Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Find the equation of the plane (below left) and the sphere (below right).

2. Using vector operations write $\vec{a}=\langle 3,-1,4\rangle$ as the sum of two vectors, one parallel (say \vec{v}), and one perpendicular (say \vec{w}) to $\vec{b}=\langle-3,6,2\rangle$.
3. A treasure map reads start at the big X, face due east, rotate $\pi / 3$ counter-clockwise, walk 10 paces, then walk 5 paces due north and finally dig a hole 3 paces deep. Write the vector \vec{v} that goes from the big X to the bottom of the hole and find the exact simplified value of the length squared $\|\vec{v}\|^{2}$. (The x-axis points East, the y-axis points North, and the z-axis points up.)
4. True or False and a brief reason why or why not.
(a) The vector $\langle 1,0,1\rangle$ is a unit vector.
(b) The planes $x+3 y-2 z=10$ and $-2 x-6 y+4 z=5$ are parallel.
(c) The point $P(1,-1,0)$ in rectangular coordinates is the same as the point $Q(\sqrt{2}, 3 \pi / 4,0)$ in spherical coordinates.
(d) The point $(\sqrt{5}, \pi,-\pi)$ is a valid point in spherical coordinates.
(e) The equation $x^{2}+y^{2}-z^{2}=1$ and the z-axis intersect in two points.
(f) The rectangular equation $x^{2}+y^{2}+z^{2}-z=0$ in spherical coordinates is $\rho=\cos \phi$.
(g) The cylindrical equation $z=r^{2}$ is the equation of a cone.
(h) The rectangular equation $x=4$ in cylindrical coordinates is $r=4 \sec \theta$.
(i) If $\vec{u} \perp \vec{v}$ and both are unit vectors, then so is $\vec{u} \times \vec{v}$
(j) If \vec{u} and \vec{v} and both are unit vectors, then $\vec{u} \cdot \vec{v}$ is $\sin \theta$.
5. Find parametric equations of the line of intersection of the two planes $x-y-z=1$ and $11 x+5 y-5 z=20$.
