1. T2\#7 F03 Classify local extrema. [Compare T2\#9 S03 T2\#9 F02 T2\#10 S02] Use your TI-89 to find all the critical points of the function $f(x, y)=x^{3}-3 x y+y^{3}$, then show how you would obtain these critical points by hand. Classify these local extrema by filling out a table like the one below, with a separate line for each critical point.

(x, y)	$f_{x x}$	$f_{y y}$	$f_{x y}$	big D	Classification
$?$	$?$	$?$	$?$	$?$	$?$

2. T2\#10 F02 Lagrange multipliers. [Compare T2\#10 F03 T2\#8 S03] Use your TI-89 to plot the $z=1$ contour of the function $z=g(x, y)=x^{2}+x y+y^{2}$. On the same graph, plot some contour lines for $f(x, y)=x+y$. Use Lagrange Multipliers to find the maximum and minimum VALUES for $f(x, y)$ on the constraint $g(x, y)=1$.
3. T3\#4 S03 Change the order [Compare T2\#8 F02 T3\#6 S02] Sketch the region of integration and reverse the order of integration for

$$
\int_{0}^{2} \int_{x^{2}}^{2 x} d y d x
$$

[You do NOT have to evaluate the integrals, but using the TI-89 to evaluate both integrals would be a way of checking your answer.]
4. T2\#10 S03 Optimization. [Compare T2\#9 F96] Find the coordinates of the POINT closest to the point $P(1,1,0)$ which is both on the surface $z^{2}=x^{2}+y^{2}$ AND is in the first octant.
5. T2\#4 F02 Local Extremes from graphs [Compare T2\#9c S02 T2\#5] The graph A is a plot of ∇f, the gradient of f and the graph B is a contourplot of g. (Light regions have higher values than dark regions.] Find the co-ordinates of all extrema of f and g and LABEL them as either local minimums, local maximums or saddle points.

6. Positive, Negative or Zero. Let $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}, T=\left\{(x, y): y \geq 0, x^{2}+y^{2} \leq 1\right\}$, $R=\left\{(x, y): x \geq 0, x^{2}+y^{2} \leq 1\right\}$ and $Q=\left\{(x, y): x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1\right\}$. Determine if the following are positive negative or zero.

$\iint_{D} x d A$	$\iint_{T} x d A$	$\iint_{R} x d A$	$\iint_{Q} x d A$
$\iint_{D} x^{2}+y^{2} d A$	$\iint_{T} x^{2}+y^{2} d A$	$\iint_{R} x^{2}+y^{2} d A$	$\iint_{Q} x^{2}+y^{2} d A$
$\iint_{D} \sin y d A$	$\iint_{T} \sin y d A$	$\iint_{R} \sin y d A$	$\iint_{Q} \sin y d A$
$\iint_{D} x y d A$	$\iint_{T} x y d A$	$\iint_{R} x y d A$	$\iint_{Q} x y d A$

7. T2\#6 F00 Graphs from local extrema. The function $f(x, y)$ has local maximums at $(1,0)$ and $(-1,0)$, local minimums at $(0,1)$ and $(0,-1)$ and one saddle point at the orgin.
(a) Sketch a possible contour graph for f.
(b) Sketch a possible graph for ∇f.
