Test 6

Directions: Show **ALL** work for credit; Give **EXACT** answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Complete the following steps to compute the flux integral below. (Hint: no actual integration is required below.)

$$\iint_{S} (\operatorname{curl} \vec{F}) \cdot d\vec{S}$$

- (a) Compute curl \vec{F} for $\vec{F} = \langle -y, x, z \rangle$.
- (b) Compute the area of S if the surface S is the equilateral triangle with vertices P(1,0,0), Q(0,1,0) and R(0,0,1).
- (c) Compute the upward unit normal \vec{n} for surface S above.
- (d) Show $\operatorname{curl} \vec{F} \cdot \vec{n}$ is a constant on the surface S.
- (e) Finally compute the flux using two of the numbers above.
- 2. Find f so that $\nabla f = \vec{F} = \langle y, x + y \rangle$ and use f to find the line integral $\int_C \vec{F} \cdot d\vec{r}$ if C is the curve pictured below from (2, 2) to (-20, 0).

3. Vector, scalar or nonsense. P and Q are points in 3-space, f = f(x, y, z) is a scalar fields, $\vec{r}(t)$ or $\vec{r}(u, v)$ is a parametric equation of a curve C or a surface S, and $\vec{F} = \vec{F}(x, y, z)$ and $\vec{G} = \vec{G}(x, y, z)$ are vector fields. Determine if the given object is a scalar field, a vector field or nonsense.

A.
$$\frac{\partial f}{\partial x}$$
 B. $\vec{F} \times \vec{G}$ C. $\vec{F}\vec{G}$ D. $\frac{\partial \vec{r}}{\partial u}$ E. $\vec{F} - \vec{G}$
F. curl f G. grad \vec{G} H. $\vec{F} \cdot \vec{G}$ I. div grad (f) J. curl curl \vec{F}

4. By evaluating both integrals, check Green's theorem

$$\oint_{\partial D} \vec{F} \cdot d\vec{r} = \iint_D Q_x - P_y \, dA$$

when $D = \{(x, y) : x^2 + y^2 \le 16\}$ is the disk of radius 4 and $\vec{F} = \langle -xy, 2x \rangle$.

5. Find the flux of $\vec{F} = \langle 2, y, 2z \rangle$ over the upward oriented surface S given by the portion of $z = 1 - x^2 - y^2$ that lies in the first octant.

Explicitly give \vec{r} , your parametrization with limits, your $d\vec{S}$ with the correct sign for the normal orientation and with the correct differentials. and your $\vec{F}(\vec{r})$.