Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only.

1. Find the curl and div of $\mathbf{F}=\langle z x, x y, y z\rangle$.
2. Find f so that $\mathbf{F}=\nabla f$ and use it to find the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Here $\mathbf{F}=\left\langle 4 x e^{z}, \cos y, 2 x^{2} e^{z}\right\rangle$ and C is a curve from $(0,0,0)$ to $(1, \pi, 2)$.
3. Write down and simplify but do NOT evaluate the double integral obtained from using Green's Theorem to change $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(3 x^{2}+\cos y^{2}\right) d y$ into a double integral. C is the boundry of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
4. Write down and simplify but do NOT evaluate the quotient of of the two integrals needed to find the z coordinate, \bar{z}, of the center of mass of the volume between $z=y$ and $z=2+x$ over the unit square $0 \leq x, y \leq 1$ if the density is given by $\rho(x, y, z)$.
5. Let f be a scalar field and \mathbf{F} a vector field. State whether each expression is a scalar field, a vector field
or meaningless.
A. curl $f \quad$ B. $\operatorname{grad} f$
C. $\operatorname{div} \mathbf{F}$
D. $\operatorname{curl}(\operatorname{grad} f)$
E. $\operatorname{grad} \mathbf{F}$
F. $\operatorname{grad}(\operatorname{div} \mathbf{F})$
G. $\operatorname{div}(\operatorname{grad} f)$
H. $\operatorname{grad}(\operatorname{div} f)$
I. $\operatorname{curl}(\operatorname{curl} \mathbf{F})$
J. $\operatorname{div}(\operatorname{div} \mathbf{F})$
6. Write down and simplify but do NOT evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$. Where S is the hemisphere $z=\sqrt{16-x^{2}-y^{2}}$ with upward normal and $\mathbf{F}=\langle-y, x, 3 z\rangle$.
7. Evaluate and SIMPLIFY $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} 70 x z \quad d z d x d y$ by changing to cylindrical coordinates.
8. Sketch the region of integration and re-write the integral $\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) \quad d z d y d x$ in the order $d x d y d z$. 9. Use the transformation $x=u^{2}, y=v^{2}$ to find the area of the region R bounded by the curve $\sqrt{x}+\sqrt{y}=1$ and coordinate axes. Explicitly draw R and S, the region in the $u v$ plane that maps to R in the $x y$ plane by this transformation. Clearly label the Jacobian of the transformation.
9. Match the parameteric equations $\mathbf{r}(u, v)=\langle\cos v, \sin v, u\rangle, \mathbf{r}(u, v)=\langle(2+u) \cos 2 v,(2+u) \sin 2 v, v\rangle$, $\mathbf{r}(u, v)=\langle u \cos v, u \sin v, u\rangle$, and $\mathbf{r}(u, v)=\langle\sin u \cos v, \sin u \sin v, \cos u\rangle$ with the Maple plot3d's below. The range is always $u=0 . .2, v=0 . .4$.

