Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Sketch the region of integration and then change the order of integration of

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} f(x, y) d x d y
$$

2. Let $A(0,0), B(5,0)$ and $C(3,4)$. Find the coordinates of the point P in the $x y$-plane so the sum of the distance squares $\|\overrightarrow{P A}\|^{2}+\|\overrightarrow{P B}\|^{2}+\|\overrightarrow{P C}\|^{2}$ is minimum.
3. The regions pictured below are inside the unit circle, decide if the following double integrals are positive, negative or zero.
$A=\iint_{D} x^{2}+y^{2} d A$
$B=\iint_{T} 5 y d A$
$C=\iint_{T} 5 x d A \quad D=\iint_{R} 5 x d A \quad E=\iint_{Q} 0 d A$
$F=\iint_{T}-\sin (x) d A$
$G=\iint_{T}-\cos (x) d A$
$H=\iint_{T} y^{3}-y d A \quad I=\iint_{R} y^{3}-y d A \quad J=\iint_{R} x+y^{2} d A$

4. Use your TI-89 to find all the critical points of the function $f(x, y)=8 y^{3}+12 x^{2}-24 x y$, then show how you would obtain these critical points by hand. Classify these local extrema by filling out a table like the one below, with a separate line for each critical point.

(x, y)	$f_{x x}$	$f_{y y}$	$f_{x y}$	big D	Classification
$?$	$?$	$?$	$?$	$?$	$?$

5. Use Lagrange multipliers to find the maximum and minimum VALUES of $f(x, y)=x^{2}-y$ subject to the constraint that $x^{2}+y^{2}=4$.
