ is about $a_{N+1} x_1^{N+1}$
 - (h) $\arctan x = \int dx/(1+x^2) = \int \sum (-1)^n x^{2n} dx = \sum (-1)^n x^{2n+1}/(2n+1).$
 - (i) $\sum_{n=0}^{\infty} (-1)^n x^{2n+1}/(2n+1)$ has one as its radius of convergence
 - (j) $\sum_{n=0}^{\infty} (-1)^n x^{2n+1}/(2n+1)$ converges at both endpoints (x = 1 and x = -1) in its interval of convergence.
- 3. Short answers (Characteristics)
 - (a) Find all r so that $\phi(t) = e^{rt}$ is a solution to y'' + 8y' + 12y = 0
 - (b) Find all r so that $\phi(t) = x^r$ is a solution to $x^2y'' + 8xy' + 12y = 0$
 - (c) Find all r so that $\phi(n) = r^n$ is a solution to $a_{n+2} + 8a_{n+1} + 12a_n = 0$
 - (d) Show y'' + 8y + 12y = 0 can be re-written as the first order system

$$\begin{pmatrix} y1'\\ y2' \end{pmatrix} = \begin{pmatrix} 0 & 1\\ -12 & -8 \end{pmatrix} \begin{pmatrix} y1\\ y2 \end{pmatrix}$$

(e) Find all λ so that

$$\det \begin{pmatrix} 0-\lambda & 1\\ -12 & -8-\lambda \end{pmatrix} = 0$$