Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Sketch the region of integration for the integral below, then change the order of integration (do NOT evaluate) and then convert the double integral to polar cordinates (do NOT evaluate).

$$
\int_{0}^{3} \int_{-x}^{x} x^{2}+y^{2} d y d x
$$

2. Let $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ be the unit disk, $B=\{(x, y) \in D \mid y \leq 0\}$ be the bottom half of D, $R=\{(x, y) \in D \mid x \geq 0\}$ be the right half of D, and $Q=\{(x, y) \in D \mid y \leq 0, x \geq 0\}$ the part of D in the fourth quadrant. Decide if the following double integrals are positive, negative or zero.

$$
\begin{array}{lllll}
A=\iint_{D} y d A & B=\iint_{B} x^{3} d A & C=\iint_{Q} x y d A & D=\iint_{B} \sin x d A & E=\iint_{D} 1-x^{2}-y^{2} d A \\
F=\iint_{B}-y d A & G=\iint_{R} y^{2} d A & H=\iint_{R}-5 x d A & I=\iint_{R} \sin x d A & J=\iint_{D} x-0.005 d A
\end{array}
$$

3. Write and evaluate a double integral which will give the volume under the parabolic cylinder $z=1-x^{2}$ and above the parabolic cylinder $z=y^{2}$. (See the graph below left)

4. Setup and evaluate a double integral which will compute the area of one loop of the leminscate $r^{2}=$ $2 \cos 2 \theta$ (see the graph above right).
5. Find the center of mass of a lamina with constant density $\delta(x, y)=k$ that occupies the region under the curve $y=\cos x$ from $x=-\pi / 2$ to $x=\pi / 2$.
