Practice Mini-Test 4 – Calculus 3 – Spring 04

1. T2#7 F03 Classify local extrema. [Compare T2#9 S03 T2#9 F02 T2#10 S02] Use your TI-89 to find all the critical points of the function $f(x, y) = x^3 - 3xy + y^3$, then show how you would obtain these critical points by hand. Classify these local extrema by filling out a table like the one below, with a separate line for each critical point.

	(x,y)	f_{xx}	f_{yy}	f_{xy}	big D	Classification
ſ	?	?	?	?	?	?

- 2. T2#10 F02 Lagrange multipliers. [Compare T2#10 F03 T2#8 S03] Use your TI-89 to plot the z = 1 contour of the function $z = g(x, y) = x^2 + xy + y^2$. On the same graph, plot some contour lines for f(x, y) = x + y. Use Lagrange Multipliers to find the maximum and minimum **VALUES** for f(x, y) on the constraint g(x, y) = 1.
- 3. T3#4 S03 Change the order [Compare T2#8 F02 T3#6 S02] Sketch the region of integration and reverse the order of integration for

$$\int_0^2 \int_{x^2}^{2x} dy dx$$

[You do **NOT** have to evaluate the integrals, but using the TI-89 to evaluate both integrals would be a way of checking your answer.]

- 4. T2#10 S03 Optimization. [Compare T2#9 F96] Find the coordinates of the **POINT** closest to the point P(1,1,0) which is both on the surface $z^2 = x^2 + y^2$ AND is in the first octant.
- 5. T2#4 F02 Local Extremes from graphs [Compare T2#9c S02 T2#5] The graph A is a plot of ∇f , the gradient of f and the graph B is a contourplot of g. (Light regions have higher values than dark regions.] Find the co-ordinates of all extrema of f and g and **LABEL** them as either local minimums, local maximums or saddle points.

6. Positive, Negative or Zero. Let $D = \{(x,y) : x^2 + y^2 \le 1\}$, $T = \{(x,y) : y \ge 0, x^2 + y^2 \le 1\}$, $R = \{(x,y) : x \ge 0, x^2 + y^2 \le 1\}$ and $Q = \{(x,y) : x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$. Determine if the following are positive negative or zero.

$\iint_D x dA$	$\iint_T x dA$	$\iint_R x dA$	$\iint_O x dA$
$\iint_D x^2 + y^2 dA$	$\iint_T x^2 + y^2 dA$	$\iint_R x^2 + y^2 dA$	$\iint_Q x^2 + y^2 dA$
$\iint_D \sin y dA$	$\iint_T \sin y dA$	$\iint_R \sin y dA$	$\iint_Q \sin y dA$
$\iint_D xy dA$	$\iint_T xy dA$	$\iint_R xy dA$	$\iint_Q xy dA$

- 7. T2#6 F00 Graphs from local extrema. The function f(x, y) has local maximums at (1, 0) and (-1, 0), local minimums at (0, 1) and (0, -1) and one saddle point at the orgin.
 - (a) Sketch a possible contour graph for f.
 - (b) Sketch a possible graph for ∇f .