Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Find the equation of the tangent plane to $F(x, y, z)=0$ at the point $(9,5,7)$ where the function $F(x, y, z)$ is given by $x^{3}+3 y^{2}+x z-867$.
Gradient is $\left\langle 3 x^{2}+z, 6 y, x\right\rangle$ which at $(9,5,7)$ is $\langle 250,30,9\rangle$ so the equation is $250(x-9)+30(y-5)+$ $9(z-7)=0$.
2. Use the chain rule (as shown in class) to find $\partial z / \partial u$ and $\partial z / \partial v$ when
$z=(x+y) \ln (x y), x=\sin (u v)$ and $y=\sqrt{u / v}$.

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\left(1+\frac{y}{x}+\ln (x y)\right)(v \cos (u v))+\left(1+\frac{x}{y}+\ln (x y)\right)\left(\frac{1}{2 \sqrt{u v}}\right) \\
& \frac{\partial z}{\partial v}=\left(1+\frac{y}{x}+\ln (x y)\right)(u \cos (u v))+\left(1+\frac{x}{y}+\ln (x y)\right)\left(\frac{-\sqrt{u}}{2 v \sqrt{v}}\right)
\end{aligned}
$$

3. Use the pictures below to determine if the various derivatives are positive, negative or zero. The unit vector \vec{u} is given by $\langle-1 / \sqrt{2},-1 / \sqrt{2}\rangle$.
(a) Use the graph (below left) to determine $f_{x}(P), f_{y}(P), f_{x x}(P), f_{y y}(P)$ and $f_{\vec{u}}(P)$.
(b) Use the graph (below right) to determine $g_{x}(Q), g_{y}(Q), g_{x x}(Q), g_{y y}(Q)$ and $g_{\vec{u}}(Q)$.

Answers: f_{x} and $f_{x x}$ are zero, $f_{y}, f_{y y}, g_{y}$ and $g_{y y}$ are negative and the rest are positive.
4. The values of various derivatives of f at the point $(e, 1)$ have been found to be: $f(e, 1)=5, f_{x}(e, 1)=e^{-1}, f_{y}(e, 1)=e, f_{x x}(e, 1)=1+e, f_{x y}(e, 1)=1+e^{-1}$ and $f_{y y}(e, 1)=1-e$.
(a) Find $Q(x, y)$, the quadratic Taylor polynomial for f at the point $(e, 1)$.
$f(x, y) \approx 5+e^{-1}(x-e)+e(y-1)+\left((1+e)(x-e)^{2}+2\left(1+e^{-1}\right)(x-e)(y-1)+(1-e)(y-1)^{2}\right) / 2$
(b) Find parametric equations of the normal line to the surface of $z=f(x, y)$ at the point $(e, 1)$.
$x=e+e^{-1} t \quad y=1+e t \quad z=5-t$
(c) Find a direction \vec{u} (unit vector) so that $f_{\vec{u}}(e, 1)=0$.
$\pm\left\langle e^{2} / \sqrt{e^{4}+1},-1 / \sqrt{e^{4}+1}\right\rangle$
5. The relative density of the earth (centered at the origin with radius 1) is given by $\sqrt{1-\sqrt{x^{2}+y^{2}+z^{2}}}$. Find the directional derivative as you leave $P(5 / 26,12 / 26,0)$ heading away from the center of the earth. Do your derivatives by hand and simplify your exact answer. Use the calculator to check.
The unit vector $\vec{u}=\langle 5 / 13,12 / 13,0\rangle$. At the point P, the value of $x^{2}+y^{2}+z^{2}=1 / 4$. The partial derivative with respect to x is $\frac{1}{2}\left(1-\sqrt{x^{2}+y^{2}+z^{2}}\right)^{-\frac{1}{2}}\left(-\frac{1}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} 2 x$ so the gradient at P is $\langle-5 \sqrt{2} / 26,-12 \sqrt{2} / 26,0\rangle$ so the directional derivative is $-1 / \sqrt{2}$.

