Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Find curl \mathbf{F} and find $\operatorname{div} \mathbf{G}$, if the vector field $\mathbf{F}=\langle 3 x+2 y, 3 x+z, 2 y+z\rangle$ and if the vector field $\mathbf{G}=\left\langle\ln (x / y), \ln (x / y), e^{-2 z}\right\rangle$.
2. Vector, scalar or nonsense. $f=f(x, y, z)$ and $g=g(x, y, z)$ are scalar fields and $\mathbf{F}=\mathbf{F}(x, y, z)$ and $\mathbf{G}=\mathbf{G}(x, y, z)$ are vector fields. Determine if the given object is a scalar field, a vector field or nonsense.
A. $\operatorname{div} \mathbf{F}$
B. $\operatorname{div} f$
C. curl \mathbf{F}
D. curl $f \quad$ E. F • f (the dot product)
F. $(\operatorname{grad} f) \cdot \mathbf{G}$
G. $(\operatorname{curl} \mathbf{F}) \times \mathbf{G}$
H. $f g$
I. $\partial f / \partial x$
J. $f \cdot g$ (the dot product).
3. Write down a triple integral which will give volume of the the region under the surface $z=1+x+y^{2}$ above the triangle $T=\{(x, y): 0 \leq y \leq 1,0 \leq x \leq y\}$ in the $x y$-plane. Do NOT evaluate.
4. Sketch the region of integration and reverse the order of integration for

$$
\int_{0}^{2} \int_{x^{2}}^{2 x} d y d x
$$

[You do NOT have to evaluate the integrals, but using the TI-89 to evaluate both integrals would be a way of checking your answer.]
5. The vector field $\mathbf{F}=\langle 5,2,3\rangle$ compute the flux of \mathbf{F} over each of the surfaces S described below without evaluation any integrals. When there is a choice of normal, pick the normal whose dot product with \mathbf{F} is positive.
A. S is the rectangle $\{(0, y, z), 1 \leq y \leq 3,0.5 \leq z \leq 1\}$.
B. S is a circle in the $x z$-plane with radius 5 .
C. S is a pentagon of area P with normal in the direction of $\langle 5,-5,-5\rangle$
6. Use a theorem to show that if V is a 3D region in space with outward oriented boundry given by S then

$$
\iint_{S}\langle x, y, z\rangle \cdot d \mathbf{A}=3 \text { Volume }(V)
$$

7. Read this problem carefully. You are to sketch both of the vector fields and both the curves and explain the answers below but NOT by computing the line integrals. The two vector fields, let $\mathbf{F}=\langle x, 0\rangle$ and let $\mathbf{G}=\langle 0, x\rangle$. The two curves, let C_{1} be the straight line from $(1,1)$ to $(3,1)$ and let C_{2} be the circle or radius $2 / \sqrt{\pi}$ centered at $(1,1)$ oriented counterclockwise. The following integrals were all be computed without integrating a single line integral, either by the fundemental theorem of calculus for line integrals, or by geometry, or by Green's theorem. Explain how each integral below was obtained without doing a single line integral. [Hint: start by checking if \mathbf{F} or \mathbf{G} is a gradient vector field.]
(A) $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=4$
(B) $\int_{C_{1}} \mathbf{G} \cdot d \mathbf{r}=0$
(C) $\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=0$
(D) $\oint_{C_{2}} \mathbf{G} \cdot d \mathbf{r}=4$
8. Sketch the region and rewrite the cylindrical triple integeral below in both spherical and rectangular coordinates, do NOT evaluate. (Here $\delta=\delta(x, y, z)=\delta(z, r, \theta)=\delta(\rho, \phi, \theta)$ is some density function.)

$$
\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{r \sqrt{3}} \delta r d z d r d \theta
$$

[Hint: Draw both the 2D area in the $x y$-plane the 3D region "lives" over, and a $2 \mathrm{D} z$ vs r plot.]
There is more test on the other side.
9. Use Stokes theorem to evaluate the line integral by doing the flux integral

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{A}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}
$$

for $\mathbf{F}=\langle y, z, x\rangle$ and S is the portion of the plane $z=f(x . y)=2 x+3 y+7$ over the the circle $x^{2}+y^{2} \leq 4$ oriented upward. [Warning, note that S is not a circular disc, it is elliptically shaped.]
[You DON'T have to do the line integral directly.]

10. Let C be the ellipse given by $\mathbf{r}(t)=\langle\cos t, 2 \sin t\rangle$ in the plane for $0 \leq t \leq 2 \pi$ and let $\mathbf{F}=\langle y, 0\rangle$ (above right). Carefully write and simplify the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ til it is a simple (non-vector) integral in the parameter t and evaluate. Then use Green's Theorem to rewrite the line integral as a double integral over the region D of points where $x^{2}+y^{2} / 4 \leq 1$. Use your TI- 89 to evaluate the outer of the iterated integrals. [The inner iterated integral is easy.]

