Practice Mini-Test 2 - Calculus 3 - Spring 04

1. [Intersections of parametric curves with surfaces (last mini-test did straight lines) and the intersection of two parametric curves (homework and last mini-test did straight lines).] Find the points where the helix $\vec{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$ intersects the sphere $x^{2}+y^{2}+z^{2}=5^{2}$. [compare PMT1 \#8 S04]
2. T2\#1 S03 Show the limit below does not exit.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}}{x^{2}+y^{2}}
$$

3. T1\#5 S03 Match the plot3ds to the contourplots. Each contourplot plots the four contours $z=1,2,3$ and 4 and each 3 d plot is over the disk $x^{2}+y^{2} \leq 25$.

[Compare T1\#4 F03 T1\#3 F02]
4. T1\#5 F03 Make sure your TI-89 is in radian mode and use it to do parts (a) \& (b) but you must do (c) and (d) by hand.
(a) Find the exact answer to $\int \sin ^{4} t \cos ^{3} t d t$.
(b) Plot the curve $\vec{r}(t)=\left\langle\cos ^{4} t, \sin ^{4} t\right\rangle$ for $0 \leq t \leq \pi / 2$
(c) Find the velocity $\vec{v}(t)$ of the curve in (b).
(d) Find the acceleration $\vec{a}(t)$ of the curve in (b). and acceleration. [Compare T1\#9 S03 T1\#7 F02]
5. T1\#7 F03 Polar coordinates.
(a) Convert the polar equation $r=2 \cos \theta+4 \sin \theta$ to rectangular (Cartesian) coordinates and COMPLETELY identify the curve and sketch it.
(b) Convert $1=x^{2} y+y^{3}$ to polar coordinates, and solve for r. Simplify. [hint: the answer is some trig function to some power.]
6. T1\#10 F02 Plot the contour lines for the equation $x^{2}+(y-z)^{2}=4$ for the z values $z=0,1,2$, and 3. Label your contours with the z values. [Since the equation is not a function $z=f(x, y)$, it is ok for the contours to intersect.] On a separate graph give a 3D sketch of the surface and describe the graph in words.
7. T1\#10 S03 Catalog of functions. For questions below list all of equations (a)-(b) (see below) that satisfy the given condition, if there are none that satisfy condition then say "none". [Hint: Sometimes it is easier to say all but "these", then to list the ones that do.]
(a) Which are hyperboloids?
(b) Which are cylinders?
(c) Which contain the origin?
(d) Which are unbounded?
(e) Which intersect the y-axis?

The list of equations: (Same as the list on the homework problem T1\#10 S00)
(a) $x^{2}+4 y^{2}+9 z^{2}=1$
(b) $9 x^{2}+4 y^{2}+z^{2}=1$
(c) $x^{2}-y^{2}+z^{2}=1$
(d) $-x^{2}+y^{2}-z^{2}=1$
(e) $y^{2}=2 x^{2}+z^{2}$
(f) $y=x^{2}+2 z^{2}$
(g) $x^{2}+2 z^{2}=1$
(h) $y=x^{2}-z^{2}$
[Compare T1\#6 S02 T1\#10 S00]
8. T3\#10 S00 Consider the parametric equations for $0 \leq t \leq \pi$.
(I) $\langle\cos (2 t), \sin (2 t)\rangle(\mathrm{II})\langle 2 \cos (t), 2 \sin (t)\rangle(\mathrm{III})\langle\cos (t / 2), \sin (t / 2)\rangle$ and (IV) $\langle 2 \cos (t),-2 \sin (t)\rangle$.
(a) Match the equations above with four of the curves A, B, C, D, E and F in graph below.
(b) Give parametric equations for the curves which have not been matched, again assuming $0 \leq t \leq \pi$.

