Directions: Show **ALL** work for credit; Give **EXACT** answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

- 1. Find the equation of the tangent plane to $f(x, y) = xy^2 e^{x-y}$ when (x, y) = (-2, -3).
- 2. Use spherical coordinates to find

$$\lim_{(x,y,z)\to(0,0,0)} \frac{\sin(x^2+y^2+z^2)}{x^2+y^2+z^2}$$

- 3. A particle starts at the origin with an initial velocity of $\langle 1, -1, 3 \rangle$. Its acceleration is $\vec{a}(t) = \langle 6t, 12t^2, -6t \rangle$.
 - (a) Find its position function $\vec{r}(t)$.
 - (b) Find and simplify the tangential and normal components of the acceleration, $\vec{a}(t)$, at time t = 1.
- 4. The following are contour plots of $z = xy, z = x^2 + y^2, z^2 = x^2 + y^2, z = x^2 + 4y^2, z = 4x^2 + y^2, z = x^2, z = y^2, z = x + y, z = x y$ and $z = x^2 y^2$. Match the plot to the function.

5. For the curve $\vec{r}(t) = \langle \sin(t), \cos(t), t\sqrt{3} \rangle$, find the vectors \vec{T}, \vec{N} and \vec{B} at the point $(1/\sqrt{2}, 1/\sqrt{2}, \pi\sqrt{3}/4)$. [Since we are at a point, the final vectors \vec{T}, \vec{N} and \vec{B} should be independent of t.]