1. Complete the following steps to compute the flux integral below. (Hint: no actual integration is required below.)

\[\int \int_S (\text{curl} \vec{F}) \cdot d\vec{S} \]

(a) Compute curl \(\vec{F} \) for \(\vec{F} = \langle -y, x, z \rangle \).

(b) Compute the area of \(S \) if the surface \(S \) is the equilateral triangle with vertices \(P(1,0,0), Q(0,1,0) \) and \(R(0,0,1) \).

(c) Compute the upward unit normal \(\vec{n} \) for surface \(S \) above.

(d) Show curl \(\vec{F} \cdot \vec{n} \) is a constant on the surface \(S \).

(e) Finally compute the flux using two of the numbers above.

2. Find \(f \) so that \(\nabla f = \vec{F} = \langle y, x+y \rangle \) and use \(f \) to find the line integral \(\int_C \vec{F} \cdot d\vec{r} \) if \(C \) is the curve pictured below from \((2,2)\) to \((-20,0)\).

3. Vector, scalar or nonsense. \(P \) and \(Q \) are points in 3-space, \(f = f(x,y,z) \) is a scalar field, \(\vec{r}(t) \) or \(\vec{r}(u,v) \) is a parametric equation of a curve \(C \) or a surface \(S \), and \(\vec{F} = \vec{F}(x,y,z) \) and \(\vec{G} = \vec{G}(x,y,z) \) are vector fields. Determine if the given object is a scalar field, a vector field or nonsense.

A. \(\frac{\partial f}{\partial x} \)
B. \(\vec{F} \times \vec{G} \)
C. \(\vec{F} \vec{G} \)
D. \(\frac{\partial \vec{r}}{\partial u} \)
E. \(\vec{F} - \vec{G} \)
F. curl \(f \)
G. grad \(\vec{G} \)
H. \(\vec{F} \cdot \vec{G} \)
I. div grad(f)
J. curl curl \(\vec{F} \)

4. By evaluating both integrals, check Green’s theorem

\[\oint_{\partial D} \vec{F} \cdot d\vec{r} = \iint_D Q_x - P_y \, dA \]

when \(D = \{(x,y): x^2 + y^2 \leq 16\} \) is the disk of radius 4 and \(\vec{F} = \langle -xy, 2x \rangle \).

5. Find the flux of \(\vec{F} = \langle 2, y, 2z \rangle \) over the upward oriented surface \(S \) given by the portion of \(z = 1-x^2-y^2 \) that lies in the first octant. Explicitly give \(\vec{r} \), your parametrization with limits, your \(d\vec{S} \) with the correct sign for the normal orientation and with the correct differentials. and your \(\vec{F}(\vec{r}) \).