MAC 2313 Calculus 3 Test 3 23 Feb 2004

Directions: Show **ALL** work for credit; Give **EXACT** answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

- 1. Find the directional derivative of $f(x, y, z) = x^2y^3 + z \ln(z + y)$ as one leaves the point P = (1, -2, 3) heading in the direction of the point Q = (0, -4, 2). An exact simplified answer please.
- 2. Use the chain rule (as shown in class) to find $\partial q/\partial u$ and $\partial q/\partial v$ if $q=r/s+st^2$, $r=e^{-u}$, $s=e^v\sin u$ and $t=e^u\cos v$
- 3. The graph below is combines a contour graph and a plot of the gradient of the function f(x,y).
 - (a) Find and classify all the local extrema (saddles, local minumins and local maximums) of f(x,y)
 - (b) The point p(1/2, -1/2) is shown on the graph, determine the sign (positive, negative or zero) of these partial or directional derivatives of f at p: f_x , f_y , f_{xx} , f_{yy} , $f_{\langle 1/\sqrt{2}, 1/\sqrt{2} \rangle}$ and $f_{\langle -1/\sqrt{2}, 1/\sqrt{2} \rangle}$.

Problems #4 & #5 are on the other side of the test

- 4. True or False and a brief reason why or why not.
 - (a) The function $f(x,y) = x^6 + y^2$ has a (global) maximum value for $(x,y) \in \mathbb{R}^2$
 - (b) The function $f(x,y) = -x^6 y^2$ has a (global) maximum value for $(x,y) \in \mathbb{R}^2$
 - (c) The boundary ∂D of the disk $D = \{(x,y)|x^2 + y^2 < 16\}$ is the circle $\{(x,y)|x^2 + y^2 = 4\}$.
 - (d) The boundary ∂D of the filled square $D = \{(x,y)|0 \le x < 1, 0 \le y < 1\}$ is the union of the line sequents $\{(1,y)|0 \le y \le 1\} \cup \{(x,1)|0 \le x \le 1\}$.
 - (e) If the partial derivatives of f are given by $f_x = (x-1)(x+y)(y^2-1)$ and $f_y = (x+1)(x+y-1)(y-1)$ then (1,-1) would be a critical point of f(x,y).
 - (f) If (a,b) is a critical point of f and $f_{xx}(a,b)=0$ but $D\neq 0$ then (a,b) must a saddle point for f.
 - (g) Let $g(x,y) = x^2 + y^2 = 2$, then $D = \{(x,y)|g(x,y) = 2\}$ is closed and bounded and suppose f, f_x and f_y are continuous on D and f is non-constant on D. Using Lagrange multipliers optimizing f(x,y) given $x^2 + y^2 = 2$, will always give at least two critical points on D, that is points where ∇f is parallel to ∇g .
 - (h) If f(x,y) has a (global) minimum value of 5 on a closed bounded set D and this occurs at the point (3,4) (so f(3,4)=5), then f(x,y) must have a local minimum at (3,4).
 - (i) Let P be a point in \mathbb{R}^3 , let the temperature in \mathbb{R}^3 is given by T(x,y,z) and let $\vec{u} = \nabla T(P)/\|\nabla T(P)\|$. If the temperature at P is 86 and you want to decrease the the temperature as fast as possible, then you should move in the \vec{u} direction.
 - (j) The same as problem above, but this time you want to move in a direction which will keep the temperature a constant 86 degrees, then you can move in any direction perpendicular to the $-\vec{u}$ direction.
- 5. Find the critical points of the function $f(x,y) = x^2y x^2 + y y^2$ and classify these local extrema by filling out a table like the one below using a separate row for each critical point.

Points	f_{xx}	f_{yy}	f_{xy}	D	classification
(?,?)	?	?	?	?	?