Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Find the directional derivative of $f(x, y, z)=x^{2} y^{3}+z \ln (z+y)$ as one leaves the point $P=(1,-2,3)$ heading in the direction of the point $Q=(0,-4,2)$. An exact simplified answer please.
2. Use the chain rule (as shown in class) to find $\partial q / \partial u$ and $\partial q / \partial v$ if $q=r / s+s t^{2}, r=e^{-u}, s=e^{v} \sin u$ and $t=e^{u} \cos v$
3. The graph below is combines a contour graph and a plot of the gradient of the function $f(x, y)$.
(a) Find and classify all the local extrema (saddles, local minumins and local maximums) of $f(x, y)$
(b) The point $p(1 / 2,-1 / 2)$ is shown on the graph, determine the sign (positive, negative or zero) of these partial or directional derivatives of f at $p: f_{x}, f_{y}, f_{x x}, f_{y y}, f_{\langle 1 / \sqrt{2}, 1 / \sqrt{2}\rangle}$ and $f_{\langle-1 / \sqrt{2}, 1 / \sqrt{2}\rangle}$.

Problems \#4 \& \#5 are on the other side of the test
4. True or False and a brief reason why or why not.
(a) The function $f(x, y)=x^{6}+y^{2}$ has a (global) maximum value for $(x, y) \in \mathbb{R}^{2}$
(b) The function $f(x, y)=-x^{6}-y^{2}$ has a (global) maximum value for $(x, y) \in \mathbb{R}^{2}$
(c) The boundary ∂D of the disk $D=\left\{(x, y) \mid x^{2}+y^{2}<16\right\}$ is the circle $\left\{(x, y) \mid x^{2}+y^{2}=4\right\}$.
(d) The boundary ∂D of the filled square $D=\{(x, y) \mid 0 \leq x<1,0 \leq y<1\}$ is the union of the line seqments $\{(1, y) \mid 0 \leq y \leq 1\} \cup\{(x, 1) \mid 0 \leq x \leq 1\}$.
(e) If the partial derivatives of f are given by $f_{x}=(x-1)(x+y)\left(y^{2}-1\right)$ and $f_{y}=(x+1)(x+y-1)(y-1)$ then $(1,-1)$ would be a critical point of $f(x, y)$.
(f) If (a, b) is a critical point of f and $f_{x x}(a, b)=0$ but $D \neq 0$ then (a, b) must a saddle point for f.
(g) Let $g(x, y)=x^{2}+y^{2}=2$, then $D=\{(x, y) \mid g(x, y)=2\}$ is closed and bounded and suppose f, f_{x} and f_{y} are continuous on D and f is non-constant on D. Using Lagrange multipliers optimizing $f(x, y)$ given $x^{2}+y^{2}=2$, will always give at least two critical points on D, that is points where ∇f is parallel to ∇g.
(h) If $f(x, y)$ has a (global) minimum value of 5 on a closed bounded set D and this occurs at the point $(3,4)$ (so $f(3,4)=5$), then $f(x, y)$ must have a local minimum at $(3,4)$.
(i) Let P be a point in \mathbb{R}^{3}, let the temperature in \mathbb{R}^{3} is given by $T(x, y, z)$ and let $\vec{u}=\nabla T(P) /\|\nabla T(P)\|$. If the temperature at P is 86 and you want to decrease the the temperature as fast as possible, then you should move in the \vec{u} direction.
(j) The same as problem above, but this time you want to move in a direction which will keep the temperature a constant 86 degrees, then you can move in any direction perpendicular to the $-\vec{u}$ direction.
5. Find the critical points of the function $f(x, y)=x^{2} y-x^{2}+y-y^{2}$ and classify these local extrema by filling out a table like the one below using a separate row for each critical point.

Points	$f_{x x}$	$f_{y y}$	$f_{x y}$	D	classification
$(?, ?)$	$?$	$?$	$?$	$?$	$?$

