Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Show the limit below does not exit.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}}{x^{2}+y^{2}}
$$

2. Use the Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$ when $z=\ln \left(x^{2}+x y+y^{2}\right), x=v / u$ and $y=u \sqrt{v}$.
3. Fixing Maple errors. Each of the following produced an error or an empty graph, explain how to fix each.
(Assume "with(plots);" has already been done.)
a gradplot ($x^{\wedge} 2+x y+y^{\wedge} 2, x=0 . .2, y=0 . .2$);
b plot3d (exp $(x+y), x:=0 . .1, y=-1.1)$;
c contourplot ($\mathrm{x} * \mathrm{y}, \mathrm{x}=-10.10, \mathrm{y}=-10.10$, contours=1, 4, 9, 25, 36]);
d plot3d ($x * y, x=-1 . .1, y=-1.1$,axes=boxed,title=my graph);
e contourploot (sin(x)*sin(y), $x=0$. .Pi, $y=0$. .Pi);
4. Find the directional derivative of $f(x, y, z)=x^{3} y^{2} z$ as you leave the point $P(-1,2,1)$ heading in the direction of the point $Q(1,0,2)$.
5. The point P is on the contour graph of the function f with a local maximum at M (below left) and the point Q is on the gradplot of the graph of the function g (below right). Let \mathbf{u} be the unit vector $\mathbf{u}=(\mathbf{i}+\mathbf{j}) / \sqrt{2}$ and let \mathbf{v} be the unit vector $\mathbf{v}=(\mathbf{i}-\mathbf{j}) / \sqrt{2}$.

Find the sign (positive, negative or zero) of the partials of $f: f_{x}(P), f_{y}(P), f_{x x}(P), f_{y y}(P)$ and the partials of $g: g_{x}(Q), g_{y}(Q)$ and the four directional derivatives $f_{\mathbf{u}}(P), f_{\mathbf{v}}(P), g_{\mathbf{u}}(Q)$ and $g_{\mathbf{v}}(Q)$.

6. A differentiable function $f(x, y)$ has the property that $f(1,2)=7$ and $\nabla f(1,2)=2 \mathbf{i}-5 \mathbf{j}$.
a. Find the equation of the tangent PLANE to the SURFACE $z=f(x, y)$ at the point $(1,2,7)$.
b. Find the equation of the tangent LINE to the level CURVE of f through the point $(1,2)$.
7. Change the cylinderical coordinate equation $z=r$ into rectangular and spherical coordinates (simplify). Sketch the graph and describe the graph in words.

8. Use Lagrange multipliers to find the minimum and maximum VALUES of $x^{2}-2 x+y^{2}-2 y$ subject to the constraint $x^{2}+y^{2}=2$.
9. Find critical points of the function $f(x, y)=x^{3}+3 x y^{2}-12 x$. Classify these local extrema by filling out a table like the one below, with a separate line for each critical point. [Hint: Use your TI-89 to check that you got the correct collection of critical points.]

(x, y)	$f_{x x}$	$f_{y y}$	$f_{x y}$	big D	Classification
$?$	$?$	$?$	$?$	$?$	$?$

10. Find the coordinates of the POINT closest to the point $P(1,1,0)$ which is both on the surface $z^{2}=x^{2}+y^{2}$ AND is in the first octant.
