Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Show the limit below does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{3}+y^{3}}
$$

Along $y=0$ the function and the limit is 0 , along $y=x$ the function and limit are $1 / 2$. Since $0 \neq 1 / 2$ the limit does not exist.
2. Consider the equation $x^{2}+4 y^{2}-z^{2}=1$ and its graph.
(a) Identify the graph by name.
(b) Which of the three x-axis, y-axis or z-axis does not intersect the graph?
(c) Carefully do a 2D plot of the $z=0$ contour of this equation (in the $x y$-plane).
(d) Carefully do a 2D plot of the $y=0$ section of this equation (in the $x z$-plane).
(e) Carefully do a 2D plot of the $z=\sqrt{3}$ contour of this equation (in the $x y$-plane).

It is a hyperboloid of one sheet. Setting $x=y=0$ yields $-z^{2}=1$ so the graph misses the z-axis. The $z=0$ contour is an ellispe through $(\pm 1,0)$ and $\left(0, \pm \frac{1}{2}\right)$. The $z=\sqrt{3}$ contour is an ellispe $(\pm 2,0)$ and $(0, \pm 1)$. The $y=0$ section is a hyperbola with vertices at $x= \pm 1$ and missing the z-axis.
3. A particle moves at a constant speed along a line from the point $P=(1,-1,2)$ to the point $Q=(5,3,0)$. Find the parametric equation of the line if
(a) It takes five seconds to go from P to Q.
(b) The speed of the particle is 5 units per second.

The vector $\overrightarrow{P Q}=\langle 4,4,-2\rangle$ has length six.
The answer to (a) $x=1+\frac{4}{5} t, y=-1+\frac{4}{5} t, z=2-\frac{2}{5} t \quad 0 \leq t \leq 5$
The answer to (b) $x=1+\frac{10}{3} t, y=-1+\frac{10}{3} t, z=2-\frac{5}{3} t \quad 0 \leq t \leq \frac{6}{5}$
4. Consider the following equations in polar coordinates.
(I) $r=2$ (II) $r=2 \sec \theta$ (III) $r=2 \sin \theta$ (IV) $r=2 \csc \theta$ and (V) $r=\tan \theta \sec \theta$.

Match the equations above with five of the equations in rectangular coordinates below.
(A) $y=2$
(B) $x^{2}=y$
(C) $x^{2}-2 x+y^{2}=0$
(D) $x^{2}+y^{2}=2$
(E) $x^{2}+y^{2}=4$
(F) $y^{2}=x$
(G) $x=2$
(H) $x^{2}-2 y+y^{2}=0$
(I) is $r^{2}=2^{2}$ or $x^{2}+y^{2}=4$ which is (E)
(II) is $r=2 / \cos \theta$ or $x=2$ which is (G)
(III) is $r^{2}=2 r \sin \theta$ or $x^{2}+y^{2}=2 y$ which is (H)
(IV) is $r=2 / \sin \theta$ or $y=2$ which is (A)
(V) is $r=\sin \theta / \cos ^{2} \theta$ or $r^{2} \cos ^{2} \theta=r \sin \theta$ or $x^{2}=y$ which is (B)
5. Consider the parametric equation $\vec{r}(t)=\langle t \cos t, t \sin t, t\rangle$ whose graph is pictured below.
(a) Compute the velocity (by hand).
(b) Compute and simplify the speed (by hand). [All the trig functions will convenietly disappear.]
(c) Use the TI-89 to find the exact arclength of the curve from $t=0$ to $t=1$.
(d) Find parametric equations of the tangent line to the curve at $t=1$.
(e) Show each point of our curve is on the cone $x^{2}+y^{2}=z^{2}$.

Velocity is $\vec{v}(t)=\langle\cos t-t \sin t, \sin t+t \cos t, 1\rangle$. When computing the speed the middle terms of $(\cos t-t \sin t)^{2}$ and $(\sin t+t \cos t)^{2}$ cancel and using our favorite trig identity yields the speed at time t is $\sqrt{2+t^{2}}$. So the arclength is

$$
\int_{0}^{1} \sqrt{2+t^{2}} d t=\frac{\ln (\sqrt{3}+2)}{2}+\frac{\sqrt{3}}{2}
$$

courtesy of the TI-89. At $t=1$ the curve is at $(\cos (1), \sin (1), 1)$ and has velocity $\langle\cos (1)-\sin (1), \sin (1)+\cos (1), 1\rangle$ so the parametric equations are $x=\cos (1)+(\cos (1)-\sin (1)) t, \quad y=\sin (1)+(\sin (1)+\cos (1)) t, \quad z=$ $1+t$. To see each point is on the cone we plug in for x, y and z.
Is $(t \cos (t))^{2}+(t \sin (t))^{2}=t^{2}$?
Is $t^{2}\left(\cos ^{2} t+\sin ^{2} t\right)^{2}=t^{2}$?
Is $t^{2}=t^{2}$? Yes

