Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Complete the following steps to compute the flux integral below. (Hint: no actual integration is required below.)

$$
\iint_{S}(\operatorname{curl} \vec{F}) \cdot d \vec{S}
$$

(a) Compute curl \vec{F} for $\vec{F}=\langle-y, x, z\rangle$.
(b) Compute the area of S if the surface S is the equilateral triangle with vertices $P(1,0,0), Q(0,1,0)$ and $R(0,0,1)$.
(c) Compute the upward unit normal \vec{n} for surface S above.
(d) Show curl $\vec{F} \cdot \vec{n}$ is a constant on the surface S.
(e) Finally compute the flux using two of the numbers above.
2. Find f so that $\nabla f=\vec{F}=\langle y, x+y\rangle$ and use f to find the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ if C is the curve pictured below from $(2,2)$ to $(-20,0)$.

3. Vector, scalar or nonsense. P and Q are points in 3 -space, $f=f(x, y, z)$ is a scalar fields, $\vec{r}(t)$ or $\vec{r}(u, v)$ is a parametric equation of a curve C or a surface S, and $\vec{F}=\vec{F}(x, y, z)$ and $\vec{G}=\vec{G}(x, y, z)$ are vector fields. Determine if the given object is a scalar field, a vector field or nonsense.
A. $\frac{\partial f}{\partial x}$
B. $\vec{F} \times \vec{G}$
C. $\vec{F} \vec{G}$
D. $\frac{\partial \vec{r}}{\partial u}$
E. $\vec{F}-\vec{G}$
F. \quad curl f
G. $\operatorname{grad} \vec{G}$
H. $\vec{F} \cdot \vec{G}$
I. div $\operatorname{grad}(f)$
J. curl curl \vec{F}
4. By evaluating both integrals, check Green's theorem

$$
\oint_{\partial D} \vec{F} \cdot d \vec{r}=\iint_{D} Q_{x}-P_{y} d A
$$

when $D=\left\{(x, y): x^{2}+y^{2} \leq 16\right\}$ is the disk of radius 4 and $\vec{F}=\langle-x y, 2 x\rangle$.
5. Find the flux of $\vec{F}=\langle 2, y, 2 z\rangle$ over the upward oriented surface S given by the portion of $z=1-x^{2}-y^{2}$ that lies in the first octant.
Explicitly give \vec{r}, your parametrization with limits, your $d \vec{S}$ with the correct sign for the normal orientation and with the correct differentials. and your $\vec{F}(\vec{r})$.

