Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Show the limit below does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{3}+y^{3}}
$$

2. Consider the equation $x^{2}+4 y^{2}-z^{2}=1$ and its graph.
(a) Identify the graph by name.
(b) Which of the three x-axis, y-axis or z-axis does not intersect the graph?
(c) Carefully do a 2D plot of the $z=0$ contour of this equation (in the $x y$-plane).
(d) Carefully do a 2 D plot of the $y=0$ section of this equation (in the $x z$-plane).
(e) Carefully do a 2D plot of the $z=\sqrt{3}$ contour of this equation (in the $x y$-plane).
3. A particle moves at a constant speed along a line from the point $P=(1,-1,2)$ to the point $Q=(5,3,0)$. Find the parametric equation of the line if
(a) It takes five seconds to go from P to Q.
(b) The speed of the particle is 5 units per second.
4. Consider the following equations in polar coordinates.
(I) $r=2$ (II) $r=2 \sec \theta$ (III) $r=2 \sin \theta$ (IV) $r=2 \csc \theta$ and (V) $r=\tan \theta \sec \theta$.

Match the equations above with five of the equations in rectangular coordinates below.
(A) $y=2$
(B) $x^{2}=y$
(C) $x^{2}-2 x+y^{2}=0$
(D) $x^{2}+y^{2}=2$
(E) $x^{2}+y^{2}=4$
(F) $y^{2}=x$
(G) $x=2$
(H) $x^{2}-2 y+y^{2}=0$
5. Consider the parametric equation $\vec{r}(t)=\langle t \cos t, t \sin t, t\rangle$ whose graph is pictured below.
(a) Compute the velocity (by hand).
(b) Compute and simplify the speed (by hand). [All the trig functions will convenietly disappear.]
(c) Use the TI-89 to find the exact arclength of the curve from $t=0$ to $t=1$.
(d) Find parametric equations of the tangent line to the curve at $t=1$.
(e) Show each point of our curve is on the cone $x^{2}+y^{2}=z^{2}$.

