Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Sketch the region of integration and then change the order of integration of

$$
\begin{aligned}
& \int_{0}^{1} \int_{\sqrt{y}}^{1} f(x, y) d x d y \\
& \int_{0}^{1} \int_{0}^{x^{2}} f(x, y) d y d x
\end{aligned}
$$

2. Let $A(0,0), B(5,0)$ and $C(3,4)$. Find the coordinates of the point P in the $x y$-plane so the sum of the distance squares $\|\overrightarrow{P A}\|^{2}+\|\overrightarrow{P B}\|^{2}+\|\overrightarrow{P C}\|^{2}$ is minimum.
The function to minimize is $f(x, y)=(x-0)^{2}+(y-0)^{2}+(x-5)^{2}+(y-0)^{2}+(x-3)^{2}+(y-4)^{2}$. There is a global minimum, which has to be a local minimum, which has to occur at a critical point. Looking $f_{x}=2 x+2(x-5)+2(x-3)=0$ when $3 x-8=0$ and $f_{y}=2 y+2 y+2(y-4)=0$ when $3 y-4=0$ so the only critical is at $(8 / 3,4 / 3)$ which must be the cordinates of P.
3. The regions pictured below are inside the unit circle, decide if the following double integrals are positive, negative or zero.

4. Use your TI-89 to find all the critical points of the function $f(x, y)=8 y^{3}+12 x^{2}-24 x y$, then show how you would obtain these critical points by hand. Classify these local extrema by filling out a table like the one below, with a separate line for each critical point.

(x, y)	$f_{x x}$	$f_{y y}$	$f_{x y}$	big D	Classification
$?$	$?$	$?$	$?$	$?$	$?$

The calculator gives two critical points. By hand we find $f_{x}=24 x-24 y$ and $f_{y}=24 y^{2}-24 x$. Setting $f_{x}=0$ yields $y=x$ and plugging into $f_{y}=0$ yields $y^{2}-y=y(y-1)=0$, so we have critical points at $(0,0)$ and $(1,1)$. We need $f_{x x}=24, f_{y y}=48 y$, and $f_{x y}=-24$. The table becomes

(x, y)	$f_{x x}$	$f_{y y}$	$f_{x y}$	big D	Classification
$(0,0)$	24	0	-24	-576	Saddle
$(1,1)$	24	48	-24	576	Local Minimum

5. Use Lagrange multipliers to find the maximum and minimum VALUES of $f(x, y)=x^{2}-y$ subject to the constraint that $x^{2}+y^{2}=4$.
Let $F(x, y, \lambda)=x^{2}-y-\lambda\left(x^{2}+y^{2}-4\right) . F_{x}=2 x-2 \lambda x, F_{y}=-1-2 \lambda y$, and $F_{\lambda}=-\left(x^{2}+y^{2}-4\right)$. Setting $F_{x}=0$ yields $x(1-\lambda)=0$ so $x=0$ or $\lambda=1$. Setting $F_{y}=0$ yields $y=-1 /(2 \lambda)$. Keying off $F_{x}=0$ if $x=0$, then plugging in $x^{2}+y^{2}=4$ yields $y= \pm 2$ and two points to check. On the other hand if $\lambda=1$, then the f_{y} equation says $y=-1 / 2$. Plugging this y into the constrain yields $x= \pm \sqrt{15} / 2$. Checking values:
$f(0,2)=-2$
$f(0,-2)=2$
$f(\sqrt{15} / 2,-1 / 2)=17 / 4$
$f(-\sqrt{15} / 2,-1 / 2)=17 / 4$
so $17 / 4$ is the maximum value and -2 is the minimum value.
