Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Find the equation of the tangent plane to $f(x, y)=x y^{2} e^{x-y}$ when $(x, y)=(-2,-3)$.
2. Use spherical coordinates to find

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{\sin \left(x^{2}+y^{2}+z^{2}\right)}{x^{2}+y^{2}+z^{2}}
$$

3. A particle starts at the origin with an initial velocity of $\langle 1,-1,3\rangle$. Its acceleration is $\vec{a}(t)=\left\langle 6 t, 12 t^{2},-6 t\right\rangle$.
(a) Find its position function $\vec{r}(t)$.
(b) Find and simplify the tangential and normal components of the acceleration, $\vec{a}(t)$, at time $t=1$.
4. The following are contour plots of $z=x y, z=x^{2}+y^{2}, z^{2}=x^{2}+y^{2}, z=x^{2}+4 y^{2}, z=4 x^{2}+y^{2}, z=$ $x^{2}, z=y^{2} z=x+y, z=x-y$ and $z=x^{2}-y^{2}$. Match the plot to the function.

5. For the curve $\vec{r}(t)=\langle\sin (t), \cos (t), t \sqrt{3}\rangle$, find the vectors \vec{T}, \vec{N} and \vec{B} at the point $(1 / \sqrt{2}, 1 / \sqrt{2}, \pi \sqrt{3} / 4)$. [Since we are at a point, the final vectors \vec{T}, \vec{N} and \vec{B} should be independent of t.]
