MAC 2313 Calculus 3

Test 3

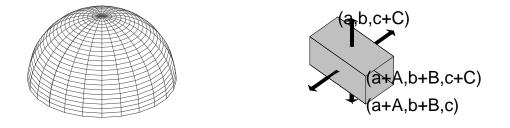
Show **ALL** work for credit; be neat; and use only **ONE** side of each page of paper. Do **NOT** write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Find curl **F** and find div **G**, if the vector field $\mathbf{F} = \langle z - 2y, x - 3z, y - 4x \rangle$ and if the vector field $\mathbf{G} = \langle e^{xy}, z \ln y, xz^2 - zy^2 \rangle$.

2. Find a scalar field f so that $\nabla f = \mathbf{F} = \langle 2x + y + z, x + 2y, x + 2z \rangle$ and use it to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{r}(t)$ is an extremely complex helical spiral that goes from (1, 0, 3) to (2, -1, 5)

3. Let C be the curve $\mathbf{r}(t) = \langle t^2, 2-t \rangle$ for $0 \leq t \leq 1$ and let $\mathbf{F} = \langle -y^2, x \rangle$. Compute the line integral, $\int_C \mathbf{F} \cdot d\mathbf{r}$.

4. Write down triple integrals in each of the cordinate systems spherical, cylinderical and rectangluar will compute the mass of the hemispherical region (below left) given by $x^2 + y^2 + z^2 \le R^2$ and $z \ge 0$ with density function δ . Do **NOT** evaluate. [You can't since δ isn't defined.]



- 5. Compute the flux of the vector field $\mathbf{F} = \langle x, 0, 0 \rangle$ through each of the rectangular regions S in (a)–(d).
 - a. S is a horizontal rectangle with one corner at (a, b, c+C) and the opposite corner at (a+A, b+B, c+C) oriented in the positive z-direction. [Above right top rectangle]
- b. S is a horizontal rectangle with one corner at (a, b, c) and the opposite corner at (a + A, b + B, c) oriented in the negative z-direction. [Above right bottom rectangle]
- c. S is a rectangle parallel to the yz-plane with one corner at (a + A, b, c) and the opposite corner at (a + A, b + B, c + C) oriented in the positive x-direction. [Above right front rectangle]
- d. S is a rectangle parallel to the yz-plane with one corner at (a, b, c) and the opposite corner at (a, b + B, c + C) oriented in the negative x-direction. [Above right rear rectangle]

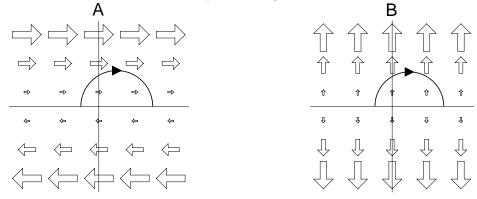
Let V be the rectangular solid given by $a \le x \le a + A$, $b \le y \le b + B$, $c \le z \le c + C$; so V is a box with faces parallel to the usual coordinate planes. Let S be the boundrary of V which is the six faces top, bottom, front, rear, left and right all orientated outward. You have computed the flux across 4 of the faces in (a)–(d) and the other two are 0. The divergence theorem states for a volume V and $S = \partial V$ with outward orientation:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{A} = \iiint_{V} \operatorname{div} \, \mathbf{F} \, dV$$

The flux integral on the left hand side is just the sum of your answers to (a)-(d).

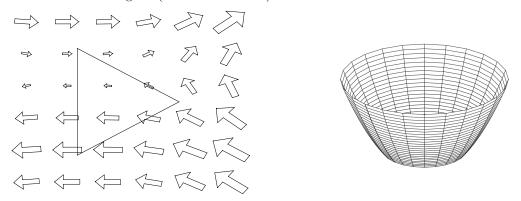
- e. Compute the right hand side of the above equation and hence show the Diverengce theorem is true for this case.
- 6. Sketch the region of integration and change the order of integration of $\int_{1}^{2} \int_{0}^{\ln x} f(x,y) dy dx$

7. Find formula's for the two vector fields below. (There are many possible answers). Decide if the line integrals over the semi-circular curve will be positive, negative or zero for each vector field.



8. By computing both sides show div $(f\mathbf{F}) = \text{grad } f \cdot \mathbf{F} + f \text{ div } \mathbf{F}$. Here f = f(x, y, z) is a scalar function and \mathbf{F} is the vector field $\langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$. [Hint $f\mathbf{F} = \langle fP, fQ, fR \rangle$.]

9. Use Green's theorem to convert the closed line integral $\oint_C \langle -\cos y, \sin^3 x \rangle \cdot d\mathbf{r}$ into a regular double integral if *C* is the counter-clockwise boundrary of the triangle with vertices (0,0), (0,2) and (1,1). Use your TI-89 to evaluate the integral. (Picture below left)



10. Compute the flux integral below by converting the resulting regular double integral into polar coordinates.

$$\iint_{S} \mathbf{G} \cdot d\mathbf{A}$$

Where $\mathbf{G} = \langle xz, yz, 1 \rangle$ and our surface (above right) S is $z = x^2 + y^2$ over the annulus $1 \le x^2 + y^2 \le 4$ oriented upward.