Show ALL work for credit; be neat. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Find the Jacobian and draw the regions R (in $x y$-plane) and T (in the st-plane). The region R is in the $x y$-plane that corresponds to the region $T=\{(s, t) \mid 0 \leq s \leq 3,0 \leq t \leq 2\}$ under the change of variables (transformation) $x=2 s-t, y=s+3 t$. The Jacobian is, of course, the Jacobian of the same change of variables (transformation).
2. Use the given transformation to evaluate $\iint_{R} x y^{2} d A$ where R is the region in the FIRST quadrant bounded by the lines $y=x$ and $y=4 x$ and the hyperbolas $x y=1$ and $x y=3$ and the transformation is $x=s / t, y=t$. Also explicitly draw R and T, the region in the st plane that maps to R in the $x y$ plane by this transformation. Clearly label the Jacobian of the transformation.
