1. Find the curl and div of \(\mathbf{F} = (xz, xy, yz) \).

2. Find \(f \) so that \(\mathbf{F} = \nabla f \) and use it to find the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \). Here \(\mathbf{F} = (4xe^z, \cos y, 2x^2e^z) \) and \(C \) is a curve from \((0,0,0)\) to \((1,\pi,2)\).

3. Write down and simplify but do NOT evaluate the double integral obtained from using Green’s Theorem to change \(\int_C (y + e^{\sqrt{x}})dx + (3x^2 + \cos y^2)dy \) into a double integral. \(C \) is the boundary of the region enclosed by the parabolas \(y = x^2 \) and \(x = y^2 \).

4. Write down and simplify but do NOT evaluate the surface integral \(\iint_S \mathbf{F} \cdot d\mathbf{S} \). Where \(S \) is the hemisphere \(z = \sqrt{16 - x^2 - y^2} \) with upward normal and \(\mathbf{F} = (-y, x, 3z) \).

5. Let \(f \) be a scalar field and \(\mathbf{F} \) a vector field. State whether each expression is a scalar field, a vector field or meaningless. A. \(\text{curl } f \) B. \(\text{grad } f \) C. \(\text{div } \mathbf{F} \) D. \(\text{curl} (\text{grad } f) \) E. \(\text{grad } \mathbf{F} \) F. \(\text{grad} (\text{div } \mathbf{F}) \) G. \(\text{div} (\text{grad } f) \) H. \(\text{grad} (\text{div } f) \) I. \(\text{curl} (\text{curl } \mathbf{F}) \) J. \(\text{div} (\text{div } \mathbf{F}) \)