Practice Mini-Test 1 - Calculus 3 - Spring 04

1. Q3 F03 Plot the points $P(3,5,-1)$ and $Q(-3,3,5)$ on a 3 D graph (whose axeses are in the usual positions). Draw the vector $\overrightarrow{P Q}$ on the graph and write $\overrightarrow{P Q}$ in the $\langle ?, ?, ?\rangle$ notation.
2. T1\#4 S02 Find the center and radius of the sphere S given by the equation $x^{2}+y^{2}+z^{2}+2 x+8 y-4 z=$ 28. The graph of S intersects the $x z$-plane in a circle, what is its equation, its center and its radius. [compare T1\#1 F03]
3. T1\#1 S03 Find the equation of the plane parallel to the plane $3 x-4 y-6 z=21$ and passing through the point $(-3,1,2)$ and find the distance between the two parallel planes. [compare T1\#1 F02]
4. T1\#2 F03 Find the equation of the plane through the points $(2,1,-2),(3,-1,2)$ and $(4,0,1)$. [compare T1\#2 S03, T1\#2 F02]
5. T1\#3 F03 Let $P(3,-2,2)$ and $\vec{v}=\langle 3,-1,5\rangle$, find:
(a) The equation of the line through P in the direction of \vec{v}
(b) The coordinates of the point where the line in (a) intersects the $x z$-plane.
(c) The equation of the plane perpendicular to \vec{v} through P.
(d) The coordinates of the point where the y-axis intersects the plane in (c).
6. T1\#6 F03 A treasure map reads start at the big X, walk 40 paces north, 20 paces northwest and dig a hole 10 paces deep. Write the vector \vec{v} that goes from the big X to the bottom of the hole and find the exact simplified value of the length squared $\|\vec{v}\|^{2}$. (The x-axis points East, the y-axis points North, and the z-axis points up.) [compare T1\#3 S02, T1\#6 F02]
7. T1\#8 F03 Using vector operations write $\vec{a}=\langle 2,-1,5\rangle$ as the sum of two vectors, one parallel (say \vec{v}), and one perpendicular (say \vec{w}) to $\vec{b}=\langle-4,4,2\rangle$. [compare T1\#8 S03, T1\#8 F02]
8. T1\#6 S03 Determine if the lines L_{1} and L_{2} are parallel, skew or intersecting. If they intersect, find the point of intersection.
$L_{1}: \quad x=2+t, y=2-t, z=5+3 t$
$L_{2}: \quad x=1-s, y=1+2 s, z=-6+s$ [compare T1\#4 F02]
9. T1\#7 S03 Find the parametric equation of the line through the points $P(3,2,8)$ and $Q(4,4,-4)$ and find the two points where it it intersects the elliptical paraboloid $z=x^{2}+y^{2}$. [compare T1\#10 S02]
10. T1\#9 F03 Find parametric equations of the line of intesection of the two planes $x+2 y+2 z=3$ and $3 x+2 y-2 z=9$.
11. T1\#3 S02 For the given vector, write it as an expression in terms of the vectors \vec{a} and \vec{b} suggested by the picture below.
(a) \vec{x}
(b) \vec{w}
(c) \vec{y}

