Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Compute div $\langle x \ln (x+y), x \ln (x y), \ln (x / z)\rangle$ and curl $\left\langle x y z, x^{2} y^{2} z^{2}, 0\right\rangle$

Write $x \ln x y$ as $x \ln x+x \ln y$ and $\ln (x / z)$ as $\ln x-\ln z$, so the div becomes $\ln (x+y)+\frac{x}{x+y}+\frac{x}{y}-\frac{1}{z}$. The curl is $\left\langle-2 x^{2} y^{2} z, x y, 2 x y^{2} z^{2}-x z\right\rangle$.
2. Let C be the line from $(0,1,0)$ to $(5,1,-1)$ and let $\vec{F}=\left\langle z, z^{2}+3 y^{2}, x+2 y z+2 z\right\rangle$ compute the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ two ways. First do it directly, and secondly do it using the fundamental theorem of line integrals.
Directly $\vec{r}=\langle 5 t, 1,-t\rangle$ for $0 \leq t \leq 1$. So $\int_{C} \vec{F} \cdot d \vec{r}=\int_{t=0}^{1}\left\langle-t, t^{2}+3,5 t-2 t-2 t\right\rangle \cdot\langle 5,0,-1\rangle d t=$ $\int_{0}^{1}-5 t-t d t=-3$
Indirectly, $f=x z+y z^{2}+y^{3}+z^{2}$ and $f(5,1,-1)-f(0,1,0)=(-5+1+1+1)-(1)=-3$
3. Are the following statements true or false?
(a) The curl \vec{F} is a scalar field. - False
(b) The $\operatorname{div} \vec{F}$ is a scalar field. - True
(c) The $\nabla \vec{F}$ is a vector field. - False
(d) A vector field \vec{F} is a gradient vector field if its diverence is zero. - False
(e) $\int_{C} \vec{F} \cdot d \vec{r}=\vec{F}(Q)-\vec{F}(P)$ where P and Q are the endpoints of C. - False
(f) If \vec{F} is path independent, then $\oint_{C} \vec{F} \cdot d \vec{r}=0$ for any closed curve C. - True
(g) If $\vec{F}=\langle-y, x\rangle$ and C is a closed curve oriented counterclockwise which is ∂D for some region D in the plane, then $\oint_{C} \vec{F} \cdot d \vec{r}=2 \operatorname{area}(D)$. - True
(h) The vector field $\vec{F}=\vec{r}$ in 3 -space is path independent. - True
(i) If S_{1} is a rectangle with area 1 and S_{2} is a rectangle with area 2 , then $2 \iint_{S_{1}} \vec{F} \cdot d \vec{A}=\iint_{S_{2}} \vec{F} \cdot d \vec{A}$. - False
(j) If $\vec{F}=2 \vec{G}$, then $\iint_{S} \vec{F} \cdot d \vec{A}=2 \iint_{S} \vec{G} \cdot d \vec{A}$. - True
4. Compute the flux integral of $\vec{F}=\langle x, y, z\rangle$ over the surface S (below) which is the portion of $z=$ $f(x, y)=10+x^{2}+y$ over the circle of radius 5 centered at the origin and is oriented upward.

We have $d \vec{A}=\langle-2 x,-1,1\rangle \vec{F}(S)=\left\langle x, y, 10+x^{2}+y\right\rangle$ so flux $=\iint_{\operatorname{disk}}-2 x^{2}-y+10+x^{2}+y d A$ $=\int_{0}^{2 \pi} \int_{0}^{5}\left(10-r^{2} \cos ^{2} \theta\right) r d r d \theta=\int_{0}^{2 \pi} 125-625 \cos ^{2} \theta / 4 d \theta=250 \pi-625 \pi / 4=375 \pi / 4$
5. Check Gauss's Theorem by computing both integrals below. Let H be the the half of the ball of radius 2 where $z \geq 0$ and let $S=\partial H$ be the outward-oriented surface which is the union of a hemisphere T on top and a flat disk B on bottom. Use the vector field $\vec{F}=\langle 0,0,1+z\rangle$.

$$
\iiint_{H} \operatorname{div} \vec{F} d V=\iint_{S} \vec{F} \cdot d \vec{A}
$$

LHS: div is 1 so the triple integral on the left is the volume of H or $\frac{2}{3} \pi 2^{3}=16 \pi / 3$. RHS: On B, the normal is $-\vec{k}$, and dot product of \vec{F} with the normal is the constant -1 . The area of the disk is $\pi 2^{2}$ so the flux is -4π. There are several ways to compute the flux over T, using spherical formula yields

$$
\begin{gathered}
\int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi / 2}\langle 0,0,1+2 \cos \phi\rangle \cdot\langle\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi\rangle 2^{2} \sin \phi d \phi d \theta \\
\int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi / 2} 4 \cos \phi \sin \phi+8 \cos ^{2} \phi \sin \phi d \phi d \theta=\left.2 \pi\left(-2 \cos ^{2} \phi-\frac{8}{3} \cos ^{3} \phi\right)\right|_{\phi=0} ^{\pi / 2}=28 \pi / 3
\end{gathered}
$$

And $\frac{16}{3} \pi=-\frac{12}{3} \pi+\frac{28}{3} \pi$

