Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Let $P(-2,2,0), Q(1,3,-1)$ and $R(-4,2,1)$. Find the equation of the plane S throught the points P, Q and R and the area of the triangle $\triangle P Q R$.
We have $\overrightarrow{P Q}=\langle 3,1,-1\rangle$ and $\overrightarrow{P R}=\langle-2,0,1\rangle$ so $\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 3 & 1 & -1 \\ -2 & 0 & 1\end{array}\right|=\langle 1,-1,2\rangle$.
Check: $\overrightarrow{P Q} \cdot \vec{n}=3-1-2=0 \checkmark$
Check: $\overrightarrow{P R} \cdot \vec{n}=-2+0+2=0 \checkmark$
The equation is $x-y+2 z=1(-2)-1(2)+2(0)=-4$.
Check $Q: 1(1)-1(3)+2(-1)=1-3-2=-4 \checkmark$
Check $R: 1(-4)-1(2)+2(1)=-4-2+2=-4 \checkmark$
The area of the $\triangle P Q R=\frac{1}{2}\|\vec{n}\|=\frac{1}{2} \sqrt{1+1+4}=\sqrt{6} / 2$.
2. Find the center and radius of the sphere S given by the equation $x^{2}+y^{2}+z^{2}-4 x+6 y-2 z=2$. The graph of S intersects the $x z$-plane in a circle, what is its equation, its center and its radius.

$$
\begin{gathered}
\left(x^{2}-4 x+4\right)+\left(y^{2}+6 y+9\right)+\left(z^{2}-2 z+1\right)=2+4+9+1 \\
(x-2)^{2}+(y+3)^{2}+(z-1)^{2}=4^{2}
\end{gathered}
$$

So the radius is 4 and the center is $(2,-3,1)$.
The $x z$-plane is $y=0$ so the equation becomes

$$
\begin{gathered}
(x-2)^{2}+(0+3)^{2}+(z-1)^{2}=4^{2} \\
(x-2)^{2}+(z-1)^{2}=\sqrt{7}^{2}
\end{gathered}
$$

This circle has center $(2,0,1)$ and radius $\sqrt{7}$
3. A particle moving with speed S hits a barrier at an angle of $\pi / 3$ and bounces off at at an angle of $\pi / 3$ in the opposite direction with the speed reduced by 20 percent. (See the figure below). Find the velocity vectors of the object both before and after impact.

Before $=S\langle 1 / 2,-\sqrt{3} / 2\rangle$ and after $=S\langle 2 / 5,2 \sqrt{3} / 5\rangle$.
4. Using vector operations write $\vec{a}=\langle-3,2,5\rangle$ as the sum of two vectors $\vec{w}+\vec{v}$, where \vec{w} is parallel to \vec{b} and \vec{v} is perpendicular to \vec{b}, when $\vec{b}=\langle-1,0,2\rangle$.
Start with the unit vector in the \vec{b} direction $\vec{u}=\langle-1 / \sqrt{5}, 0,2 / \sqrt{5}\rangle \vec{a} \cdot \vec{u}=3 / \sqrt{5}+0+10 / \sqrt{5}=13 / \sqrt{5}$ and hence $\vec{w}=(13 / \sqrt{5}) \vec{u}=\langle-13 / 5,0,26 / 5\rangle$. Vector $\vec{v}=\vec{a}-\vec{w}=\langle-2 / 5,2,-1 / 5\rangle$
Check $\vec{v} \cdot \vec{b}=2 / 5+0-2 / 5=0 \checkmark$.
5. Find parametric equations of the line of intersection of the two planes $x-y-z=1$ and $11 x+5 y-5 z=20$.

Let $x=0$ and solve $-y-z=1$ and $5 y-5 z=20$ to get $P(0,3 / 2,-5 / 2)$.
Let $y=0$ and solve $x-z=1$ and $11 x-5 z=20$ to get $Q(5 / 2,0,3 / 2)$.
Check $P: 0-3 / 2+5 / 2=1$ and $0+15 / 2+25 / 2=20 \checkmark$.
Check $Q: 5 / 2+0-3 / 2=1$ and $55 / 2+0-15 / 2=20 \checkmark$.
So $\overrightarrow{P Q}=\langle 5 / 2,-3 / 2,4\rangle$ and we can use $\langle 5,-3,8\rangle$ as the velocity vector. Thus we get $x=5 t, y=$ $3 / 2-3 t, z=-5 / 2+8 t$ for the parametric equations.

